Members Can Post Anonymously On This Site
University Student Research Challenge (USRC) Awards
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA and SpaceX are launching the company’s 32nd commercial resupply services mission to the International Space Station later this month, bringing a host of new research to the orbiting laboratory. Aboard the SpaceX Dragon spacecraft are experiments focused on vision-based navigation, spacecraft air quality, materials for drug and product manufacturing, and advancing plant growth with less reliance on photosynthesis.
This and other research conducted aboard the space station advances future space exploration, including missions to the Moon and Mars, and provides many benefits to humanity.
Investigations traveling to the space station include:
Robotic spacecraft guidance
Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a vision-based sensor developed by NASA to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
Two of the space station’s Astrobee robots are used to test a vision-based guidance system for Smartphone Video Guidance Sensor (SVGS)NASA Protection from particles
During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors in space to determine which is best suited to protect crew health and ensure mission success. The investigation also tests a device for distinguishing between smoke and dust. Aboard the space station, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
Better materials, better drugs
The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
Stem cells grown along the Janus base nanomaterials (JBNs) made aboard the International Space Station.University of Connecticut Next-generation pharmaceutical nanostructures
The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
Helping plants grow
Rhodium USAFA NIGHT examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use. The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
Hardware for the Rhodium Plant LIFE, which was the first in a series used to study how space affects plant growth.NASA Atomic clocks in space
An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
An artist’s concept shows the Atomic Clock Ensemble in Space hardware mounted on the Earth-facing side of the space station’s exterior.ESA Download high-resolution photos and videos of the research mentioned in this article.
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
Latest News from Space Station Research
Station Benefits for Humanity
Space Station Research Results
View the full article
-
By NASA
Explore This Section Science Science Activation Findings from the Field: A… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
Findings from the Field: A Research Symposium for Student Scientists
Within the scientific community, peer review has become the process norm for which an author’s research or ideas undergo careful examination by other experts in their field. It encourages each scientist to meet the high standards that they themselves, as writers and reviewers, have aided in setting. It has become essential to the academic writing practice.
Historically, the peer review process has been limited to higher education and scholars more established in their academic careers. It has been required by only the more reputable publications, which can mean that lesser-known journals that don’t require this rigorous peer review process contain lower quality or less reliable information.
In an effort to give scientists of all ages the opportunity to participate in and contribute to the advancement of human knowledge in a meaningful and reliable way, the Gulf of Maine Research Institute (GMRI) began publishing Findings from the Field, a journal of student ecological and environmental science, launched in 2017. Students conduct authentic scientific inquiry, subject their research to the peer review process, and submit their revised work for editorial board review before publication—the same process a NASA scientist must go through! This hands-on, real-world experience in scientific communication sharpens these young scientists’ skills and immerses them in the collaborative nature of research—an essential foundation for the next generation of scientists.
After 7 years and 7 published volumes, Findings from the Field was ready to expand, and the Findings Student Research Symposium was launched. The Symposium was a success from the start, with 65 student scientists joining the event the first year and attendance climbing to 95 for year two. On March 10, 2025, GMRI (the anchor institution for the NASA Science Activation program’s Learning Ecosystems Northeast (LENE) project) welcomed nearly 100 young scientists, ranging from grades 5-12. These students, representing eight schools across Maine and New Hampshire, came together to share their research and engage in an evolving, intergenerational scientific community—one that fosters curiosity, collaboration, and scientific discovery.
Students presented their research through posters and live presentations, covering topics ranging from invasive green crab species, to the changing landscapes of Ash and Hemlock trees, and more. By connecting students with professional researchers, fostering peer discussions, and providing a platform for publishing legitimate scientific work, the Findings Symposium is a launch pad for the future of the scientific community.
One important element of the Symposium is the opportunity for young scientists to dialogue with professional scientists. Students engaged with researchers from Markus Frederich’s lab at the University of New England, volunteers from local organizations like Unum and Avangrid, and expert staff from GMRI.
Student Madalyn Bartlett from Sacoppee Valley Middle School shared, “It makes me feel really proud, because I get to talk to professional scientists that have a lot of experience in this, and it make me feel like I am contributing to something bigger than my school and my community.”
These interactions emphasize that science isn’t confined to white coats and labs—it’s about curiosity, observation, and shared knowledge. The keynote speaker, Kat Gardner-Vandy from a former NASA Science Activation project team, Native Earth | Native Sky, reinforced this message, inspiring students to see themselves as vital contributors to science and our collective knowledge about the world.
The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about Learning Ecosystems Northeast: https://www.learningecosystemsnortheast.org/
Native Earth | Native Sky’s Kat Gardner-Vandy delivering the keynote speech to students at the Findings Symposium. Share
Details
Last Updated Apr 08, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation Earth Science Opportunities For Students to Get Involved Explore More
34 min read Style Guidelines for ‘The Earth Observer’ Newsletter
Article
2 hours ago
5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves
Article
24 hours ago
3 min read NSTA Hyperwall Schedule
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By Space Force
These Firm Fixed-Price, Indefinite-Delivery Requirements contracts were awarded to SpaceX, United Launch Services, and Blue Origin to provide critical space support to meet national security objectives.
View the full article
-
By NASA
NASA has selected 12 student teams to develop solutions for storing and transferring the super-cold liquid propellants needed for future long-term exploration beyond Earth orbit.
The agency’s 2025 Human Lander Challenge is designed to inspire and engage the next generation of engineers and scientists as NASA and its partners prepare to send astronauts to the Moon through the Artemis campaign in preparation for future missions to Mars. The commercial human landing systems will serve as the primary mode of transportation that will safely take astronauts and, later, large cargo from lunar orbit to the surface of the Moon and back.
For its second year, the competition invites university students and their faculty advisors to develop innovative, “cooler” solutions for in-space cryogenic, or super cold, liquid propellant storage and transfer systems. These cryogenic fluids, like liquid hydrogen or liquid oxygen, must stay extremely cold to remain in a liquid state, and the ability to effectively store and transfer them in space will be increasingly vital for future long-duration missions. Current technology allows cryogenic liquids to be stored for a relatively short amount of time, but future missions will require these systems to function effectively over several hours, weeks, and even months.
The 12 selected finalists have been awarded a $9,250 development stipend to further develop their concepts in preparation for the next stage of the competition.
The 2025 Human Lander Challenge finalist teams are:
California State Polytechnic University, Pomona, “THERMOSPRING: Thermal Exchange Reduction Mechanism using Optimized SPRING” Colorado School of Mines, “MAST: Modular Adaptive Support Technology” Embry-Riddle Aeronautical University, “Electrical Capacitance to High-resolution Observation (ECHO)” Jacksonville University, “Cryogenic Complex: Cryogenic Tanks and Storage Systems – on the Moon and Cislunar Orbit” Jacksonville University, “Cryogenic Fuel Storage and Transfer: The Human Interface – Monitoring and Mitigating Risks” Massachusetts Institute of Technology, “THERMOS: Translunar Heat Rejection and Mixing for Orbital Sustainability” Old Dominion University, “Structural Tensegrity for Optimized Retention in Microgravity (STORM)” Texas A&M University, “Next-generation Cryogenic Transfer and Autonomous Refueling (NeCTAR)” The College of New Jersey, “Cryogenic Orbital Siphoning System (CROSS)” The Ohio State University, “Autonomous Magnetized Cryo-Couplers with Active Alignment Control for Propellant Transfer (AMCC-AAC) University of Illinois, Urbana-Champaign, “Efficient Cryogenic Low Invasive Propellant Supply Exchange (ECLIPSE)” Washington State University, “CRYPRESS Coupler for Liquid Hydrogen Transfer” Finalist teams will now work to submit a technical paper further detailing their concepts. They will present their work to a panel of NASA and industry judges at the 2025 Human Lander Competition Forum in Huntsville, Alabama, near NASA’s Marshall Space Flight Center, in June 2025. The top three placing teams will share a total prize purse of $18,000.
“By engaging college students in solving critical challenges in cryogenic fluid technologies and systems-level solutions, NASA fosters a collaborative environment where academic research meets practical application,” said Tiffany Russell Lockett, office manager for the Human Landing System Mission Systems Management Office at NASA Marshall. “This partnership not only accelerates cryogenics technology development but also prepares the Artemis Generation – the next generation of engineers and scientists – to drive future breakthroughs in spaceflight.”
NASA’s Human Lander Challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
For more information on NASA’s 2025 Human Lander Challenge, including team progress, visit the challenge website.
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
By NASA
An electron microscopy images of multicellular magnetotactic bacteria that featured on the covers of the 2022 edition of The ISME Journal. The image was produced by Schaible and co-workers under the group’s NASA awards.Roland Hatzenpichler / Montana State University In a recent study, NASA-supported researchers gained new insight into the lives of bacteria that survive by grouping together as if they were a multi-cellular organism. The organisms in the study are the only bacteria known to do this in this way, and studying them could help astrobiologists explain important steps in the evolution of life on Earth.
The organisms in the study are known as ‘multicellular magnetotactic bacteria,’ or MMB. Being magnetotactic means that MMB are part of a select group of bacteria that orient their movement based on Earth’s magnetic field using tiny ‘compass needles’ in their cells. As if that wasn’t special enough, MMB also live bunched up in collections of cells that are considered by some scientists to exhibit ‘obligate’ multicellularity, which is the trait the new study is focused on.
In biology, obligate means that an organism requires something for survival. In this case, it means that single cells of MMB cannot survive on their own. Instead, cells live as a consortium of multiple cells that behave in many ways like a single multicellular organism. This requirement to live together means that when MMB reproduce, they do so by replicating all the cells in the consortium at once, doubling the total number of cells. This large group of cells then splits into two identical consortia.
Electron microscopy image and cartoon of a MMB consortium, highlighting its characteristics features that includes a hollow space at the center of the cell consortium.George Shaible et al. PLOS Biology 2024 MMB are the only example of bacteria that are known to live like this. Many other bacteria clump together as simple aggregates of single cells. For instance, cyanobacteria clump together in colonies and form structures like stromatolites or biofilms that are visible to the naked eye. However, unlike MMB, these cyanobacteria can also survive as single, individual cells.
In the new study, scientists have revealed even more complexity in the relationships between MMB cells. First, contrary to long-held assumptions, individual cells within MMB consortia are not genetically identical, they differ slightly in their genetic blueprint. Further, cells within a consortium exhibit different and complementary behavior in terms of their metabolism. Each cell in an MMB consortium has a role that contributes to the survival of the entire group. This behavior is similar to how individual cells within multicellular organisms behave. For example, human bodies are made up of tens of trillions of cells. These cells differentiate into specific cell types with different functions. Bone cells are not the same as blood cells. Fat cells that store energy are different from the nerve cells that store and transmit information. Each cell has a role to play, and together they make up a single living body.
The proposed life cycle of multicellular magnetotactic bacteria (MMB). Credit: George ShcaibleGeorge Schaible The evolution of multicellularity is one of the major transitions in the history life on our planet and had profound effects on Earth’s biosphere. In the wake of its appearance, life developed novel strategies for survival that led to entirely new ecosystems. As the only example of bacteria that exhibit obligate multicellularity, MMB provide an important example of possible mechanisms behind this profound step in life’s evolutionary history on Earth.
The study, “Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells,” was published in PLOS Biology. The work was supported through the NASA Exobiology program and the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program.
For more information on NASA Astrobiology, visit:
https://astrobiology.nasa.gov
-end-
News Media Contacts
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Explore More
6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Article 1 week ago 5 min read NASA’s Apollo Samples Yield New Information about the Moon
Article 2 months ago 5 min read NASA Study Shows Ferns Facilitate Recovery from Environmental Disaster
NASA-supported scientists have shown how ferns might help ecosystems recover from disasters.
Article 3 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.