Jump to content

What’s Up: April 2025 Skywatching Tips from NASA


Recommended Posts

  • Publishers
Posted

April (Meteor) Showers and See a City of Stars!

Enjoy observing planets in the morning and evening sky, look for Lyrid meteors, and hunt for the “faint fuzzy” wonder that is the distant and ancient city of stars known as globular cluster M3. 

Skywatching Highlights

All Month – Planet Visibility:

  • Mercury: Visible for a few days in the second half of April, extremely low in the east before sunrise.
  • Venus: Rising low in the east in the hour before dawn.
  • Mars: Bright and easy to view after dark all month. Setting a couple of hours after midnight.
  • Jupiter: Bright and easy to spot in the west after dark, setting a couple of hours after sunset.
  • Saturn: Visible low in the east below Venus, before dawn in the last two weeks of April.

Daily Highlights:

April 1 & 30 – Jupiter & Crescent Moon: Find the charming pair in the west as the sky darkens, setting about 3 hours after sunset.

April 4 & 5 – Mars & Moon: The Moon, around its first quarter phase, appears near Mars in the sky for two nights.

April 24-25 – Grouping of the Moon & Three Planets: Find Venus, Saturn, and the crescent moon gathered low in the east as dawn warms the morning sky. Mercury is also visible below them for those with a clear view to the horizon.

All month – Venus: Earth’s hothouse twin planet has made the shift from an evening object to a morning sight. You’ll notice it rising low in the east before dawn, looking a little higher each morning through the month. 

All month – Mars: Looking bright and reddish in color, Mars is visible high overhead after dark all month. At the start of the month it lies along a line with bright stars Procyon and Pollux, but you’ll notice it moves noticeably over the course of April (~12 degrees or the width of your outstretched fist at arm’s length).

Transcript

What’s Up for April? Planets at dusk and dawn, April showers, and observing a distant city of stars.

An illustrated sky chart shows a view of the western evening sky 30 minutes after sunset on April 1. The scene features a dark twilight background with faint stars and labeled compass directions:
Sky chart showing Jupiter and the crescent Moon on April 1. A similar scene repeats on April 30, but with the Moon appearing above Jupiter.
NASA/JPL-Caltech

First up, in the evening sky, we begin and end the month with Jupiter and the crescent Moon shining brightly together in the western sky as sunset fades. On both April 1st and 30th, you can find the charming pair about half an hour after sunset, setting about 3 hours later.

Mars is high overhead in the south on April evenings. At the start of the month, it’s directly in between bright stars Procyon and Pollux, but it moves noticeably during the month. You’ll find the first-quarter moon right next to Mars on April 4th and 5th.

Moving to the morning sky, Venus has now made the switch from an evening object to a morning one. You may start to notice it rising low in the east before dawn, looking a little higher each morning through the month.

An illustrated sky chart features a twilight background that is beginning to show signs of brightening as dawn approaches. There are faint stars and labeled compass directions:
Sky chart showing the eastern sky 45 minutes before sunrise on April 24, with Venus, Saturn and the crescent Moon forming a grouping low in the sky. Mercury might also be visible for those with a completely clear view to the horizon.
NASA/JPL-Caltech

Around April 24th and 25th, you’ll find Venus, Saturn, and the crescent moon gathered low in the east as dawn warms up the morning sky. Those with a clear view to the horizon might also pick out Mercury looking bright, but very low in the sky.

April brings shooting stars as Earth passes through one the streams of comet dust that create our annual meteor showers. The Lyrids are a modest meteor shower that peaks overnight on April 21st and into the morning of the 22nd. You can expect up to 15 meteors per hour near the peak under dark skies.

The Lyrids are best observed from the Northern Hemisphere, but can be seen from south of the equator as well. View them after about 10:30pm local time until dawn, with the best viewing around 5 a.m. The waning crescent moon will rise around 3:30am, but at only 27% full, it shouldn’t interfere too much with your meteor watching. For the best experience, face roughly toward the east, lie down in a safe, dark place away from bright lights, and look straight overhead. Meteors can appear anywhere in the sky, and some Lyrids can leave bright trails that last for a few seconds after they’ve passed.

NASA studies meteors from the ground, in the air, and from orbit to forecast meteor activity and protect spacecraft, and to understand the composition of comets and asteroids throughout our solar system.

An illustrated sky chart shows the evening sky, featuring a dark twilight background with faint stars. High in the sky is the ladle-shaped grouping of stars, the Big Dipper, with one of its stars, Megrez, labeled. The Dipper's handle points downward. At center are two stars, Cor Caroli and much brighter Arcturus. The position of M3 is indicated between the two stars.
Sky chart facing east around 9pm in April 2025 showing the location of globular cluster M3. The chart depicts the cluster’s position relative to the Big Dipper and bright stars Arcturus and Cor Caroli. The Big Dipper star Megrez serves as an indicator for the brightness of Cor Caroli. For easy visibility, M3 is depicted brighter and larger than its actual appearance.
NASA/JPL-Caltech

April offers a chance to observe a truly distant wonder – a globular cluster known as “M3.” It’s a vast collection of stars that lies 34,000 light-years from Earth in our galaxy’s outer reaches. Astronomer Charles Messier discovered this object in 1764, while searching for new comets. Realizing it wasn’t one, he added it to his list of interesting objects that were not comets, which today we know as Messier’s catalog.

Through binoculars, Messier 3, or M3, appears as a small, fuzzy, star-like patch of light. With a small telescope, you’ll see a more defined glow with a slightly grainy texture. And with telescopes 8 inches or larger, the cluster begins to resolve into hundreds of individual stars. 

Now, globular clusters contain some of the oldest stars in the universe, often over 10 billion years old. Unlike open clusters like the Pleiades, which sit within the Milky Way’s spiral arms, globular clusters are found in the galaxy’s halo, orbiting far above and below the Milky Way’s disk. Our galaxy has around 150 confirmed globular clusters. M3 itself is probably 11 to 13 billion years old and contains around half a million stars. And it’s relatively easy to spot in April under dark skies with binoculars or a small telescope.

Finding M3 starts with the Big Dipper. Facing east, use the Dipper’s handle to “arc to Arcturus,” the fourth-brightest star in the night sky. From there, look higher in the sky to find the star Cor Caroli located here to the west of the Dipper’s handle. It’s about as bright as this star in the Dipper’s cup. M3 is located roughly a third of the way from Arcturus to Cor Caroli. With binoculars or a finder scope, sweep within this area until you spot a faint, round glow.

M3 is an excellent target for beginners and seasoned observers alike. Whether using binoculars or a telescope, you’ll be rewarded with a view of one of the oldest objects in our galaxy.

The main phases of the Moon are illustrated in a horizontal row, with the first quarter moon on April 4, full moon on April 12, third quarter on April 20, and the new moon on April 27.
The phases of the Moon for April 2025.
NASA/JPL-Caltech

Above are the phases of the Moon for April.

Stay up to date on all of NASA’s missions exploring the solar system and beyond at NASA Science. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA Langley’s Legacy of Landing
      The first image of the Moon taken by the cameras on the Lunar Orbiter in 1966. Credits: NASA Landing safely on the surface of another planetary body, like the Moon or Mars, is one of the most important milestones of any given space mission. From the very beginning, NASA’s Langley Research Center has been at the heart of the entry, descent and landing (EDL) research that enables our exploration. Today, NASA Langley’s legacy of landing continues at the forefront of present day lunar missions and as NASA prepares for future travel to more distant worlds.
      Project Mercury: 1958
      Project Mercury was the United States’ first human-in-space program, led by NASA’s Space Task Group located at NASA Langley. There were five major programs of study and experimentation.
      An airdrop study that helped us understand the characteristics of the Mercury capsule as it returned to Earth. A group of study focused on the escape systems, ultimately becoming known as the launch abort system. Exhaustive wind-tunnel studies of the blunt-nosed capsule design and its aerodynamic stability at various altitudes and speeds and angles of reentry, all with a focus on making the capsule safe and stable. A study on the problem of landing impact, resulting in the development of absorption systems that minimized the shock of impact to the capsule’s pilot. Studies into the use of drogue parachutes and their characteristics at high altitudes and speeds, ensuring that they would be able to stabilize and slow the capsule’s descent for a safe landing. All of this research went on to inform the subsequent Gemini and Apollo programs. All of this research went on to inform the subsequent Gemini and Apollo programs.
      Apollo Program: 1962
      In 1961, President John F. Kennedy committed to putting Americans on the surface of the Moon and shortly after that historic declaration, NASA’s Apollo program was born. In the years that followed, the original team of NASA astronauts completed their basic training at NASA Langley’s Lunar Landing Research Facility (LLRF). When Apollo 11 successfully landed the first humans on the Moon in 1969, NASA Langley had played a pivotal role in the monumental success.
      Lunar Orbiter: 1966
      The Lunar Orbiter missions launched with the purpose of mapping the lunar surface and identifying potential landing sites ahead of the Apollo landings. From 1966 to 1967, the five successful Lunar Orbiter missions, led and managed by Langley Research Center, resulted in 99% of the moon photographed and a suitable site selected for the upcoming human landings.
      Viking: 1976
      After the success of Apollo, NASA set its sights further across the solar system to Mars. Two Viking missions aimed to successfully place landers on the Red Planet and capture high resolution images of the Martian surfaces, assisting in the search for life. Langley Research Center was chosen to lead this inaugural Mars mission and went on to play key roles in the missions to Mars that followed.
      HIAD: 2009 – Present
      Successful landings on Mars led to more ambitious dreams of landing larger payloads, including those that could support future human exploration. In order to land those payloads safely, a new style of heat shield would be needed. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology was positioned as an answer to the payload problem, enabling missions to use inflatable heat shields to slow down and protect a payload as it enters a planet’s atmosphere at hypersonic speeds.
      IRVE – 2009-2012
      Two successful Inflatable Reentry Vehicle Experiments (IRVE) proved the capability of inflatable heat shield technology and opened the door for larger iterations.
      LOFTID – 2022
      The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) followed in the footsteps of its predecessor IRVE with a larger aeroshell that could be deployed to a scale much larger than the shroud. The 2022 successful test of this technology further proved the capability of HIAD technology.
      MEDLI 1 and 2: 2012 & 2020
      As a part of the Mars Science Laboratory (MSL) mission, NASA Langley’s Mars Entry, Descent and Landing Instrument (MEDLI) was designed to gather data from the MSL entry vehicle’s heatshield during its entry and descent to the surface of Mars. MEDLI2 expanded on that groundbreaking data during the Mars 2020 mission which safely landed the Perseverance rover after successfully entering the planet’s arid atmosphere, and enabling improvements on the design for future entry systems.
      Curiosity Rover
      Curiosity was the largest and most capable rover ever sent to Mars when it launched in 2011. Leading up the mission, Langley engineers performed millions of simulations of the entry, descent and landing phase — or the so-called “Seven Minutes of Terror” — that determines success or failure. Curiosity continues to look for signs that Mars once was – or still is – a habitable place for life as we know it.
      CLPS: 2023 – Present
      The Commercial Lunar Payload Services initiative takes the Artemis mission further by working with commercial partners to advance the technology needed to return humans to the Moon and enable humanity to explore Mars.
      NDL
      Navigation Doppler Lidar (NDL) technology, developed at Langley Research Center, uses lasers to assist spacecraft in identifying safe locations to land. In 2024, NDL flew on the Intuitive Machines’ uncrewed Nova-C lander, with its laser instruments designed to measure velocity and altitude to within a few feet. While NASA planetary landers have traditionally relied on radar and used radio waves, NDL technology has proven more accurate and less heavy, both major benefits for cost and space savings as we continue to pursue planetary missions.
      SCALPSS
      Like Lunar Orbiter and the Viking missions before it, Stereo Cameras for Lunar Plume Surface Studies (SCALPSS) set out to better understand the surface of another celestial body. These cameras affixed to the bottom of a lunar lander focus on the interaction between the lander’s rocket plumes and the lunar surface. The SCALPSS 1.1 instrument captured first-of-its-kind imagery as the engine plumes of Firefly’s Blue Ghost lander reached the Moon’s surface. These images will serve as key pieces of data as trips to the Moon increase in the coming years. 
      About the Author
      Angelique Herring

      Share
      Details
      Last Updated Apr 03, 2025 EditorAngelique HerringContactJoseph Scott Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
      General Langley Research Center Explore More
      4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
      Article 3 weeks ago 4 min read Six NASA Instruments Will Fly to Moon on Intuitive Machines Lander
      Article 1 year ago 4 min read Impact Story: Navigation Doppler Lidar
      Article 2 years ago 7 min read Langley’s Contributions to Artemis
      Article 3 years ago 1 min read 2024 Annual Report Highlights Langley’s Wonder at Work
      Article 2 months ago 12 min read 60 Years Ago: NASA Approves the Lunar Orbiter Program
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The Roscosmos Soyuz MS-27 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Jonny Kim and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky.Credit: Gagarin Cosmonaut Training Center NASA astronaut Jonny Kim will launch aboard the Roscosmos Soyuz MS-27 spacecraft to the International Space Station, accompanied by cosmonauts Sergey Ryzhikov and Alexey Zubritsky, where they will join the Expedition 72/73 crew in advancing scientific research.
      Kim, Ryzhikov, and Zubritsky will lift off at 1:47 a.m. EDT Tuesday, April 8 (10:47 a.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      Watch live launch and docking coverage on NASA+. Learn how to watch NASA content through a variety of platforms.
      After a two-orbit, three-hour trajectory to the station, the spacecraft will dock automatically to the station’s Prichal module at approximately 5:03 a.m. Shortly after, hatches will open between Soyuz and the space station.
      Once aboard, the trio will join NASA astronauts Nichole Ayers, Anne McClain, and Don Pettit, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Alexey Ovchinin, Kirill Peskov, and Ivan Vagner.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Tuesday, April 8
      12:45 a.m. – Launch coverage begins on NASA+.
      1:47 a.m. – Launch
      4:15 a.m. – Rendezvous and docking coverage begins on NASA+.
      5:03 a.m. – Docking
      7 a.m. – Hatch opening and welcome remarks coverage begins on NASA+.
      7:20 a.m. – Hatch opening
      The trio will spend approximately eight months aboard the orbital laboratory as Expedition 72 and 73 crew members before returning to Earth in December. This will be the first flight for Kim and Zubritsky, and the third for Ryzhikov.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of the Artemis campaign in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 02, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The International Space Station is pictured from the SpaceX Dragon spacecraft by a Crew-8 member shortly after undocking from the Harmony module’s space-facing port as the orbital outpost was soaring 272 miles above the cloudy Patagonia region of South America.NASA NASA is seeking proposals for two new private astronaut missions to the International Space Station, targeted for 2026 and 2027, as the agency continues its commitment to expanding access to space. These private missions enable American commercial companies to further develop capabilities and support a continuous human presence in low Earth orbit.
      “We are in an incredible time for human spaceflight, with more opportunities to access space and grow a thriving commercial economy in low Earth orbit,” said Dana Weigel, program manager for the International Space Station at NASA’s Johnson Space Center in Houston. “NASA remains committed to supporting this expansion by leveraging our decades of expertise to help industry gain the experience needed to train and manage crews, conduct research, and develop future destinations. Private astronaut missions are a key part of this effort, providing companies with hands-on opportunities to refine their capabilities and build partnerships that will shape the future of low Earth orbit.”
      The new flight opportunities will be the fifth and sixth private astronaut missions to the orbiting laboratory coordinated by NASA. The first three missions were accomplished by Axiom Space in April 2022, May 2023, and January 2024, with a fourth scheduled for no earlier than May 2025.
      Each of the new missions may be docked to the space station for up to 14 days. Specific dates depend on spacecraft traffic at the space station and in-orbit activity planning and constraints. Private astronaut missions must be brokered by a U.S. entity and use U.S. transportation spacecraft that meet NASA’s International Space Station visiting vehicle requirements, policies, and procedures. For additional details, refer to Focus Area 4A of NASA Research Announcement (NRA) NNJ13ZBG001N.
      Proposals are due by 5 p.m. EDT on Friday, May 30, 2025.
      For solicitation information, visit:
      https://www.nasa.gov/johnson/jsc-procurement/pam
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars.
      Learn more about the International Space Station at: 
      https://www.nasa.gov/station
      Keep Exploring Discover More Topics
      Low Earth Orbit Economy
      Commercial Space
      Commercial Crew Program
      Humans In Space
      View the full article
    • By NASA
      3 Min Read Lagniappe for April 2025
      Explore the April 2025 issue, highlighting the NASA-sponsored FIRST Robotics competition, Space Flight Awareness honorees and more! Credits: NASA/Danny Nowlin Explore Lagniappe for April 2025 featuring:
      NASA-Sponsored FIRST Robotics Welcomes Teams to Magnolia Regional NASA Leaders Visit Representatives Blood Moon in South Mississippi Gator Speaks
      Gator SpeaksNASA/Stennis New beginnings feel a lot like the month of April. It is the heart of spring and the season that symbolizes growth and renewal.
      April is the perfect time to break free from old routines and try something new.
      If you have landed here in this website corner of our digital world, consider this your open invitation to continue ahead on the journey with NASA Stennis by following us on social media.
      It is time to say goodbye to the Lagniappe publication as we know it, but do not worry. All of the great news about the center and its frontline activities still will be available, just in a new way – via our social media platforms! Gator wants you to feel more connected than ever as we continue to help power space dreams in south Mississippi. Moving forward, join NASA Stennis in our digital playground for even more of that extra-something special.
      This playground is not limited to only fun, or making new friends, or learning new stuff.
      Whether you are on Facebook, Instagram, YouTube, or X, there is a place, and space, for all of that and more. 
      As we close out the website edition of NASA Stennis Lagniappe, we turn the page and look forward to new possibilities ahead.
      Let’s keep building one connection at a time because here at America’s largest rocket propulsion test site, it is more than just content.
      It is where the NASA Stennis team will continue building on its proven expertise in all areas of work, and where you will have a front row seat to experience it unfold.
      So, click the links below to become a NASA Stennis follower today. Then, invite your friends to become followers as well.
      Facebook logo @NASAStennis @NASAStennis Instagram logo @NASAStennis > Back to Top
      NASA Stennis Top News
      NASA-Sponsored FIRST Robotics Welcomes Teams to Magnolia Regional
      NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin NASA serves as a lead sponsor, along with NASA Stennis employees and interns volunteering, for the third annual FIRST Robotics Magnolia Regional Competition on March 14. The event in Laurel, Mississippi, welcomed 37 teams from eight states (Alabama, California, Florida, Louisiana, Minnesota, Missouri, Mississippi, and Tennessee) and one team from Mexico. The FIRST (For the Inspiration and Recognition of Science and Technology) Robotics event joined NASA’s Robotics Alliance Project to combine the excitement of sport with the rigors of science, technology, engineering, and mathematics (STEM) in field games using industrial-sized robots.NASA/Danny Nowlin > Back to Top
      Center Activities
      NASA Leaders Visit Representatives
      U.S. Sen. Cindy Hyde-Smith of Mississippi, center, greets NASA Stennis Deputy Director Christine Powell, right, and NASA Stennis Legislative Affairs Officer and Chief of Staff Troy Frisbie on March 4. Powell and Frisbie visited with Smith and other congressional members in conjunction with the recent NASA Artemis Suppliers Conference in Washington, D.C.NASA/Stennis U.S. Sen. Roger Wicker of Mississippi welcomes NASA Stennis Deputy Director Christine Powell and other guests on March 5. Powell visited Wicker in conjunction with the NASA Artemis Suppliers Conference in Washington, D.C.NASA/Stennis U.S. Rep. Mike Ezell of Mississippi, fourth from right, stands with acting NASA Kennedy Space Center Director Kelvin Manning, fifth from right; NASA Stennis Deputy Director Christine Powell, third from right; NASA Stennis Legislative Affairs Officer and Chief of Staff Troy Frisbie, far left; and several congressional staff members March 5. The NASA officials visited with Ezell and other congressional members in conjunction with the recent NASA Artemis Suppliers Conference in Washington, D.C.NASA/Stennis NASA Space Flight Awareness Program Recognizes Stennis Employees
      NASA’s Stennis Space Center employees were recognized with Honoree Awards from NASA’s Space Flight Awareness Program during a March 10 ceremony in Orlando, Florida, for outstanding support of human spaceflight.
      Read More about Space Flight Awareness Honorees Blood Moon in South Mississippi
      Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Images show the total lunar eclipse, known as a Blood Moon, over south Mississippi during the early morning hours of March 14. A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it appears red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.NASA/Rebecca Mataya Learn More About the Blood Moon U.S. Senator’s Staff Visit NASA Stennis
      NASA’s Stennis Space Center hosts staff members of U.S. Sen. Roger Wicker of Mississippi on March 21 for a site visit. Pictured (left to right) are Kelly McCarthy, NASA Stennis partnership development lead; Troy Frisbie, NASA Stennis legislative affairs officer and chief of staff; Jason Richard, NASA Stennis propulsion business manager; Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate; Emily Yetter, Wicker’s military legislative assistant; Dan Hillenbrand, Wicker’s legislative director; Terry Miller, U.S. Navy Fellow assigned to Wicker’s office; NASA Stennis Associate Director Rodney McKellip; Duane Armstrong, manager of the NASA Stennis Strategic Business Development Office; Drew Parks, Navy Senate liaison officer to Wicker’s office. The members representing the Mississippi senator’s staff toured NASA Stennis, including the Thad Cochran Test Stand, where NASA Stennis is preparing for future Artemis testing.NASA/Danny Nowlin NASA Stennis Hosts Leadership Class
      Approximately 50 members of the Leadership Hancock Class of 2025 visit NASA Stennis on March 26 for a full-day tour that included meeting NASA Stennis leaders and seeing center facilities, such as the Thad Cochran Test Stand pictured in the background. Leadership Hancock is an annual program by the Hancock County Chamber of Commerce designed to identify and cultivate future community leaders.NASA/Danny Nowlin NASA Stennis Interns Tour Site
      NASA student interns stand in the flame deflector at the Fred Haise Test Stand on March 7 during a NASA Stennis site tour. Interns include (left to right): Addison Mitchell (Pathways intern for Engineering and Test Directorate); Andrew Evans (Office of STEM Engagement intern for Autonomous Systems Lab); Mikayla Chandler (Office of STEM Engagement intern for ASTRO CAMP Community Partners); and Kristen Zack (Office of STEM Engagement intern for Autonomous Systems Lab). NASA Office of STEM Engagement paid internships allow high school and college-level students to contribute to agency projects under the guidance of a NASA mentor. The Pathways program offers current students and recent graduates paid internships that can be direct pipelines to full-time employment at NASA upon graduation.NASA/Danny Nowlin Rocket Test Group Visits NASA Stennis
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.
      The group toured the south Mississippi NASA center on March 19, learning how NASA Stennis operates as NASA’s primary, and America’s largest, rocket propulsion test site to serve the nation and commercial sector with its unique capabilities and expertise.
      Read More about Rocket Test Groups Visit > Back to Top
      NASA in the News
      NASA’s Artemis II Orion Service Module Buttoned Up for Launch – NASA
      Welcome Home! NASA’s SpaceX Crew-9 Back on Earth After Science Mission – NASA
      NASA Science Continues After Firefly’s First Moon Mission Concludes – NASA
      NASA Artemis II Core Stage Goes Horizontal Ahead of Final Integration – NASA
      > Back to Top
      Employee Profile: Rebecca Mataya
      Rebecca Mataya is a budget analyst at NASA’s Stennis Space Center. “Whether you are an engineer, analyst, lawyer, technician, communicator or innovator, there is a place for you here at NASA,” she said. “Every skill contributes to the greater mission of pushing the boundaries of exploration, discovery, and progress. If you have a passion, determination, and willingness to learn, NASA is a place where you can grow and leave a lasting impact on the future of space.”NASA/Stennis A career path can unfold in unexpected ways. Ask NASA’s Rebecca Mataya. The journey to NASA’s Stennis Space Center near Bay St. Louis, Mississippi, was not planned but “meant to be,” she said.
      Read More About Rebecca Mataya > Back to Top
      Additional Resources
      My Origin Story: NASA Engineers – Bradley Tyree Artemis II to the Moon: Launch to Splashdown (NASA Mission Animation)
      Explore More
      4 min read Lagniappe for January 2025
      Article 3 months ago 3 min read Lagniappe for February 2025
      Article 2 months ago 4 min read Lagniappe for March 2025
      Article 4 weeks ago View the full article
    • By Amazing Space
      LIVE NOW: Live Close Up Video Of The Sun - 1st April
  • Check out these Videos

×
×
  • Create New...