Members Can Post Anonymously On This Site
How Can I See the Northern Lights? We Asked a NASA Expert
-
Similar Topics
-
By NASA
Rebecca Mataya is a budget analyst at NASA’s Stennis Space Center. “Whether you are an engineer, analyst, lawyer, technician, communicator or innovator, there is a place for you here at NASA,” she said. “Every skill contributes to the greater mission of pushing the boundaries of exploration, discovery, and progress. If you have a passion, determination, and willingness to learn, NASA is a place where you can grow and leave a lasting impact on the future of space.”NASA/Stennis A career path can unfold in unexpected ways. Ask NASA’s Rebecca Mataya.
The journey to NASA’s Stennis Space Center near Bay St. Louis, Mississippi, was not planned but “meant to be,” she said.
While working for a local business, the Picayune, Mississippi, native frequently delivered items to NASA Stennis. While making a delivery, Mataya noticed a construction worker who needed directions while waiting to receive a NASA Stennis visitor’s badge.
“I stepped in by offering a map and highlighting the way,” Mataya said.
This small moment of initiative caught the attention of the receptionist, who mentioned an opening at NASA Stennis. She noted that Mataya’s approach to the situation displayed the NASA Stennis culture of hospitality and a can-do attitude.
“The rest is history,” she said. “Looking back, it was not just about finding a job – it was about NASA Stennis finding me, and me discovering a place where I would build a fulfilling career.”
Since the first day of work when Mataya walked into NASA Stennis “in complete awe,” she has felt like every day is a learning experience filled with “wow” moments, like seeing a test stand up close and meeting rocket engineers.
The Carriere, Mississippi, resident worked as a support contractor from 2008 to 2022, filling various roles from lead security support specialist to technical writer and program manager.
Her career path has progressed, where each role built upon the previous.
As a budget analyst in the NASA Stennis Office of the Chief Financial Officer since 2022, Mataya oversees the planning, programing, budgeting, and execution of funds for all Office of Strategic Infrastructure work within the NASA Stennis Center Operations Directorate. She also manages budgets for the NASA Stennis Construction of Facilities projects, and the congressionally approved Supplemental Funding portfolio.
“It is a role that requires adaptability, strategic thinking, and financial oversight,” she said. “I have cultivated these skills through years of experience, but more than that, it is a role that allows me to contribute something meaningful to the future of NASA and space exploration.”
Mataya will complete a master’s degree in Business Administration from Mississippi State University in May. She previously earned her bachelor’s degree from Mississippi State and an associate degree from Pearl River Community College.
“My career has been shaped by growth and achievement, but the greatest highlight has always been the incredible people I have had the privilege of working with,” she said. “Walking the halls of NASA, where top leaders recognize me by name, is a testament to the trust and relationships I have built over the years.”
Mataya said supervisors have consistently entrusted her with more complex projects, confident in her ability to rise to the challenge and deliver results. As a result, she has had opportunities to mentor interns and early-career professionals, guiding them as others once guided her.
“Seeing my colleagues succeed and knowing they have reached their goals, and championing their progress along the way, remains one of the most rewarding aspects of my career,” she said.
Mataya knows from experience that NASA Stennis offers opportunity and a supportive environment, not only for employees looking for career growth, but to customers seeking world-class testing facilities. “NASA Stennis is a place where collaboration thrives,” she said. “It is where NASA, tenants, and commercial partners come together as one cohesive community with a culture of mutual respect, support, and an unwavering commitment to excellence. As America’s largest rocket propulsion test site, NASA Stennis is evolving, and I look forward to seeing how our technological advancements attract new commercial partners and expand NASA’s capabilities.”
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
How can I see the northern lights?
To see the northern lights, you need to be in the right place at the right time.
Auroras are the result of charged particles and magnetism from the Sun called space weather dancing with the Earth’s magnetic field. And they happen far above the clouds. So you need clear skies, good space weather at your latitude and the higher, more polar you can be, the better. You need a lot of patience and some luck is always helpful.
A smartphone can also really help confirm whether you saw a little bit of kind of dim aurora, because cameras are more sensitive than our eyes.
The best months to see aurorae, statistically, are March and September. The best times to be looking are around midnight, but sometimes when the Sun is super active, it can happen any time from sunset to sunrise.
You can also increase your chances by learning more about space weather data and a great place to do that is at the NOAA Space Weather Prediction Center.
You can also check out my project, Aurorasaurus.org, where we have free alerts that are based on your location and we offer information about how to interpret the data. And you can also report and tell us if you were able to see aurora or not and that helps others.
One last tip is finding a safe, dark sky viewing location with a great view of the northern horizon that’s near you.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated Mar 26, 2025 Related Terms
Science Mission Directorate Auroras Heliophysics Planetary Science Division The Solar System The Sun Explore More
6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
Article 1 hour ago 6 min read NASA’s Webb Captures Neptune’s Auroras For First Time
Long-sought auroral glow finally emerges under Webb’s powerful gaze For the first time, NASA’s James…
Article 7 hours ago 5 min read NASA’s Parker Solar Probe Team Wins 2024 Collier Trophy
The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory…
Article 22 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 Min Read NASA’s Webb Captures Neptune’s Auroras For First Time
At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. Credits:
NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) Long-sought auroral glow finally emerges under Webb’s powerful gaze
For the first time, NASA’s James Webb Space Telescope has captured bright auroral activity on Neptune. Auroras occur when energetic particles, often originating from the Sun, become trapped in a planet’s magnetic field and eventually strike the upper atmosphere. The energy released during these collisions creates the signature glow.
In the past, astronomers have seen tantalizing hints of auroral activity on Neptune, for example, in the flyby of NASA’s Voyager 2 in 1989. However, imaging and confirming the auroras on Neptune has long evaded astronomers despite successful detections on Jupiter, Saturn, and Uranus. Neptune was the missing piece of the puzzle when it came to detecting auroras on the giant planets of our solar system.
“Turns out, actually imaging the auroral activity on Neptune was only possible with Webb’s near-infrared sensitivity,” said lead author Henrik Melin of Northumbria University, who conducted the research while at the University of Leicester. “It was so stunning to not just see the auroras, but the detail and clarity of the signature really shocked me.”
The data was obtained in June 2023 using Webb’s Near-Infrared Spectrograph. In addition to the image of the planet, astronomers obtained a spectrum to characterize the composition and measure the temperature of the planet’s upper atmosphere (the ionosphere). For the first time, they found an extremely prominent emission line signifying the presence of the trihydrogen cation (H3+), which can be created in auroras. In the Webb images of Neptune, the glowing aurora appears as splotches represented in cyan.
Image A:
Neptune’s Auroras – Hubble and Webb
At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. The cyan splotches, which represent auroral activity, and white clouds, are data from Webb’s Near-Infrared Spectrograph (NIRSpec), overlayed on top of the full image of the planet from Hubble’s Wide Field Camera 3. NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) “H3+ has a been a clear signifier on all the gas giants — Jupiter, Saturn, and Uranus — of auroral activity, and we expected to see the same on Neptune as we investigated the planet over the years with the best ground-based facilities available,” explained Heidi Hammel of the Association of Universities for Research in Astronomy, Webb interdisciplinary scientist and leader of the Guaranteed Time Observation program for the Solar System in which the data were obtained. “Only with a machine like Webb have we finally gotten that confirmation.”
The auroral activity seen on Neptune is also noticeably different from what we are accustomed to seeing here on Earth, or even Jupiter or Saturn. Instead of being confined to the planet’s northern and southern poles, Neptune’s auroras are located at the planet’s geographic mid-latitudes — think where South America is located on Earth.
This is due to the strange nature of Neptune’s magnetic field, originally discovered by Voyager 2 in 1989 which is tilted by 47 degrees from the planet’s rotation axis. Since auroral activity is based where the magnetic fields converge into the planet’s atmosphere, Neptune’s auroras are far from its rotational poles.
The ground-breaking detection of Neptune’s auroras will help us understand how Neptune’s magnetic field interacts with particles that stream out from the Sun to the distant reaches of our solar system, a totally new window in ice giant atmospheric science.
From the Webb observations, the team also measured the temperature of the top of Neptune’s atmosphere for the first time since Voyager 2’s flyby. The results hint at why Neptune’s auroras remained hidden from astronomers for so long.
“I was astonished — Neptune’s upper atmosphere has cooled by several hundreds of degrees,” Melin said. “In fact, the temperature in 2023 was just over half of that in 1989.”
Through the years, astronomers have predicted the intensity of Neptune’s auroras based on the temperature recorded by Voyager 2. A substantially colder temperature would result in much fainter auroras. This cold temperature is likely the reason that Neptune’s auroras have remained undetected for so long. The dramatic cooling also suggests that this region of the atmosphere can change greatly even though the planet sits over 30 times farther from the Sun compared to Earth.
Equipped with these new findings, astronomers now hope to study Neptune with Webb over a full solar cycle, an 11-year period of activity driven by the Sun’s magnetic field. Results could provide insights into the origin of Neptune’s bizarre magnetic field, and even explain why it’s so tilted.
“As we look ahead and dream of future missions to Uranus and Neptune, we now know how important it will be to have instruments tuned to the wavelengths of infrared light to continue to study the auroras,” added Leigh Fletcher of Leicester University, co-author on the paper. “This observatory has finally opened the window onto this last, previously hidden ionosphere of the giant planets.”
These observations, led by Fletcher, were taken as part of Hammel’s Guaranteed Time Observation program 1249. The team’s results have been published in Nature Astronomy.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Read the research results published in Nature Astronomy.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Hannah Braun- hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Maryland
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Science
Henrik Melin (Northumbria University)
Related Information
View more: Webb images of Neptune
Watch: Visualization of Neptune’s tilted magnetic axis
Learn more : about Neptune
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
About Neptune
About the Solar System
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Neptune
Neptune Stories
Our Solar System
Share
Details
Last Updated Mar 25, 2025 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Neptune Planetary Science Planets Science & Research The Solar System View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Double Asteroid Redirection Test required extreme precision in mission planning to achieve its mission of impacting an asteroid. The founders of Continuum Space worked on astrodynamics relating to this mission, which they used to inform their product.NASA Planning space missions is a very involved process, ensuring orbits are lined up and spacecraft have enough fuel is imperative to the long-term survival of orbital assets. Continuum Space Systems Inc. of Pasadena, California, produces a cloud-based platform that gives mission planners everything they need to certify that their space resources can accomplish their goals.
Continuum’s story begins at NASA’s Jet Propulsion Laboratory in Southern California. Loic Chappaz, the company’s co-founder, started at JPL as an intern working on astrodynamics related to NASA’s Double Asteroid Redirection Test. There he met Leon Alkalai, a JPL technical fellow who spent his 30-year career at the center planning deep space missions. After Alkalai retired from NASA, he founded Mandala Space Ventures, a startup that explored several avenues of commercial space development. Chappaz soon became Mandala’s first employee, but to plan their future, Mandala’s leadership began thinking about the act of planning itself.
Because the staff had decades of combined experience at JPL, they knew the center had the building blocks for the software they needed. After licensing several pieces of software from JPL, the company began building planning systems that were highly adaptable to any space mission they could come up with. Mandala eventually evolved into a venture firm that incubated space-related startups. However, because Mandala had invested considerably in developing mission-planning tools, further development could be performed by a new company, and Continuum was fully spun off from Mandala in 2021.
Continuum’s platform includes several features for mission planners, such as plotting orbital maneuvers and risk management evaluations. Some of these are built upon software licensed from the Jet Propulsion Laboratory.Continuum Space Systems Inc. Continuum’s tools are designed to take a space mission from concept to completion. There are three different components to their “mission in a box” — design, build and test, and mission operations. The base of these tools are several pieces of software developed at NASA. As of 2024, several space startups have begun planning missions with Continuum’s NASA-inspired software, as well as established operators of satellite constellations. From Continuum to several startups, NASA technologies continue to prove a valuable foundation for the nation’s space economy.
Read More Share
Details
Last Updated Mar 25, 2025 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read NASA Expertise Helps Record all the Buzz
Article 2 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
Article 3 weeks ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
Article 3 months ago Keep Exploring Discover Related Topics
Planetary Defense – DART
NASA’s Double Asteroid Redirection Test (DART), built and managed by the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Planetary…
Jet Propulsion Laboratory – News
Science Missions
Solar System
View the full article
-
By NASA
5 min read
Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe. However, the high energy of ultraviolet photons means that their interaction with the materials that make up an observing instrument are less efficient, resulting in low overall throughput. New approaches in the development of thin film coatings are addressing this shortcoming by engineering the coatings of instrument structures at the atomic scale.
Researchers at the NASA Jet Propulsion Laboratory (JPL) are employing atomic layer deposition (ALD) and atomic layer etching (ALE) to enable new coating technologies for instruments measuring ultraviolet light. Conventional optical coatings largely rely on physical vapor deposition (PVD) methods like evaporation, where the coating layer is formed by vaporizing the source material and then condensing it onto the intended substrate. In contrast, ALD and ALE rely on a cyclic series of self-limiting chemical reactions that result in the deposition (or removal) of material one atomic layer at a time. This self-limiting characteristic results in a coating or etchings that are conformal over arbitrary shapes with precisely controlled layer thickness determined by the number of ALD or ALE cycles performed.
The ALD and ALE techniques are common in the semiconductor industry where they are used to fabricate high-performance transistors. Their use as an optical coating method is less common, particularly at ultraviolet wavelengths where the choice of optical coating material is largely restricted to metal fluorides instead of more common metal oxides, due to the larger optical band energy of fluoride materials, which minimizes absorption losses in the coatings. Using an approach based on co-reaction with hydrogen fluoride, the team at JPL has developed a variety of fluoride-based ALD and ALE processes.
(left) The Supernova remnants and Proxies for ReIonization Testbed Experiment (SPRITE) CubeSat primary mirror inside the ALD coating facility at JPL, the mirror is 18 cm on the long and is the largest optic coated in this chamber to-date. (right) Flight optic coating inside JPL ALD chamber for Pioneers Aspera Mission. Like SPRITE, the Aspera coating combines a lithium fluoride process developed at NASA GSFC with thin ALD encapsulation of magnesium fluoride at JPL. Image Credit: NASA-JPL In addition to these metal-fluoride materials, layers of aluminum are often used to construct structures like reflective mirrors and bandpass filters for instruments operating in the UV. Although aluminum has high intrinsic UV reflectance, it also readily forms a surface oxide that strongly absorbs UV light. The role of the metal fluoride coating is then to protect the aluminum surface from oxidation while maintaining enough transparency to create a mirror with high reflectance.
The use of ALD in this context has initially been pursued in the development of telescope optics for two SmallSat astrophysics missions that will operate in the UV: the Supernova remnants and Proxies for ReIonization Testbed Experiment (SPRITE) CubeSat mission led by Brian Fleming at the University of Colorado Boulder, and the Aspera mission led by Carlos Vargas at the University of Arizona. The mirrors for SPRITE and Aspera have reflective coatings that utilize aluminum protected by lithium fluoride using a novel PVD processes developed at NASA Goddard Space Flight Center, and an additional very thin top coating of magnesium fluoride deposited via ALD.
Team member John Hennessy prepares to load a sample wafer in the ALD coating chamber at JPL. Image Credit: NASA JPL The use of lithium fluoride enables SPRITE and Aspera to “see” further into the UV than other missions like NASA’s Hubble Space Telescope, which uses only magnesium fluoride to protect its aluminum mirror surfaces. However, a drawback of lithium fluoride is its sensitivity to moisture, which in some cases can cause the performance of these mirror coatings to degrade on the ground prior to launch. To circumvent this issue, very thin layers (~1.5 nanometers) of magnesium fluoride were deposited by ALD on top of the lithium fluoride on the SPRITE and Aspera mirrors. The magnesium fluoride layers are thin enough to not strongly impact the performance of the mirror at the shortest wavelengths, but thick enough to enhance the stability against humidity during ground phases of the missions. Similar approaches are being considered for the mirror coatings of the future NASA flagship Habitable Worlds Observatory (HWO).
Multilayer structures of aluminum and metal fluorides can also function as bandpass filters (filters that allow only signals within a selected range of wavelengths to pass through to be recorded) in the UV. Here, ALD is an attractive option due to the inherent repeatability and precise thickness control of the process. There is currently no suitable ALD process to deposit aluminum, and so additional work by the JPL team has explored the development of a custom vacuum coating chamber that combines the PVD aluminum and ALD fluoride processes described above. This system has been used to develop UV bandpass filters that can be deposited directly onto imaging sensors like silicon (Si) CCDs. These coatings can enable such sensors to operate with high UV efficiency, but low sensitivity to longer wavelength visible photons that would otherwise add background noise to the UV observations.
Structures composed of multilayer aluminum and metal fluoride coatings have recently been delivered as part of a UV camera to the Star-Planet Activity Research CubeSat (SPARCS) mission led by Evgenya Shkolnik at Arizona State University. The JPL-developed camera incorporates a delta-doped Si CCD with the ALD/PVD filter coating on the far ultraviolet channel, yielding a sensor with high efficiency in a band centered near 160 nm with low response to out-of-band light.
A prototype of a back-illuminated CCD incorporating a multi-layer metal-dielectric bandpass filter coating deposited by a combination of thermal evaporation and ALD. This coating combined with JPL back surface passivation approaches enable the Si CCD to operate with high UV efficiency while rejecting longer wavelength light. Image credit: NASA JPL Next, the JPL team that developed these coating processes plans to focus on implementing a similar bandpass filter on an array of larger-format Si Complementary Metal-Oxide-Semiconductor (CMOS) sensors for the recently selected NASA Medium-Class Explorer (MIDEX) UltraViolet EXplorer (UVEX) mission led by Fiona Harrison at the California Institute of Technology, which is targeted to launch in the early 2030s.
For additional details, see the entry for this project on NASA TechPort
Project Lead: Dr. John Hennessy, Jet Propulsion Laboratory (JPL)
Share
Details
Last Updated Mar 18, 2025 Related Terms
Technology Highlights Astrophysics Astrophysics Division Jet Propulsion Laboratory Science-enabling Technology Explore More
5 min read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide
Article
1 day ago
2 min read Hubble Sees a Spiral and a Star
Article
4 days ago
4 min read Discovery Alert: ‘Super-Earth’ Swings from Super-Heated to Super-Chill
Article
7 days ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.