Members Can Post Anonymously On This Site
NASA’s SpaceX Crew-9 Astronauts to Discuss Science Mission
-
Similar Topics
-
By NASA
NASA’s SpaceX Crew-11 members stand inside the Space Vehicle Mockup Facility at the agency’s Johnson Space Center in Houston. From left are Mission Specialist Kimiya Yui from JAXA (Japan Aerospace Exploration Agency), Commander NASA astronaut Zena Cardman, Mission Specialist Oleg Platonov of Roscosmos, and Pilot NASA astronaut Mike Fincke.Credit: NASA As part of NASA’s SpaceX Crew-11 mission, four crew members from three space agencies will launch in the coming months to the International Space Station for a long-duration science expedition aboard the orbiting laboratory.
NASA astronauts Commander Zena Cardman and Pilot Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Mission Specialist Kimiya Yui, and Roscosmos cosmonaut Mission Specialist Oleg Platonov will join crew members aboard the space station no earlier than July 2025.
The flight is the 11th crew rotation with SpaceX to the station as part of NASA’s Commercial Crew Program. The crew will conduct scientific investigations and technology demonstrations to help prepare humans for future missions to the Moon, as well as benefit people on Earth.
Cardman previously was assigned to NASA’s SpaceX Crew-9 mission, and Fincke previously was assigned to NASA’s Boeing Starliner-1 mission. NASA decided to reassign the astronauts to Crew-11 in overall support of planned activities aboard the International Space Station. Cardman carries her experience training as a commander on Dragon spacecraft, and Fincke brings long-duration spaceflight experience to this crew complement.
Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she had begun pursuing a doctorate in Geosciences. Cardman’s research in geobiology and geochemical cycling focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning.
This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon and Boeing Starliner toward operational certification. The Emsworth, Pennsylvania, native is a distinguished graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both Aeronautics and Astronautics, as well as Earth, Atmospheric and Planetary Sciences. He also has a master’s degree in Aeronautics and Astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in more than 30 different aircraft.
With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel.
The Crew-11 mission will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in Engineering from Krasnodar Air Force Academy in Aircraft Operations and Air Traffic Management. He also earned a bachelor’s degree in State and Municipal Management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Courtney Beasley / Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov
Share
Details
Last Updated Mar 27, 2025 LocationNASA Headquarters Related Terms
Commercial Space Commercial Crew Humans in Space International Space Station (ISS) ISS Research Johnson Space Center Low Earth Orbit Economy Space Operations Mission Directorate
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Starling swarm’s extended mission tested advanced autonomous maneuvering capabilities.NASA/Daniel Rutter As missions to low Earth orbit become more frequent, space traffic coordination remains a key element to efficiently operating in space. Different satellite operators using autonomous systems need to operate together and manage increasing workloads. NASA’s Starling spacecraft swarm recently tested a coordination with SpaceX’s Starlink constellation, demonstrating a potential solution to enhance space traffic coordination.
Led by the Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley, Starling originally set out to demonstrate autonomous planning and execution of orbital maneuvers with the mission’s four small spacecraft. After achieving its primary objectives, the Starling mission expanded to become Starling 1.5, an experiment to demonstrate maneuvers between the Starling swarm and SpaceX’s Starlink satellites, which also maneuver autonomously.
Coordination in Low Earth Orbit
Current space traffic coordination systems screen trajectories of spacecraft and objects in space and alert operators on the ground of potential conjunctions, which occur when two objects exceed an operator’s tolerance for a close approach along their orbital paths. Spacecraft operators can request notification at a range of probabilities, often anywhere from a 1 in 10,000 likelihood of a collision to 1 in 1,000,000 or lower.
Conjunction mitigation between satellite operators requires manual coordination through calls or emails on the ground. An operator may receive a notification for a number of reasons including recently maneuvering their satellite, nearby space debris, or if another satellite adjusts its orbit.
Once an operator is aware of a potential conjunction, they must work together with other operators to reduce the probability of a collision. This can result in time-consuming calls or emails between ground operations teams with different approaches to safe operations. It also means maneuvers may require several days to plan and implement. This timeline can be challenging for missions that require quick adjustments to capture important data.
“Occasionally, we’ll do a maneuver that we find out wasn’t necessary if we could have waited before making a decision. Sometimes you can’t wait three days to reposition and observe. Being able to react within a few hours can make new satellite observations possible,” said Nathan Benz, project manager of Starling 1.5 at NASA Ames.
Improving Coordination for Autonomous Maneuvering
The first step in improving coordination was to develop a reliable way to signal maneuver responsibility between operators. “Usually, SpaceX takes the responsibility to move out of the way when another operator shares their predicted trajectory information,” said Benz.
SpaceX and NASA collaborated to design a conjunction screening service, which SpaceX then implemented. Satellite operators can submit trajectories and receive conjunction data quickly, then accept responsibility to maneuver away from a potential conjunction.
“For this experiment, NASA’s Starling accepted responsibility to move using the screening service, successfully tested our system’s performance, then autonomously planned and executed the maneuver for the NASA Starling satellite, resolving a close approach with a Starlink satellite,” said Benz.
Through NASA’s Starling 1.5 experiment, the agency helped validate SpaceX’s Starlink screening service. The Office of Space Commerce within the U.S. Department of Commerce also worked with SpaceX to understand and assess the Starlink screening service.
Quicker Response to Changes on Earth
The time it takes to plan maneuvers in today’s orbital traffic environment limits the number of satellites a human operator can manage and their ability to collect data or serve customers.
“A fully automated system that is flexible and adaptable between satellite constellations is ideal for an environment of multiple satellite operators, all of whom have differing criteria for mitigating collision risks,” said Lauri Newman, program officer for NASA’s Conjunction Assessment Risk Analysis program at the agency’s headquarters in Washington.
Reducing the time necessary to plan maneuvers could open up a new class of missions, where quick responses to changes in space or on Earth’s surface are possible. Satellites capable of making quicker movements could adjust their orbital position to capture a natural disaster from above, or respond to one swarm member’s interesting observations, moving to provide a more thorough look.
“With improved access and use of low Earth orbit and the necessity to provide a more advanced space traffic coordination system, Starling 1.5 is providing critical data. Starling 1.5 is the result of a successful partnership between NASA, the Department of Commerce, and SpaceX, maturing technology to solve such challenges,” said Roger Hunter, program manager of the Small Spacecraft Technology program. “We look forward to the sustained impact of the Starling technologies as they continue demonstrating advancements in spacecraft coordination, cooperation, and autonomy.”
NASA Ames leads the Starling projects. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission.
Share
Details
Last Updated Mar 26, 2025 LocationAmes Research Center Related Terms
Ames Research Center General Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
Article 58 seconds ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space
Article 20 hours ago 5 min read NASA Demonstrates New Wildland Fire Airspace Management System
Article 22 hours ago Keep Exploring Discover More Topics From NASA
Ames Research Center
Space Technology Mission Directorate
Conjunction Assessment (CA Home)
Starling
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
At left is NASA’s Perseverance Mars rover, with a circle indicating the location of the calibration target for the rover’s SHERLOC instrument. At right is a close-up of the calibration target. Along the bottom row are five swatches of spacesuit materials that scientists are studying as they de-grade.NASA/JPL-Caltech/MSSS The rover carries several swatches of spacesuit materials, and scientists are assessing how they’ve held up after four years on the Red Planet.
NASA’s Perseverance rover landed on Mars in 2021 to search for signs of ancient microbial life and to help scientists understand the planet’s climate and geography. But another key objective is to pave the way for human exploration of Mars, and as part of that effort, the rover carries a set of five spacesuit material samples. Now, after those samples have endured four years of exposure on Mars’ dusty, radiation-soaked surface, scientists are beginning the next phase of studying them.
The end goal is to predict accurately the usable lifetime of a Mars spacesuit. What the agency learns about how the materials perform on Mars will inform the design of future spacesuits for the first astronauts on the Red Planet.
This graphic shows an illustration of a prototype astronaut suit, left, along with suit samples included aboard NASA’s Perseverance rover. They are the first spacesuit materials ever sent to Mars. NASA “This is one of the forward-looking aspects of the rover’s mission — not just thinking about its current science, but also about what comes next,” said planetary scientist Marc Fries of NASA’s Johnson Space Center in Houston, who helped provide the spacesuit materials. “We’re preparing for people to eventually go and explore Mars.”
The swatches, each three-quarters of an inch square (20 millimeters square), are part of a calibration target used to test the settings of SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), an instrument on the end of Perseverance’s arm.
The samples include a piece of polycarbonate helmet visor; Vectran, a cut-resistant material used for the palms of astronaut gloves; two kinds of Teflon, which has dust-repelling nonstick properties; and a commonly used spacesuit material called Ortho-Fabric. This last fabric features multiple layers, including Nomex, a flame-resistant material found in firefighter outfits; Gore-Tex, which is waterproof but breathable; and Kevlar, a strong material used in bulletproof vests that makes spacesuits more rip-resistant.
Martian Wear and Tear
Mars is far from hospitable. It has freezing temperatures, fine dust that can stick to solar panels and spacesuits (causing wear and tear on the latter), and a surface rife with perchlorates, a kind of corrosive salt that can be toxic to humans.
There’s also lots of solar radiation. Unlike Earth, which has a magnetic field that deflects much of the Sun’s radiation, Mars lost its magnetic field billions of years ago, followed by much of its atmosphere. Its surface has little protection from the Sun’s ultraviolet light (which is why researchers have looked into how rock formations and caves could provide astronauts some shielding).
“Mars is a really harsh, tough place,” said SHERLOC science team member Joby Razzell Hollis of the Natural History Museum in London. “Don’t underestimate that — the radiation in particular is pretty nasty.”
Razzell Hollis was a postdoctoral fellow at NASA’s Jet Propulsion Laboratory in Southern California from 2018 to 2021, where he helped prepare SHERLOC for arrival on Mars and took part in science operations once the rover landed. A materials scientist, Razzell Hollis has previously studied the chemical effects of sunlight on a new kind of solar panel made from plastic, as well as on plastic pollution floating in the Earth’s oceans.
He likened those effects to how white plastic lawn chairs become yellow and brittle after years in sunlight. Roughly the same thing happens on Mars, but the weathering likely happens faster because of the high exposure to ultraviolet light there.
The key to developing safer spacesuit materials will be understanding how quickly they would wear down on the Martian surface. About 50% of the changes SHERLOC witnessed in the samples happened within Perseverance’s first 200 days on Mars, with the Vectran appearing to change first.
Another nuance will be figuring out how much solar radiation different parts of a spacesuit will have to withstand. For example, an astronaut’s shoulders will be more exposed — and likely encounter more radiation — than his or her palms.
Next Steps
The SHERLOC team is working on a science paper detailing initial data on how the samples have fared on Mars. Meanwhile, scientists at NASA Johnson are eager to simulate that weathering in special chambers that mimic the carbon dioxide atmosphere, air pressure, and ultraviolet light on the Martian surface. They could then compare the results generated on Earth while putting the materials to the test with those seen in the SHERLOC data. For example, the researchers could stretch the materials until they break to check if they become more brittle over time.
“The fabric materials are designed to be tough but flexible, so they protect astronauts but can bend freely,” Fries said. “We want to know the extent to which the fabrics lose their strength and flexibility over time. As the fabrics weaken, they can fray and tear, allowing a spacesuit to leak both heat and air.”
More About Perseverance
A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet, and is the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program (MEP) portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
For more about Perseverance:
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Share
Details
Last Updated Mar 26, 2025 Related Terms
Perseverance (Rover) Johnson Space Center Mars Mars 2020 Radioisotope Power Systems (RPS) Explore More
3 min read Engineering Reality: Lee Bingham Leads Lunar Surface Simulation Support for Artemis Campaign
Article 2 days ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on…
Article 2 days ago 3 min read 50 Years Ago: Final Saturn Rocket Rolls Out to Launch Pad 39
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Artemis II crew members and U.S. Navy personnel practice recovery procedures in the Pacific Ocean using a test version of NASA’s Orion spacecraft in February 2024. Credit: NASA NASA and the Department of Defense will host a media event on the recovery operations that will bring the Artemis II astronauts and the agency’s Orion spacecraft home at the conclusion of next year’s mission around the Moon. The in-person event will take place at 3 p.m. PDT on Monday, March 31, at Naval Base San Diego in California.
A team of NASA and Department of Defense personnel are at sea in the Pacific Ocean where splashdown will take place. The team currently is practicing the procedures it will use to recover the astronauts after their more than 600,000 mile journey from Earth and back on the first crewed mission under the Artemis campaign. A test version of Orion and other hardware also will be on-hand for media representatives to view.
Interested media must RSVP no later than 4 p.m. PDT Friday, March 28, to Naval Base San Diego Public Affairs at nbsd.pao@us.navy.mil or 619-556-7359. The start time of the event may change based on the conclusion of testing activities.
Participants include:
Liliana Villarreal, NASA’s Artemis II landing and recovery director, Exploration Ground Systems Program, NASA’s Kennedy Space Center in Florida Capt. Andrew “Andy” Koy, commanding officer of USS Somerset (LPD 25), U.S. Navy Lt. Col. David Mahan, commander, U.S. Air Force’s 1st Air Force, Detachment 3, Patrick Space Force Base, Florida Several astronauts participating in the testing will be available for interviews.
Artemis II will be the first test flight of the SLS (Space Launch System) rocket, Orion spacecraft, and supporting ground system with crew aboard. NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will venture around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Learn more about Artemis II at:
https://www.nasa.gov/mission/artemis-ii/
-end-
Jim Wilson
Headquarters, Washington
202-358-1100
jim.wilson@nasa.gov
Madison Tuttle/Allison Tankersley
Kennedy Space Center, Florida
321-298-5968/321-867-2468
madison.e.tuttle@nasa.gov / allison.p.tankersley@nasa.gov
Share
Details
Last Updated Mar 25, 2025 LocationNASA Headquarters Related Terms
Artemis 2 Kennedy Space Center NASA Headquarters View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.