Members Can Post Anonymously On This Site
NASA Invites Media to Learn About Artemis Moon Mission Recovery
-
Similar Topics
-
By NASA
6 Min Read NASA’s Webb Captures Neptune’s Auroras For First Time
At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. Credits:
NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) Long-sought auroral glow finally emerges under Webb’s powerful gaze
For the first time, NASA’s James Webb Space Telescope has captured bright auroral activity on Neptune. Auroras occur when energetic particles, often originating from the Sun, become trapped in a planet’s magnetic field and eventually strike the upper atmosphere. The energy released during these collisions creates the signature glow.
In the past, astronomers have seen tantalizing hints of auroral activity on Neptune, for example, in the flyby of NASA’s Voyager 2 in 1989. However, imaging and confirming the auroras on Neptune has long evaded astronomers despite successful detections on Jupiter, Saturn, and Uranus. Neptune was the missing piece of the puzzle when it came to detecting auroras on the giant planets of our solar system.
“Turns out, actually imaging the auroral activity on Neptune was only possible with Webb’s near-infrared sensitivity,” said lead author Henrik Melin of Northumbria University, who conducted the research while at the University of Leicester. “It was so stunning to not just see the auroras, but the detail and clarity of the signature really shocked me.”
The data was obtained in June 2023 using Webb’s Near-Infrared Spectrograph. In addition to the image of the planet, astronomers obtained a spectrum to characterize the composition and measure the temperature of the planet’s upper atmosphere (the ionosphere). For the first time, they found an extremely prominent emission line signifying the presence of the trihydrogen cation (H3+), which can be created in auroras. In the Webb images of Neptune, the glowing aurora appears as splotches represented in cyan.
Image A:
Neptune’s Auroras – Hubble and Webb
At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. The cyan splotches, which represent auroral activity, and white clouds, are data from Webb’s Near-Infrared Spectrograph (NIRSpec), overlayed on top of the full image of the planet from Hubble’s Wide Field Camera 3. NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) “H3+ has a been a clear signifier on all the gas giants — Jupiter, Saturn, and Uranus — of auroral activity, and we expected to see the same on Neptune as we investigated the planet over the years with the best ground-based facilities available,” explained Heidi Hammel of the Association of Universities for Research in Astronomy, Webb interdisciplinary scientist and leader of the Guaranteed Time Observation program for the Solar System in which the data were obtained. “Only with a machine like Webb have we finally gotten that confirmation.”
The auroral activity seen on Neptune is also noticeably different from what we are accustomed to seeing here on Earth, or even Jupiter or Saturn. Instead of being confined to the planet’s northern and southern poles, Neptune’s auroras are located at the planet’s geographic mid-latitudes — think where South America is located on Earth.
This is due to the strange nature of Neptune’s magnetic field, originally discovered by Voyager 2 in 1989 which is tilted by 47 degrees from the planet’s rotation axis. Since auroral activity is based where the magnetic fields converge into the planet’s atmosphere, Neptune’s auroras are far from its rotational poles.
The ground-breaking detection of Neptune’s auroras will help us understand how Neptune’s magnetic field interacts with particles that stream out from the Sun to the distant reaches of our solar system, a totally new window in ice giant atmospheric science.
From the Webb observations, the team also measured the temperature of the top of Neptune’s atmosphere for the first time since Voyager 2’s flyby. The results hint at why Neptune’s auroras remained hidden from astronomers for so long.
“I was astonished — Neptune’s upper atmosphere has cooled by several hundreds of degrees,” Melin said. “In fact, the temperature in 2023 was just over half of that in 1989.”
Through the years, astronomers have predicted the intensity of Neptune’s auroras based on the temperature recorded by Voyager 2. A substantially colder temperature would result in much fainter auroras. This cold temperature is likely the reason that Neptune’s auroras have remained undetected for so long. The dramatic cooling also suggests that this region of the atmosphere can change greatly even though the planet sits over 30 times farther from the Sun compared to Earth.
Equipped with these new findings, astronomers now hope to study Neptune with Webb over a full solar cycle, an 11-year period of activity driven by the Sun’s magnetic field. Results could provide insights into the origin of Neptune’s bizarre magnetic field, and even explain why it’s so tilted.
“As we look ahead and dream of future missions to Uranus and Neptune, we now know how important it will be to have instruments tuned to the wavelengths of infrared light to continue to study the auroras,” added Leigh Fletcher of Leicester University, co-author on the paper. “This observatory has finally opened the window onto this last, previously hidden ionosphere of the giant planets.”
These observations, led by Fletcher, were taken as part of Hammel’s Guaranteed Time Observation program 1249. The team’s results have been published in Nature Astronomy.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Read the research results published in Nature Astronomy.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Hannah Braun- hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Maryland
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Science
Henrik Melin (Northumbria University)
Related Information
View more: Webb images of Neptune
Watch: Visualization of Neptune’s tilted magnetic axis
Learn more : about Neptune
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
About Neptune
About the Solar System
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Neptune
Neptune Stories
Our Solar System
Share
Details
Last Updated Mar 25, 2025 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Neptune Planetary Science Planets Science & Research The Solar System View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Advanced Capabilities for Emergency Response Operations (ACERO) researchers Lynne Martin, left, and Connie Brasil use the Portable Airspace Management System (PAMS) to view a simulated fire zone and set a drone flight plan during a flight test the week of March 17, 2025.NASA/Brandon Torres-Navarrete NASA researchers conducted initial validation of a new airspace management system designed to enable crews to use aircraft fight and monitor wildland fires 24 hours a day, even during low-visibility conditions.
From March 17-28, NASA’s Advanced Capabilities for Emergency Response Operations (ACERO) project stationed researchers at multiple strategic locations across the foothills of the Sierra de Salinas mountains in Monterey County, California. Their mission: to test and validate a new, portable system that can provide reliable airspace management under poor visual conditions, one of the biggest barriers for aerial wildland firefighting support.
The mission was a success.
“At NASA, we have decades of experience leveraging our aviation expertise in ways that improve everyday life for Americans,” said Carol Carroll, deputy associate administrator for NASA’s Aeronautics Research Mission Directorate at agency headquarters in Washington. “We need every advantage possible when it comes to saving lives and property when wildfires affect our communities, and ACERO technology will give responders critical new tools to monitor and fight fires.”
NASA ACERO researchers Samuel Zuniga,left, and Jonathan La Plain prepare for a drone flight test using the PAMS in Salinas on March 19, 2025.NASA/Brandon Torres-Navarrete One of the barriers for continued monitoring, suppression, and logistics support in wildland fire situations is a lack of tools for managing airspace and air traffic that can support operations under all visibility conditions. Current aerial firefighting operations are limited to times with clear visibility when a Tactical Air Group Supervisor or “air boss” in a piloted aircraft can provide direction. Otherwise, pilots may risk collisions.
The ACERO technology will provide that air boss capability for remotely piloted aircraft operations – and users will be able to do it from the ground. The project’s Portable Airspace Management System (PAMS) is a suitcase-sized solution that builds on decades of NASA air traffic and airspace management research. The PAMS units will allow pilots to view the locations and operational intents of other aircraft, even in thick smoke or at night.
During the testing in Salinas, researchers evaluated the PAMS’ core airspace management functions, including strategic coordination and the ability to automatically alert pilots once their aircrafts exit their preapproved paths or the simulated preapproved fire operation zone.
Using the PAMS prototype, researchers were able to safely conduct flight operations of a vertical takeoff and landing aircraft operated by Overwatch Aero, LLC, of Solvang, California, and two small NASA drones.
Flying as if responding to a wildfire scenario, the Overwatch aircraft connected with two PAMS units in different locations. Though the systems were separated by mountains and valleys with weak cellular service, the PAMS units were able to successfully share and display a simulated fire zone, aircraft location, flight plans, and flight intent, thanks to a radio communications relay established by the Overwatch aircraft.
Operating in a rural mountain range validated that PAMS could work successfully in an actual wildland fire environment.
“Testing in real mountainous environments presents numerous challenges, but it offers significantly more value than lab-based testing,” said Dr. Min Xue, ACERO project manager at NASA’s Ames Research Center in California’s Silicon Valley. “The tests were successful, providing valuable insights and highlighting areas for future improvement.”
NASA ACERO researchers fly a drone to test the PAMS during a flight test on March 19, 2025.NASA/Brandon Torres-Navarrete Pilots on the ground used PAMS to coordinate the drones, which performed flights simulating aerial ignition – the practice of setting controlled, intentional fires to manage vegetation, helping to control fires and reduce wildland fire risk.
As a part of the testing, Joby Aviation of Santa Cruz, California, flew its remotely piloted aircraft, similar in size to a Cessna Grand Caravan, over the testing site. The PAMS system successfully exchanged aircraft location and flight intent with Joby’s mission management system. The test marked the first successful interaction between PAMS and an optionally piloted aircraft.
Fire chiefs from the California Department of Forestry and Fire Protection (CAL FIRE) attended the testing and provided feedback on the system’s functionality, features that could improve wildland fire air traffic coordination, and potential for integration into operations.
“We appreciate the work being done by the NASA ACERO program in relation to portable airspace management capabilities,” said Marcus Hernandez, deputy chief for CAL FIRE’s Office of Wildfire Technology. “It’s great to see federal, state, and local agencies, as it is important to address safety and regulatory challenges alongside technological advancements.”
ACERO chief engineer Joey Mercer, right, shows the Portable Airspace Management System (PAMS) to Cal Fire representatives Scott Eckman, center, and Pete York, left, in preparation for the launch of the Overwatch Aero FVR90 Vertical Take Off and Landing (VTOL) test “fire” information sharing, airspace management, communication relay, and aircraft deconfliction capabilities during the Advanced Capabilities for Emergency Response Operations (ACERO) test in Salinas, California.NASA/Brandon Torres-Navarrete These latest flights build on successful PAMS testing in Watsonville, California, in November 2024. ACERO will use flight test data and feedback from wildland fire agencies to continue building out PAMS capabilities and will showcase more robust information-sharing capabilities in the coming years.
NASA’s goal for ACERO is to validate this technology, so it can be developed for wildland fire crews to use in the field, saving lives and property. The project is managed by NASA’s Airspace Operations and Safety Program and supports the agency’s Advanced Air Mobility mission.
ACERO’s PAMS unit shown during a flight test on March 19, 2025NASA/Brandon Torres-Navarrette Share
Details
Last Updated Mar 25, 2025 Related Terms
General Aeronautics Air Traffic Solutions Drones & You Natural Disasters Wildfires Wildland Fire Management Explore More
3 min read New Aircraft Wing Undergoes Crucial NASA Icing Testing
Article 3 hours ago 3 min read Engineering Reality: Lee Bingham Leads Lunar Surface Simulation Support for Artemis Campaign
Article 21 hours ago 3 min read Career Transition Assistance Plan (CTAP) Services
Article 1 day ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s LRO (Lunar Reconnaissance Orbiter) imaged Firefly Aerospace’s Blue Ghost Mission 1 lunar lander on the Moon’s surface the afternoon of March 2, not quite 10 hours after the spacecraft landed.
Firefly Aerospace’s Blue Ghost Mission 1 lunar lander, which appears in this image from NASA’s Lunar Reconnaissance Orbiter as a bright pixel casting a shadow in the middle of the white box, reached the surface of the Moon on March 2 at 3:34 a.m. EST.NASA/Goddard/Arizona State University The delivery is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. This is the first CLPS delivery for Firefly, and their first Moon landing.
LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
More on this story from Arizona State University’s LRO Camera website
Media Contact:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Mar 25, 2025 Related Terms
Lunar Reconnaissance Orbiter (LRO) View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s LRO (Lunar Reconnaissance Orbiter) imaged Intuitive Machines’ IM-2 on the Moon’s surface on March 7, just under 24 hours after the spacecraft landed.
Later that day Intuitive Machines called an early end of mission for IM-2, which carried NASA technology demonstrations as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.
The Intuitive Machines IM-2 Athena lander, indicated here with a white arrow, reached the surface of the Moon on March 6, 2025, near the center of Mons Mouton. NASA’s Lunar Reconnaissance Orbiter (LRO) imaged the site at 12:54 p.m. EST on March 7.NASA/Goddard/Arizona State University The IM-2 mission lander is located closer to the Moon’s South Pole than any previous lunar lander.
LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
More on this story from Arizona State University’s LRO Camera website
Media Contact:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Mar 25, 2025 Related Terms
Lunar Reconnaissance Orbiter (LRO) View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.