Jump to content

Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Yellow Coreopsis gigantea flowers during field work
Researcher Ann Raiho measures sunlight interacting with yellow Coreopsis gigantea flowers during field work in the Jack and Laura Dangermond Preserve in California’s Santa Barbara County in 2022.
NASA/Yoseline Angel

For many plant species, flowering is biologically synced with the seasons. Scientists are clocking blooms to understand our ever-changing planet.

NASA research is revealing there’s more to flowers than meets the human eye. A recent analysis of wildflowers in California shows how aircraft- and space-based instruments can use color to track seasonal flower cycles. The results suggest a potential new tool for farmers and natural-resource managers who rely on flowering plants.

In their study, the scientists surveyed thousands of acres of nature preserve using a technology built by NASA’s Jet Propulsion Laboratory in Southern California. The instrument — an imaging spectrometer — mapped the landscape in hundreds of wavelengths of light, capturing flowers as they blossomed and aged over the course of months.

It was the first time the instrument had been deployed to track vegetation steadily through the growing season, making this a “first-of-a-kind study,” said David Schimel, a research scientist at JPL.

A diagram shows an airplane flying over a landscape with a yellow cone representing data collection. Below, a 3D block represents the landscape with stacked color layers labeled B, G, R, and NIR. A ruler indicates 5m.
In this illustration, an imaging spectrometer aboard a research plane measures sunlight reflecting off California coastal scrub. In the data cube below, the top panel shows the true-color view of the area. Lower panels depict the spectral fingerprint for every point in the image, capturing the visible range of light (blue, green, and red wavelengths) to the near-infrared (NIR) and beyond. Spatial resolution is around 16 feet (5 meters).
NASA

For many plant species from crops to cacti, flowering is timed to seasonal swings in temperature, daylight, and precipitation. Scientists are taking a closer look at the relationship between plant life and seasons — known as vegetation phenology — to understand how rising temperatures and changing rainfall patterns may be impacting ecosystems.

Typically, wildflower surveys rely on boots-on-the-ground observations and tools such as time-lapse photography. But these approaches cannot capture broader changes that may be happening in different ecosystems around the globe, said lead author Yoseline Angel, a scientist at the University of Maryland-College Park and NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

“One challenge is that compared to leaves or other parts of a plant, flowers can be pretty ephemeral,” she said. “They may last only a few weeks.”

To track blooms on a large scale, Angel and other NASA scientists are looking to one of the signature qualities of flowers: color.

NASA’s AVIRIS sensors
NASA’s AVIRIS sensors have been used to study wildfires, World Trade Center wreckage, and critical minerals, among numerous airborne missions over the years. AVIRIS-3 is seen here on a field campaign in Panama, where it helped analyze vegetation in many wavelengths of light not visible to human eyes.
NASA/Shawn Serbin

Mapping Native Shrubs

Flower pigments fall into three major groups: carotenoids and betalains (associated with yellow, orange, and red colors), and anthocyanins (responsible for many deep reds, violets, and blues). The different chemical structures of the pigments reflect and absorb light in unique patterns.

Spectrometers allow scientists to analyze the patterns and catalog plant species by their chemical “fingerprint.” As all molecules reflect and absorb a unique pattern of light, spectrometers can identify a wide range of biological substances, minerals, and gases.

Handheld devices are used to analyze samples in the field or lab. To survey moons and planets, including Earth, NASA has developed increasingly powerful imaging spectrometers over the past 45 years.

One such instrument is called AVIRIS-NG (short for Airborne Visible/InfraRed Imaging Spectrometer-Next Generation), which was built by JPL to fly on aircraft. In 2022 it was used in a large ecology field campaign to survey vegetation in the Jack and Laura Dangermond Preserve and the Sedgwick Reserve, both in Santa Barbara County. Among the plants observed were two native shrub species — Coreopsis gigantea and Artemisia californica — from February to June.

The scientists developed a method to tease out the spectral fingerprint of the flowers from other landscape features that crowded their image pixels. In fact, they were able to capture 97% of the subtle spectral differences among flowers, leaves, and background cover (soil and shadows) and identify different flowering stages with 80% certainty.

Predicting Superblooms

The results open the door to more air- and space-based studies of flowering plants, which represent about 90% of all plant species on land. One of the ultimate goals, Angel said, would be to support farmers and natural resource managers who depend on these species along with insects and other pollinators in their midst. Fruit, nuts, many medicines, and cotton are a few of the commodities produced from flowering plants.

Angel is working with new data collected by AVIRIS’ sister spectrometer that orbits on the International Space Station. Called EMIT (Earth Surface Mineral Dust Source Investigation), it was designed to map minerals around Earth’s arid regions. Combining its data with other environmental observations could help scientists study superblooms, a phenomenon where vast patches of desert flowers bloom after heavy rains.

One of the delights of researching flowers, Angel said, is the enthusiasm from citizen scientists. “I have social media alerts on my phone,” she added, noting one way she stays on top of wildflower activity around the world.

The wildflower study was supported as part of the Surface Biology and Geology High-Frequency Time Series (SHIFT) campaign. An airborne and field research effort, SHIFT was jointly led by the Nature Conservancy, the University of California, Santa Barbara, and JPL. Caltech, in Pasadena, manages JPL for NASA.

The AVIRIS instrument was originally developed through funding from NASA’s Earth Science Technology Office.

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

Written by Sally Younger

2025-041

Share

Details

Last Updated
Mar 24, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Eric Garza, an engineering technician in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, cuts plywood to size for temporary floorboards for the X-66 experimental demonstrator aircraft on Aug. 26, 2024.NASA/Steve Freeman NASA designed temporary floorboards for the MD-90 aircraft to use while it is transformed into the X-66 experimental demonstrator aircraft. These floorboards will protect the original flooring and streamline the modification process.
      Supporting the agency’s Sustainable Flight Demonstrator project, a small team in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, built temporary floorboards to save the project time and resources. Repeated removal and installation of the original flooring during the modification process was time-consuming. Using temporary panels also ensures the original floorboards are protected and remain flightworthy for when modifications are complete, and the original flooring is reinstalled.
      “The task of creating the temporary floorboards for the MD-90 involves a meticulous process aimed at facilitating modifications while maintaining safety and efficiency. The need for these temporary floorboards arises from the detailed procedure required to remove and reinstall the Original Equipment Manufacturer (OEM) floorboards,” said Jason Nelson, experimental fabrication lead. He is one of two members of the fabrication team – one engineering technician and one inspector – manufacturing about 50 temporary floorboards, which range in size from 20 inches by 36 inches to 42 inches by 75 inches.
      A wood router cuts precise holes in plywood for temporary floorboards on Aug. 26, 2024, in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California. The flooring was designed for the X-66 experimental demonstrator aircraft. NASA/Steve Freeman Nelson continued, “Since these OEM boards will be removed and reinstalled multiple times to accommodate necessary modifications, the temporary floorboards will save the team valuable time and resources. They will also provide the same level of safety and strength as the OEM boards, ensuring that the process runs smoothly without compromising quality.”
      Designing and prototyping the flooring was a meticulous process, but the temporary solution plays a crucial role in optimizing time and resources as NASA works to advance safe and efficient air travel. The agency’s Sustainable Flight Demonstrator project seeks to inform the next generation of single-aisle airliners, the most common aircraft in commercial aviation fleets around the world. NASA partnered with Boeing to develop the X-66 experimental demonstrator aircraft.
      NASA Armstrong’s Experimental Fabrication Shop carries out modifications and repair work on aircraft, ranging from the creation of something as small as an aluminum bracket to modifying wing spars, fuselage ribs, control surfaces, and other tasks to support missions.
      Eric Garza, an engineering technician in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, observes a wood router cut holes for temporary floorboards on Aug. 26, 2024. The flooring was designed for the X-66 experimental demonstrator aircraft.  NASA/Steve Freeman Share
      Details
      Last Updated Mar 28, 2025 EditorDede DiniusContactSarah Mannsarah.mann@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Green Aviation Tech Sustainable Flight Demonstrator Explore More
      2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 2 days ago 5 min read NASA Demonstrates New Wildland Fire Airspace Management System
      Article 3 days ago 3 min read New Aircraft Wing Undergoes Crucial NASA Icing Testing
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s SpaceX Crew-11 members stand inside the Space Vehicle Mockup Facility at the agency’s Johnson Space Center in Houston. From left are Mission Specialist Kimiya Yui from JAXA (Japan Aerospace Exploration Agency), Commander NASA astronaut Zena Cardman, Mission Specialist Oleg Platonov of Roscosmos, and Pilot NASA astronaut Mike Fincke.Credit: NASA As part of NASA’s SpaceX Crew-11 mission, four crew members from three space agencies will launch in the coming months to the International Space Station for a long-duration science expedition aboard the orbiting laboratory.
      NASA astronauts Commander Zena Cardman and Pilot Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Mission Specialist Kimiya Yui, and Roscosmos cosmonaut Mission Specialist Oleg Platonov will join crew members aboard the space station no earlier than July 2025.
      The flight is the 11th crew rotation with SpaceX to the station as part of NASA’s Commercial Crew Program. The crew will conduct scientific investigations and technology demonstrations to help prepare humans for future missions to the Moon, as well as benefit people on Earth.
      Cardman previously was assigned to NASA’s SpaceX Crew-9 mission, and Fincke previously was assigned to NASA’s Boeing Starliner-1 mission. NASA decided to reassign the astronauts to Crew-11 in overall support of planned activities aboard the International Space Station. Cardman carries her experience training as a commander on Dragon spacecraft, and Fincke brings long-duration spaceflight experience to this crew complement.
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she had begun pursuing a doctorate in Geosciences. Cardman’s research in geobiology and geochemical cycling focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning.
      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon and Boeing Starliner toward operational certification. The Emsworth, Pennsylvania, native is a distinguished graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both Aeronautics and Astronautics, as well as Earth, Atmospheric and Planetary Sciences. He also has a master’s degree in Aeronautics and Astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in more than 30 different aircraft.
      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel.
      The Crew-11 mission will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in Engineering from Krasnodar Air Force Academy in Aircraft Operations and Air Traffic Management. He also earned a bachelor’s degree in State and Municipal Management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars.
      Learn more about NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Courtney Beasley / Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Mar 27, 2025 LocationNASA Headquarters Related Terms
      Commercial Space Commercial Crew Humans in Space International Space Station (ISS) ISS Research Johnson Space Center Low Earth Orbit Economy Space Operations Mission Directorate
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Starling swarm’s extended mission tested advanced autonomous maneuvering capabilities.NASA/Daniel Rutter As missions to low Earth orbit become more frequent, space traffic coordination remains a key element to efficiently operating in space. Different satellite operators using autonomous systems need to operate together and manage increasing workloads. NASA’s Starling spacecraft swarm recently tested a coordination with SpaceX’s Starlink constellation, demonstrating a potential solution to enhance space traffic coordination.
      Led by the Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley, Starling originally set out to demonstrate autonomous planning and execution of orbital maneuvers with the mission’s four small spacecraft. After achieving its primary objectives, the Starling mission expanded to become Starling 1.5, an experiment to demonstrate maneuvers between the Starling swarm and SpaceX’s Starlink satellites, which also maneuver autonomously.
      Coordination in Low Earth Orbit
      Current space traffic coordination systems screen trajectories of spacecraft and objects in space and alert operators on the ground of potential conjunctions, which occur when two objects exceed an operator’s tolerance for a close approach along their orbital paths. Spacecraft operators can request notification at a range of probabilities, often anywhere from a 1 in 10,000 likelihood of a collision to 1 in 1,000,000 or lower.
      Conjunction mitigation between satellite operators requires manual coordination through calls or emails on the ground. An operator may receive a notification for a number of reasons including recently maneuvering their satellite, nearby space debris, or if another satellite adjusts its orbit.
      Once an operator is aware of a potential conjunction, they must work together with other operators to reduce the probability of a collision. This can result in time-consuming calls or emails between ground operations teams with different approaches to safe operations. It also means maneuvers may require several days to plan and implement. This timeline can be challenging for missions that require quick adjustments to capture important data.
      “Occasionally, we’ll do a maneuver that we find out wasn’t necessary if we could have waited before making a decision. Sometimes you can’t wait three days to reposition and observe. Being able to react within a few hours can make new satellite observations possible,” said Nathan Benz, project manager of Starling 1.5 at NASA Ames.
      Improving Coordination for Autonomous Maneuvering
      The first step in improving coordination was to develop a reliable way to signal maneuver responsibility between operators. “Usually, SpaceX takes the responsibility to move out of the way when another operator shares their predicted trajectory information,” said Benz.
      SpaceX and NASA collaborated to design a conjunction screening service, which SpaceX then implemented. Satellite operators can submit trajectories and receive conjunction data quickly, then accept responsibility to maneuver away from a potential conjunction.
      “For this experiment, NASA’s Starling accepted responsibility to move using the screening service, successfully tested our system’s performance, then autonomously planned and executed the maneuver for the NASA Starling satellite, resolving a close approach with a Starlink satellite,” said Benz.
      Through NASA’s Starling 1.5 experiment, the agency helped validate SpaceX’s Starlink screening service. The Office of Space Commerce within the U.S. Department of Commerce also worked with SpaceX to understand and assess the Starlink screening service.
      Quicker Response to Changes on Earth
      The time it takes to plan maneuvers in today’s orbital traffic environment limits the number of satellites a human operator can manage and their ability to collect data or serve customers.
      “A fully automated system that is flexible and adaptable between satellite constellations is ideal for an environment of multiple satellite operators, all of whom have differing criteria for mitigating collision risks,” said Lauri Newman, program officer for NASA’s Conjunction Assessment Risk Analysis program at the agency’s headquarters in Washington.
      Reducing the time necessary to plan maneuvers could open up a new class of missions, where quick responses to changes in space or on Earth’s surface are possible. Satellites capable of making quicker movements could adjust their orbital position to capture a natural disaster from above, or respond to one swarm member’s interesting observations, moving to provide a more thorough look.
      “With improved access and use of low Earth orbit and the necessity to provide a more advanced space traffic coordination system, Starling 1.5 is providing critical data.  Starling 1.5 is the result of a successful partnership between NASA, the Department of Commerce, and SpaceX, maturing technology to solve such challenges,” said Roger Hunter, program manager of the Small Spacecraft Technology program. “We look forward to the sustained impact of the Starling technologies as they continue demonstrating advancements in spacecraft coordination, cooperation, and autonomy.”    
      NASA Ames leads the Starling projects. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission. 
      Share
      Details
      Last Updated Mar 26, 2025 LocationAmes Research Center Related Terms
      Ames Research Center General Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
      2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 58 seconds ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 20 hours ago 5 min read NASA Demonstrates New Wildland Fire Airspace Management System
      Article 22 hours ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Space Technology Mission Directorate
      Conjunction Assessment (CA Home)
      Starling
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Advanced Capabilities for Emergency Response Operations (ACERO) researchers Lynne Martin, left, and Connie Brasil use the Portable Airspace Management System (PAMS) to view a simulated fire zone and set a drone flight plan during a flight test the week of March 17, 2025.NASA/Brandon Torres-Navarrete NASA researchers conducted initial validation of a new airspace management system designed to enable crews to use aircraft fight and monitor wildland fires 24 hours a day, even during low-visibility conditions.  
      From March 17-28, NASA’s Advanced Capabilities for Emergency Response Operations (ACERO) project stationed researchers at multiple strategic locations across the foothills of the Sierra de Salinas mountains in Monterey County, California. Their mission: to test and validate a new, portable system that can provide reliable airspace management under poor visual conditions, one of the biggest barriers for aerial wildland firefighting support. 
      The mission was a success. 
      “At NASA, we have decades of experience leveraging our aviation expertise in ways that improve everyday life for Americans,” said Carol Carroll, deputy associate administrator for NASA’s Aeronautics Research Mission Directorate at agency headquarters in Washington. “We need every advantage possible when it comes to saving lives and property when wildfires affect our communities, and ACERO technology will give responders critical new tools to monitor and fight fires.” 
      NASA ACERO researchers Samuel Zuniga,left, and Jonathan La Plain prepare for a drone flight test using the PAMS in Salinas on March 19, 2025.NASA/Brandon Torres-Navarrete One of the barriers for continued monitoring, suppression, and logistics support in wildland fire situations is a lack of tools for managing airspace and air traffic that can support operations under all visibility conditions. Current aerial firefighting operations are limited to times with clear visibility when a Tactical Air Group Supervisor or “air boss” in a piloted aircraft can provide direction. Otherwise, pilots may risk collisions. 
      The ACERO technology will provide that air boss capability for remotely piloted aircraft operations – and users will be able to do it from the ground. The project’s Portable Airspace Management System (PAMS) is a suitcase-sized solution that builds on decades of NASA air traffic and airspace management research. The PAMS units will allow pilots to view the locations and operational intents of other aircraft, even in thick smoke or at night. 
      During the testing in Salinas, researchers evaluated the PAMS’ core airspace management functions, including strategic coordination and the ability to automatically alert pilots once their aircrafts exit their preapproved paths or the simulated preapproved fire operation zone.  
      Using the PAMS prototype, researchers were able to safely conduct  flight operations of a vertical takeoff and landing aircraft operated by Overwatch Aero, LLC, of Solvang, California, and two small NASA drones. 
      Flying as if responding to a wildfire scenario, the Overwatch aircraft connected with two PAMS units in different locations. Though the systems were separated by mountains and valleys with weak cellular service, the PAMS units were able to successfully share and display a simulated fire zone, aircraft location, flight plans, and flight intent, thanks to a radio communications relay established by the Overwatch aircraft.  
      Operating in a rural mountain range validated that PAMS could work successfully in an actual wildland fire environment.   
      “Testing in real mountainous environments presents numerous challenges, but it offers significantly more value than lab-based testing,” said Dr. Min Xue, ACERO project manager at NASA’s Ames Research Center in California’s Silicon Valley. “The tests were successful, providing valuable insights and highlighting areas for future improvement.”
      NASA ACERO researchers fly a drone to test the PAMS during a flight test on March 19, 2025.NASA/Brandon Torres-Navarrete Pilots on the ground used PAMS to coordinate the drones, which performed flights simulating aerial ignition – the practice of setting controlled, intentional fires to manage vegetation, helping to control fires and reduce wildland fire risk. 
      As a part of the testing, Joby Aviation of Santa Cruz, California, flew its remotely piloted aircraft, similar in size to a Cessna Grand Caravan, over the testing site. The PAMS system successfully exchanged aircraft location and flight intent with Joby’s mission management system. The test marked the first successful interaction between PAMS and an optionally piloted aircraft. 
      Fire chiefs from the California Department of Forestry and Fire Protection (CAL FIRE) attended the testing and provided feedback on the system’s functionality, features that could improve wildland fire air traffic coordination, and potential for integration into operations. 
      “We appreciate the work being done by the NASA ACERO program in relation to portable airspace management capabilities,” said Marcus Hernandez, deputy chief for CAL FIRE’s Office of Wildfire Technology. “It’s great to see federal, state, and local agencies, as it is important to address safety and regulatory challenges alongside technological advancements.” 
      ACERO chief engineer Joey Mercer, right, shows the Portable Airspace Management System (PAMS) to Cal Fire representatives Scott Eckman, center, and Pete York, left, in preparation for the launch of the Overwatch Aero FVR90 Vertical Take Off and Landing (VTOL) test “fire” information sharing, airspace management, communication relay, and aircraft deconfliction capabilities during the Advanced Capabilities for Emergency Response Operations (ACERO) test in Salinas, California.NASA/Brandon Torres-Navarrete These latest flights build on successful PAMS testing in Watsonville, California, in November 2024. ACERO will use flight test data and feedback from wildland fire agencies to continue building out PAMS capabilities and will showcase more robust information-sharing capabilities in the coming years.  
      NASA’s goal for ACERO is to validate this technology, so it can be developed for wildland fire crews to use in the field, saving lives and property. The project is managed by NASA’s Airspace Operations and Safety Program and supports the agency’s  Advanced Air Mobility mission. 
      ACERO’s PAMS unit shown during a flight test on March 19, 2025NASA/Brandon Torres-Navarrette Share
      Details
      Last Updated Mar 25, 2025 Related Terms
      General Aeronautics Air Traffic Solutions Drones & You Natural Disasters Wildfires Wildland Fire Management Explore More
      3 min read New Aircraft Wing Undergoes Crucial NASA Icing Testing
      Article 3 hours ago 3 min read Engineering Reality: Lee Bingham Leads Lunar Surface Simulation Support for Artemis Campaign
      Article 21 hours ago 3 min read Career Transition Assistance Plan (CTAP) Services
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...