Members Can Post Anonymously On This Site
NASA Webb Explores Effect of Strong Magnetic Fields on Star Formation
-
Similar Topics
-
By NASA
5 Min Read NASA Langley’s Legacy of Landing
The first image of the Moon taken by the cameras on the Lunar Orbiter in 1966. Credits: NASA Landing safely on the surface of another planetary body, like the Moon or Mars, is one of the most important milestones of any given space mission. From the very beginning, NASA’s Langley Research Center has been at the heart of the entry, descent and landing (EDL) research that enables our exploration. Today, NASA Langley’s legacy of landing continues at the forefront of present day lunar missions and as NASA prepares for future travel to more distant worlds.
Project Mercury: 1958
Project Mercury was the United States’ first human-in-space program, led by NASA’s Space Task Group located at NASA Langley. There were five major programs of study and experimentation.
An airdrop study that helped us understand the characteristics of the Mercury capsule as it returned to Earth. A group of study focused on the escape systems, ultimately becoming known as the launch abort system. Exhaustive wind-tunnel studies of the blunt-nosed capsule design and its aerodynamic stability at various altitudes and speeds and angles of reentry, all with a focus on making the capsule safe and stable. A study on the problem of landing impact, resulting in the development of absorption systems that minimized the shock of impact to the capsule’s pilot. Studies into the use of drogue parachutes and their characteristics at high altitudes and speeds, ensuring that they would be able to stabilize and slow the capsule’s descent for a safe landing. All of this research went on to inform the subsequent Gemini and Apollo programs. All of this research went on to inform the subsequent Gemini and Apollo programs.
Apollo Program: 1962
In 1961, President John F. Kennedy committed to putting Americans on the surface of the Moon and shortly after that historic declaration, NASA’s Apollo program was born. In the years that followed, the original team of NASA astronauts completed their basic training at NASA Langley’s Lunar Landing Research Facility (LLRF). When Apollo 11 successfully landed the first humans on the Moon in 1969, NASA Langley had played a pivotal role in the monumental success.
Lunar Orbiter: 1966
The Lunar Orbiter missions launched with the purpose of mapping the lunar surface and identifying potential landing sites ahead of the Apollo landings. From 1966 to 1967, the five successful Lunar Orbiter missions, led and managed by Langley Research Center, resulted in 99% of the moon photographed and a suitable site selected for the upcoming human landings.
Viking: 1976
After the success of Apollo, NASA set its sights further across the solar system to Mars. Two Viking missions aimed to successfully place landers on the Red Planet and capture high resolution images of the Martian surfaces, assisting in the search for life. Langley Research Center was chosen to lead this inaugural Mars mission and went on to play key roles in the missions to Mars that followed.
HIAD: 2009 – Present
Successful landings on Mars led to more ambitious dreams of landing larger payloads, including those that could support future human exploration. In order to land those payloads safely, a new style of heat shield would be needed. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology was positioned as an answer to the payload problem, enabling missions to use inflatable heat shields to slow down and protect a payload as it enters a planet’s atmosphere at hypersonic speeds.
IRVE – 2009-2012
Two successful Inflatable Reentry Vehicle Experiments (IRVE) proved the capability of inflatable heat shield technology and opened the door for larger iterations.
LOFTID – 2022
The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) followed in the footsteps of its predecessor IRVE with a larger aeroshell that could be deployed to a scale much larger than the shroud. The 2022 successful test of this technology further proved the capability of HIAD technology.
MEDLI 1 and 2: 2012 & 2020
As a part of the Mars Science Laboratory (MSL) mission, NASA Langley’s Mars Entry, Descent and Landing Instrument (MEDLI) was designed to gather data from the MSL entry vehicle’s heatshield during its entry and descent to the surface of Mars. MEDLI2 expanded on that groundbreaking data during the Mars 2020 mission which safely landed the Perseverance rover after successfully entering the planet’s arid atmosphere, and enabling improvements on the design for future entry systems.
Curiosity Rover
Curiosity was the largest and most capable rover ever sent to Mars when it launched in 2011. Leading up the mission, Langley engineers performed millions of simulations of the entry, descent and landing phase — or the so-called “Seven Minutes of Terror” — that determines success or failure. Curiosity continues to look for signs that Mars once was – or still is – a habitable place for life as we know it.
CLPS: 2023 – Present
The Commercial Lunar Payload Services initiative takes the Artemis mission further by working with commercial partners to advance the technology needed to return humans to the Moon and enable humanity to explore Mars.
NDL
Navigation Doppler Lidar (NDL) technology, developed at Langley Research Center, uses lasers to assist spacecraft in identifying safe locations to land. In 2024, NDL flew on the Intuitive Machines’ uncrewed Nova-C lander, with its laser instruments designed to measure velocity and altitude to within a few feet. While NASA planetary landers have traditionally relied on radar and used radio waves, NDL technology has proven more accurate and less heavy, both major benefits for cost and space savings as we continue to pursue planetary missions.
SCALPSS
Like Lunar Orbiter and the Viking missions before it, Stereo Cameras for Lunar Plume Surface Studies (SCALPSS) set out to better understand the surface of another celestial body. These cameras affixed to the bottom of a lunar lander focus on the interaction between the lander’s rocket plumes and the lunar surface. The SCALPSS 1.1 instrument captured first-of-its-kind imagery as the engine plumes of Firefly’s Blue Ghost lander reached the Moon’s surface. These images will serve as key pieces of data as trips to the Moon increase in the coming years.
About the Author
Angelique Herring
Share
Details
Last Updated Apr 03, 2025 EditorAngelique HerringContactJoseph Scott Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
General Langley Research Center Explore More
4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
Article 3 weeks ago 4 min read Six NASA Instruments Will Fly to Moon on Intuitive Machines Lander
Article 1 year ago 4 min read Impact Story: Navigation Doppler Lidar
Article 2 years ago 7 min read Langley’s Contributions to Artemis
Article 3 years ago 1 min read 2024 Annual Report Highlights Langley’s Wonder at Work
Article 2 months ago 12 min read 60 Years Ago: NASA Approves the Lunar Orbiter Program
Article 2 years ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Image: This image shows Webb’s recent observation of the asteroid 2024 YR4 using both its Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). Data from NIRCam shows reflected light, while the MIRI observations show thermal light.
On 8 March 2025, the NASA/ESA/CSA James Webb Space Telescope turned its watchful eye toward asteroid 2024 YR4, which we now know poses no significant threat to Earth in 2032 and beyond.
This is the smallest object targeted by Webb to date, and one of the smallest objects to have its size directly measured.
Observations were taken to study the thermal properties of 2024 YR4, including how quickly it heats up and cools down and how hot it is at its current distance from the Sun. These measurements indicate that this asteroid does not share properties observed in larger asteroids. This is likely a combination of its fast spin and lack of fine-grained sand on its surface. Further research is needed, however this is considered consistent with a surface dominated by rocks that are roughly fist-sized or larger.
Asteroid 2024 YR4 was recently under close watch by the team at ESA's Near Earth Objects Coordination Centre, located in Italy. Planetary defence experts from the Agency's Space Safety programme worked with NASA and the international asteroid community to closely watch this object and refine its orbit, which was eventually determined to not pose a risk of Earth impact. Read details on this unusual campaign via ESA's Rocket Science blog and in news articles here and here.
Webb’s observations indicate that the asteroid measures roughly 60 meters (comparable to the height of a 15-story building).
The new observations from Webb not only provide unique information about 2024 YR4’s size, but can also complement ground-based observations of the object's position to help improve our understanding of the object’s orbit and future trajectory.
Note: This post highlights data from Webb science in progress, which has not yet been through the peer-review process.
[Image description: A collage of three images showing the black expanse of space. Two-thirds of the collage is taken up by the black background sprinkled with small, blurry galaxies in orange, blue, and white. There are two images in a column at the right side of the collage. On the right side of the main image, not far from the top, a very faint dot is outlined with a white square. At the right, there are two zoomed in views of this area. The top box is labeled NIRCam and shows a fuzzy dot at the center of the inset. The bottom box is labeled MIRI and shows a fuzzy pinkish dot.]
View the full article
-
By NASA
An electron microscopy images of multicellular magnetotactic bacteria that featured on the covers of the 2022 edition of The ISME Journal. The image was produced by Schaible and co-workers under the group’s NASA awards.Roland Hatzenpichler / Montana State University In a recent study, NASA-supported researchers gained new insight into the lives of bacteria that survive by grouping together as if they were a multi-cellular organism. The organisms in the study are the only bacteria known to do this in this way, and studying them could help astrobiologists explain important steps in the evolution of life on Earth.
The organisms in the study are known as ‘multicellular magnetotactic bacteria,’ or MMB. Being magnetotactic means that MMB are part of a select group of bacteria that orient their movement based on Earth’s magnetic field using tiny ‘compass needles’ in their cells. As if that wasn’t special enough, MMB also live bunched up in collections of cells that are considered by some scientists to exhibit ‘obligate’ multicellularity, which is the trait the new study is focused on.
In biology, obligate means that an organism requires something for survival. In this case, it means that single cells of MMB cannot survive on their own. Instead, cells live as a consortium of multiple cells that behave in many ways like a single multicellular organism. This requirement to live together means that when MMB reproduce, they do so by replicating all the cells in the consortium at once, doubling the total number of cells. This large group of cells then splits into two identical consortia.
Electron microscopy image and cartoon of a MMB consortium, highlighting its characteristics features that includes a hollow space at the center of the cell consortium.George Shaible et al. PLOS Biology 2024 MMB are the only example of bacteria that are known to live like this. Many other bacteria clump together as simple aggregates of single cells. For instance, cyanobacteria clump together in colonies and form structures like stromatolites or biofilms that are visible to the naked eye. However, unlike MMB, these cyanobacteria can also survive as single, individual cells.
In the new study, scientists have revealed even more complexity in the relationships between MMB cells. First, contrary to long-held assumptions, individual cells within MMB consortia are not genetically identical, they differ slightly in their genetic blueprint. Further, cells within a consortium exhibit different and complementary behavior in terms of their metabolism. Each cell in an MMB consortium has a role that contributes to the survival of the entire group. This behavior is similar to how individual cells within multicellular organisms behave. For example, human bodies are made up of tens of trillions of cells. These cells differentiate into specific cell types with different functions. Bone cells are not the same as blood cells. Fat cells that store energy are different from the nerve cells that store and transmit information. Each cell has a role to play, and together they make up a single living body.
The proposed life cycle of multicellular magnetotactic bacteria (MMB). Credit: George ShcaibleGeorge Schaible The evolution of multicellularity is one of the major transitions in the history life on our planet and had profound effects on Earth’s biosphere. In the wake of its appearance, life developed novel strategies for survival that led to entirely new ecosystems. As the only example of bacteria that exhibit obligate multicellularity, MMB provide an important example of possible mechanisms behind this profound step in life’s evolutionary history on Earth.
The study, “Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells,” was published in PLOS Biology. The work was supported through the NASA Exobiology program and the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program.
For more information on NASA Astrobiology, visit:
https://astrobiology.nasa.gov
-end-
News Media Contacts
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Explore More
6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Article 1 week ago 5 min read NASA’s Apollo Samples Yield New Information about the Moon
Article 2 months ago 5 min read NASA Study Shows Ferns Facilitate Recovery from Environmental Disaster
NASA-supported scientists have shown how ferns might help ecosystems recover from disasters.
Article 3 months ago View the full article
-
By NASA
2 min read
Citizen Scientists Use NASA Open Science Data to Research Life in Space
2023 Workshop of Analysis Working Group members, Washington, D.C., November 14, 2023. Now, you are invited to join their quest to understand how life can thrive in deep space! Want to learn more first? Join our live virtual event April 17 at 3pm Eastern Time to hear an overview of the OSDR AWG’s operations. Photo: NASA OSDR Team How can life thrive in deep space? The Open Science Data Repository Analysis Working Groups invite volunteers from all backgrounds to help answer this question. Request to join these citizen science groups to help investigate how life adapts to space environments, exploring topics like radiation effects, microgravity’s impact on human and plant health, and how microbes change in orbit.
Currently, nine Analysis Working Groups (AWGs) hold monthly meetings to advance their specific focus areas. Participants collaborate using an online platform, the AWG “Forum-Space”, where they connect with peers and experts, join discussions, and contribute to over 20 active projects.
The AWGs work with data primarily from the NASA Open Science Data Repository (OSDR), a treasure trove of spaceflight data on physiology, molecular biology, bioimaging, and much more. For newcomers, there are tutorials and a comprehensive paper covering all aspects of the repository and the AWG community. You can explore 500+ studies, an omics multi-study visualization portal, the environmental data app, and RadLab, a portal for radiation telemetry data. (“Omics” refers to fields of biology that end in “omics,” like “genomics”.)
Each of the nine AWGs has a Lead who organizes their group and holds monthly virtual meetings. Once you join, make sure to connect with the Lead and get on the agenda so you can introduce yourself. Learn more about the AWGs here.
Have an idea for a new project? Propose a new project and help lead it! From data analysis and visualization to shaping data standards and conducting literature meta-analyses, there’s a place for everyone to contribute. Request to join, and together, we can address a great challenge for humanity: understanding and enabling life to thrive in deep space!
Want to learn more?
On April 17 at 3pm Eastern Time, the NASA Citizen Science Leaders Series is hosting an virtual event with Ryan Scott about these Analysis Working Groups and their work. Ryan is the Science Lead for the Ames Life Sciences Data Archive and the liaison between the Open Data Science Repository and the Analysis Working Groups. Click here to register for this event!
Share
Details
Last Updated Apr 01, 2025 Related Terms
Citizen Science Biological & Physical Sciences Explore More
9 min read Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper
Article
2 weeks ago
2 min read Redshift Wranglers Reach Remarkable Milestones
Article
4 weeks ago
2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds
Article
4 weeks ago
View the full article
-
By European Space Agency
Video: 00:15:30 Meet Arnaud Prost—aerospace engineer, professional diver, and member of ESA’s Astronaut Reserve. From flying aircraft to getting a taste of spacewalk simulation, his passion for exploration knows no bounds.
In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training.
ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
This interview was recorded in November 2024.
You can listen to this episode on all major podcast platforms.
Keep exploring with ESA Explores!
Learn more about Arnaud’s PANGAEA training here.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.