Jump to content

60 Years Ago: Gemini III, America’s First Two-Person Flight 


Recommended Posts

  • Publishers
Posted

On March 23, 1965, the United States launched the Gemini III spacecraft with astronauts Virgil “Gus” Grissom and John Young aboard, America’s first two-person spaceflight. Grissom earned the honor as the first person to enter space twice and Young as the first member of the second group of astronauts to fly in space. During their three-orbit flight they carried out the first orbital maneuvers of a crewed spacecraft, a critical step toward demonstrating rendezvous and docking. Grissom and Young brought Gemini 3 to a safe splashdown in the Atlantic Ocean. Their ground-breaking mission led the way to nine more successful Gemini missions in less than two years to demonstrate the techniques required for a Moon landing. Gemini 3 marked the last spaceflight controlled from Cape Kennedy, that function shifting permanently to a new facility in Houston. 

On April 13, 1964, just five days after the uncrewed Gemini I mission, in the newly open auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Director Robert Gilruth introduced the Gemini III crew to the press. NASA assigned Mercury 4 veteran Grissom and Group 2 astronaut Young as the prime crew, with Mercury 8 veteran Walter Schirra and Group 2 astronaut Thomas Stafford serving as their backups. The primary goals of Project Gemini included proving the techniques required for the Apollo Program to fulfil President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. Demonstrating rendezvous and docking between two spacecraft ranked as a high priority for Project Gemini.  

Distant view of the launch of a Gemini Titan.
Liftoff of Gemini III.
NASA

The uncrewed Gemini I and II missions validated the spacecraft’s design, reliability, and heat shield, clearing the way to launch Gemini III with a crew. On March 23, 1965, after donning their new Gemini spacesuits, Grissom and Young rode the transfer van to Launch Pad 19 at Cape Kennedy in Florida. They rode the elevator to their Gemini spacecraft atop its Titan II rocket where technicians assisted them in climbing into the capsule. At 9:24 a.m. EST, the Titan’s first stage engines ignited, and Gemini III rose from the launch pad. 

Five and a half minutes after launch, the Titan II’s second stage engine cut off and the spacecraft separated to begin its orbital journey. Grissom became the first human to enter space a second time. While engineers monitored the countdown from the Launch Pad 19 blockhouse, once in orbit flight controllers in the Mission Control Center at the Cape took over. Controllers in the new Mission Control Center at the Manned Spacecraft Center, now the Johnson Space Center in Houston, staffed consoles and monitored the mission in a backup capacity. Beginning with Gemini IV, control of all American human spaceflights shifted permanently to the Houston facility. 

Gemini III entered an orbit of 100 miles by 139 miles above the Earth. Near the end of the first orbit, while passing over Texas, Grissom and Young fired their spacecraft’s thrusters for one minute, 14 seconds. “They appear to be firing good,” said Young, confirming the success of the maneuver. The change in velocity adjusted their orbit to 97 miles by 105 miles. A second burn 45 minutes later altered the orbital inclination by 0.02 degrees. Another task for the crew involved testing new food and packaging developed for Gemini. As an off-the-menu item, Young had stowed a corned beef on rye sandwich in his suit pocket before flight, and both he and Grissom took a bite before stowing it away, concerned about crumbs from the sandwich floating free in the cabin.

Near the end of their third revolution, Grissom and Young prepared for the retrofire burn to bring them out of orbit. They oriented Gemini III with its blunt end facing forward and completed a final orbital maneuver to lower the low point of their orbit to 45 miles, ensuring reentry even if the retrorockets failed to fire. They jettisoned the rearmost adapter section, exposing the retrorockets that fired successfully, bringing the spacecraft out of orbit. They jettisoned the retrograde section, exposing Gemini’s heat shield. Minutes later, they encountered the upper layers of Earth’s atmosphere at 400,000 feet, and he buildup of ionized gases caused a temporary loss of communication between the spacecraft and Mission Control. At 50,000 feet, Grissom deployed the drogue parachute to stabilize and slow the spacecraft, followed by the main parachute at 10,600 feet. Splashdown occurred in the Atlantic Ocean near Grand Turk Island, about 52 miles short of the planned point, after a flight of 4 hours, 52 minutes, 31 seconds. 

A helicopter recovered Grissom and Young and delivered them to the deck of the U.S.S. Intrepid, arriving there one hour and 12 minutes after splashdown. On board the carrier, the astronauts received a medical checkup and a telephone call from President Lyndon B. Johnson. The ship sailed to pick up the spacecraft and sailors hoisted it aboard less than three hours after landing. The day after splashdown, Grissom and Young flew to Cape Kennedy for debriefings, a continuation of the medical examinations begun on the carrier, and a press conference. Following visits to the White House, New York, and Chicago, the astronauts returned home to Houston on March 31. The next day, Gilruth welcomed them back to the Manned Spacecraft Center, where in front of the main administration building, workers raised an American flag that Grissom and Young had carried on their mission. That flag flew during every subsequent Gemini mission. 

Image of a nine-story office building with workers raising an American flag in front of it.
During the Gemini III welcome home ceremony in front of the main administration building at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, workers raise an American flag that the astronauts had carried on their mission.
NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On March 24, 1975, the last in a long line of super successful Saturn rockets rolled out from the vehicle assembly building to Launch Pad 39B at NASA’s Kennedy Space Center in Florida. The Saturn IB rocket for the Apollo-Soyuz Test Project was the 19th in the Saturn class stacked in the assembly building, beginning in 1966 with the Saturn V 500F facilities checkout vehicle. Thirteen flight Saturn V rockets followed, 12 to launch Apollo spacecraft and one to place the Skylab space station into orbit. In addition, workers stacked four flight Saturn IB rockets, three to launch crews to Skylab and one for Apollo-Soyuz, plus another for the Skylab rescue vehicle that was not needed and never launched. Previously, workers stacked Saturn I and Saturn IB rockets on the pads at Launch Complexes 34 and 37. With the successful liftoff in July 1975, the Saturn family of rockets racked up a 100 percent success rate of 32 launches. 

      Workers lower the Apollo command and service modules onto the spacecraft adaptor.NASA Technicians in the assembly building replace the fins on the Saturn IB rocket’s first stage. NASA Workers in the assembly building prepare to lower the spacecraft onto its Saturn IB rocket.NASA Inspections of the Saturn IB rocket’s first stage fins revealed hairline cracks in several hold-down fittings and managers ordered the replacement of all eight fins. While the cracks would not affect the flight of the rocket they bore the weight of the rocket on the mobile launcher. Workers finished the fin replacement on March 16. Engineers in Kennedy’s spacecraft operations building prepared the Apollo spacecraft for its historic space mission. By early March, they had completed checkout and assembly of the spacecraft and transported it to the assembly building on March 17 to mount it atop the Saturn IB’s second stage. Five days later, they topped off the rocket with the launch escape system. 

      The final Saturn IB begins its rollout from the vehicle assembly building. NASA The Saturn IB passes by the Launch Control Center. NASA Apollo astronauts Thomas Stafford, left, Vance Brand, and Donald “Deke” Slayton pose in front of their Saturn IB during the rollout.NASA On March 23, workers edged the mobile transporter carrying the Saturn IB just outside the assembly building’s High Bay 1, where engineers installed an 80-foot tall lightning mast atop the launch tower. The next morning, the stack continued its rollout to Launch Pad 39B with the prime crew of Thomas  Stafford, Vance Brand, and Donald “Deke” Slayton and support crew members Robert Crippen and Richard Truly on hand to observe. About 7,500 people, including guests, dependents of Kennedy employees and NASA Tours patrons, watched as the stack moved slowly out of the assembly building on its five-mile journey to the launch pad.   

      Mission Control in Houston during the joint simulation with Flight Director Donald Puddy in striped shirt and a view of Mission Control in Moscow on the large screen at left. NASA A group of Soviet flight controllers in a support room in Mission Control in Houston during the joint simulation. NASA On March 20, flight controllers and crews began a series of joint simulations for the joint mission scheduled for July 1975. For the six days of simulations, cosmonauts Aleksei Leonov and Valeri Kubasov and astronauts Stafford, Brand, and Slayton participated in the activity in spacecraft simulators in their respective countries, with both control centers in Houston and outside Moscow fully staffed as if for the actual mission. The exercises simulated various phases of the mission, including the respective launches, rendezvous and docking, crew transfers and joint operations, and undocking. 

      Astronauts Thomas Stafford, left, Vance Brand, and Donald “Deke” Slayton in a boilerplate Apollo command module preparing for the water egress training. NASA Stafford, left, Slayton, and Brand in the life raft during water egress training. NASA Astronauts Stafford, Brand and Slayton participated in a water egress training activity on March 8,  completing the exercise in a water tank in Building 260 at NASA’s Johnson Space Center in Houston. The astronauts practiced egressing from their spacecraft onto a lift raft and being lifted up with the use of a Billy Pugh rescue net. They practiced wearing their flight coveralls as well as their spacesuits. 

      Explore More
      5 min read 50 Years Ago: Preparing the Final Saturn Rocket for Flight
      Article 2 months ago 6 min read 45 Years Ago: Soyuz and Apollo Launch
      Article 5 years ago 8 min read 45 Years Ago: Historic Handshake in Space
      Article 5 years ago View the full article
    • By Space Force
      Within the exercise environment, the CJSpOC facilitated the operational command and control of combined space forces in the Korean theater to achieve the combined forces commander's objectives.
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 5 min read
      Celebrating 25 Years of Terra
      Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer
      Terra anniversary banner Image credit: NASA Nasa personnel gather to celebrate Terra’s 25th anniversary at the Goddard Visitor Center. Image credit: NASA On December 18, 2024, Terra—the first EOS Flagship mission celebrated the 25th anniversary of its launch from Vandenberg Space Force (then Air Force) Base. Some 70 individuals gathered at the Goddard Space Flight Center’s (GSFC) Visitor Center to celebrate this remarkable achievement for the venerable mission – with 75 more participating virtually. 
      The gathering began with a reception culminating with some informal remarks in the main area of the Visitor’s Center outside the auditorium from Marc Dinardo [Lockheed Martin, emeritus] who was involved in the design of Terra. He explained that – at the time it was being built in the 1990s – Terra represented a “big step forward” for Lockheed Martin compared to projects the company had done prior to this. He discussed several engineering feats, e.g., fitting spacecraft components into the Atlas rocket used to launch Terra, moving from tape recorders to solid state recorders for data storage, the (at the time) novel thermal system developed to reject heat and protect instruments, and the direct broadcast capabilities.
      After the initial remarks, the in-person participants moved into the auditorium where they heard from representatives from Senior management [both from NASA Headquarters and GSFC] as well as from several key figures in Terra’s long history. Each speaker gave brief remarks and shared their perspectives on Terra’s development and achievements. Short summaries of each presentation follow below.
      Julie Robinson [NASA HQ—Deputy Director of the Earth Science Division] began by noting that this feels like a family celebration.  She said her first  personal experience with Terra was submitting a proposal as a young scientist to do research that would use data from Terra. At that time the idea of studying Earth as a system of systems was brand new.  She had no idea at that time that more than a quarter-century later, she’d be involved  in planning the “next generation” Earth System Observatory (ESO). 
      Shawn Domagal-Goldman [Deputy Director of the Sciences and Exploration Directorate] spoke about how some of the biggest science questions we try to answer are interdisciplinary and cross-instrument, spanning missions and generations, and that the expertise and diverse skillsets of those who have worked on the Terra team over the past 25 years embodies this goal.
      Tom Neumann [GSFC—Deputy Director of Earth Science Division (GSFC)] reflected on his early involvement in the Terra–Aqua–Aura proposal reviews. He noted the sheer number of people involved in the mission and the logistical challenges that organizing that size group presented at the time.  He also commented on the feeling of family surrounding the Team and how this surely contributed to its remarkable achievements over the past 25 years.
      Guennadi Kroupnik [Canadian Space Agency—Director General of Space Utilization] extended congratulations to NASA and Terra team for 25 years of operations. He commented that this “six year” mission has endured far beyond what was planned. Canada’s contribution was the Measurement of Pollution in the Troposphere (MOPITT) instrument with Jim Drummond [University of Toronto] as Principal Investigator. Kroupnik noted that MOPITT Is longest continuously running instrument in Canadian history. He is pleased that CSA has been able to partner with NASA on Terra and looks forward to future collaboration on the Atmospheric Observing System (AOS), which is one of the missions planned as part of ESO.
      Jack Kaye [NASA Headquarters—Associate Director for Research of the Earth Science Division] spoke of Terra’s remarkable scientific accomplishments, the creativity of the team, and the intentional emphasis placed on validating the data, and the creativity of the Team. He also noted that the direct broadcast capability was extremely useful and led to many applications. Kaye remarked that the late Yoram Kauffman referred to the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) as the “zoom lens of Terra.”
      Miguel Román [GSFC—Deputy Director for Atmospheres] described himself as a “child of Terra,” as he began his science career at around the same time that Terra launched and has been involved in various capacities ever since. Román recalled the launch taking place near vineyards, where the team celebrated the successful launch with local wine, to finally sharing a bottle of wine with the late Piers Sellers (who served as the first Terra project scientist) at one of the final gatherings Piers threw before he passed from cancer. Román also mentioned the Our Changing Planet book that four Earth Scientists – including former EOS Senior Project Scientist and Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team Leader Michael King and former Aqua Project Scientist Claire Parkinson—both GSFC emeritus – collaborated to write that was published in 2007. This book made use of numerous images and data from Terra’s five instruments – as well as other EOS data.
      Kurt Thome [GSFC—Terra Project Scientist] rounded out the presentations, emphasizing again what several have stated in their individual comments – the Terra Team truly is a family. He commented that he’s only been leading the mission for the past ten years and that his work builds on the shoulders of those who came before him. In particular, he acknowledged the slide Miguel Román showed briefly during his presentation that honored those who were part of the Terra family who have passed away – e.g., Piers Sellers, Yoram Kauffman. 
      Steve Platnick
      EOS Senior Project Scientist
      Share








      Details
      Last Updated Mar 20, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      7 Min Read Fallout from the Unauthorized Gemini III Space Sandwich
      Astronaut John W. Young, the pilot for Gemini III, checks over his helmet prior to flight. Credits: NASA “I hid a sandwich in my spacesuit,” Astronaut John W. Young confessed in the April 2, 1965, issue of Life Magazine. The conversation about and the consumption of the sandwich, which lasted only about 30 seconds during the Gemini III flight, became a serious matter that drew the ire of Congress and NASA’s administrator after the crew returned home. Congress was particularly upset and brought the matter to leadership’s attention at hearings about NASA’s 1966 budget. Representative George E. Shipley was especially disgusted, knowing how much money and time NASA had spent to prepare the Gemini III spacecraft for launch. The fact that a crewmember brought something into the crew cabin, which Shipley likened to a “surgeon’s operating room,” put the techniques used to prevent a spaceflight mission from failing at risk; crumbs could have made their way behind instrument panels interfering with the operation of flight equipment and the loss of the mission and its crew. Shipley called Young’s antics “foolish” and asked NASA leaders to share their thoughts.
      A Beef with Corned Beef
      George Mueller, associate administrator for Manned Space Flight, stated unequivocally that the agency did not “approve [of] unauthorized objects such as sandwiches going on board the spacecraft.” And he promised Shipley that NASA has “taken steps, obviously, to prevent recurrence of corned beef sandwiches in future flights. There was no detriment to the experimental program that was carried on, nor was there any detriment to the actual carrying out of the mission because of the ingestion of the sandwich.” Manned Spacecraft Center Director Robert R. Gilruth was more forgiving of Young’s decision. These sort of antics, he told the committee, helped the crews to “break up the strain” of spaceflight, and he hesitated “to be too strict in the future by laying down a lot of rules for men who have this responsibility and who, in all the flights so far, have done such good jobs.” Webb disagreed and said, “this is the United States of America’s space program and, as a matter of policy, we are not going to permit individuals to superimpose their judgment as to what is going to be taken on these flights. I think it is fine for Dr. Gilruth to take a very strong position with respect to the individuality of these men, but from those of us who have to look at the totality of the matter, this was not an adequate performance by an astronaut.”
      The loss of a Gemini mission, especially one so early in the program, would have been particularly challenging for an agency attempting to land humans on the Moon where each mission built on the previous flight. The United States was in a race with the Soviet Union, and for Congress at least, the purpose of Gemini and the cost of the space program was far too serious for these sorts of fun and games. For NASA Administrator James Webb, it was a sign that Gilruth was too lax when it came to managing his astronauts. Gemini III was just one example of the lack of control he noticed, and he pressed Gilruth for a report on the sandwich incident to determine if Young should be disciplined or at the very least reprimanded.
      The In-Flight Meal
      Young hatched the idea during training, when his commander, Virgil I. “Gus” Grissom grew “bored” with the food they practiced with for the mission. Grissom regularly complained about the dehydrated “delicacies” food scientists concocted. Bringing a sandwich onboard, an item that was freshly made and did not have to be rehydrated, “seemed like a fun idea at the time” to Young.
      Astronauts Gus Grissom (foreground), command pilot; and John Young, pilot, are shown inside their Gemini III spacecraft as they prepared for their launch from Cape Kennedy, Florida, on March 23, 1965.NASA One of the goals of their flight was to evaluate NASA’s flight food packaging and whether the containers leaked when foods were reconstituted, as well as the procedures for disposing of the meal and its packaging after eating. Foods included rehydratable items such as chicken bites, applesauce, or drinks, and compressed foods such as brownie bites. The Gemini food system was not haute cuisine, however, and crews complained about its taste. Young described the chicken bites as “barely edible” in his post-flight debriefing. Don L. Lind, a scientist-astronaut selected in 1967, described the early Gemini food as “strange.” Their class took some to jungle survival training in Panama, and while no one wanted to eat it on the first two days, by the third day they were so hungry that they were willing to give it a try. Another problem was that all rehydrated meals for Gemini were mixed with cold water, which made them less appetizing than a hot meal.
      Food packets planned for the Gemini III flight, including dehydrated beef pot roast, bacon and egg bites, toasted bread cubes, orange juice and a wet wipe. The astronaut’s method for rehydrating a pouch of dehydrated food with water is shown in the top left.NASA A freshly made corned beef sandwich made at a local restaurant sounded like a better option, so Young had fellow astronaut and backup command pilot Walter M. “Wally” Schirra pick one up. Schirra purchased the sandwich for Young, and as he headed out to the launchpad, Young put it in the pocket of his pressure suit.
      Nearly two hours into the flight, as Young started his food and waste evaluation, he pulled out the sandwich from his suit and offered it to his commander. As captured on the air-to-ground recordings, Grissom asked what it was and where it came from. “I brought it with me,” Young responded, “Let’s see how it tastes.” He didn’t expect the sandwich to be so pungent, “Smells, doesn’t it?” Grissom took a bite but found the rye crumbled so he placed the sandwich in his suit pocket to prevent the crumbs from floating about the cabin.
      Where did that come from?
      Gus Grissom
      Gemini III Commander
      Two days later, nearly a thousand members of the media from the United States and around the world gathered to hear from the crew and NASA management at the postflight press conference at the Carriage House Motel in Cocoa Beach, Florida. Space reporter Bill Hines asked Young about the sandwich, erroneously referring to it as a “baloney sandwich,” and what happened when Gus was offered a taste. “And,” he asked, “what became of the sandwich?” Young seemed surprised, “How did you find out about that?” and then laughed adding Grissom “ate the sandwich.”
      John Young and Gus Grissom speak with the press about the Gemini III mission during a news conference at the Carriage House Motel in Florida. Behind the table, left to right, are Dr. Kurt H. Debus, director of Kennedy Space Center, Christopher C. Kraft, Jr., MSC assistant director for Flight Operations, astronauts John Young and Gus Grissom, Dr. Robert R. Gilruth, MSC director, Dr. Robert C. Seamans, NASA associate administrator, and Julian Scheer, assistant administrator for NASA’s Office of Public Affairs.NASA Carry-on Restrictions for Spaceflights
      Ironically the Gemini Program offered astronauts more control over their flights than during Project Mercury, including the ability to maneuver their spacecraft and to be more independent from Mission Control; but the uproar over this event led NASA to draft rules about what astronauts could and could not take onboard a spacecraft. Starting with Gemini IV, flight crews had to present a list of items they planned to take on their missions. Prohibited items naturally included sandwiches as well as bulky or heavy items or metal that could negatively impact the operation of spacecraft equipment. (NASA still allowed astronauts to take personal items such as wedding bands or coins for families and friends in their personal preference kit.)
      Young never received a formal reprimand for the incident but was made aware of Congress’s frustration. Others in the corps were advised to avoid similar stunts and to focus on the mission. The decision to bring a sandwich onboard did not have a negative impact on Young’s career. He was the first astronaut to fly to space six times —two Gemini missions; two Apollo missions, including the dress rehearsal for the first lunar landing; and two space shuttle missions including STS-1, known as the bravest test flight in history. He also served as chief of the Astronaut Office for 13 years.
      Share
      Details
      Last Updated Mar 17, 2025 Related Terms
      NASA History Gemini III Humans in Space John W. Young Virgil I. Grissom Explore More
      7 min read Gemini Pioneered the Technology Driving Today’s Exploration
      Article 2 years ago 4 min read Contraband Corned Beef and the Early Days of Space Biology: the Gemini III Mission
      The Gemini III mission carried two remarkable firsts: an astronaut’s smuggled sandwich and NASA’s first…
      Article 3 years ago 4 min read John Young Remembered as Gemini, Apollo, Space Shuttle Astronaut
      Article 7 years ago Keep Exploring Discover More Topics From NASA
      Project Gemini
      Planets
      The solar system has eight planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. There are five officially recognized…
      Humans In Space
      Aeronautics
      View the full article
    • By NASA
      9 min read
      Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper
      Peer-reviewed scientific journal articles are the bedrock of science. Each one represents the culmination of a substantial project, impartially checked for accuracy and relevance – a proud accomplishment for any science team. 
      The person who takes responsibility for writing the paper must inevitably and repeatedly  write, edit, and rewrite its content as they receive comments and constructive criticism from colleagues, peers, and editors. And the process involves much more than merely re-writing the words. Implementing feedback and polishing the paper regularly involves  reanalyzing data and conducting additional analyses as needed, over and over again. The person who  successfully climbs this mountain of effort can then often earn the honor of being named the first author of a peer-reviewed scientific publication. To our delight, more and more of NASA’s citizen scientists have taken on this demanding challenge, and accomplished this incredible feat.
      Michiharu Hyogo is one of these pioneers. His paper, “Unveiling the Infrared Excess of SIPS J2045-6332: Evidence for a Young Stellar Object with Potential Low-Mass Companion” (Hyogo et al. 2025) was recently accepted for publication in the journal Monthly Notices of the Royal Astronomical Society. He conceived of the idea for this paper, performed most of the research using of data from NASA’s retired Wide-field Infrared Survey Explorer (WISE) mission, and submitted it to the journal. We asked him some questions about his life and he shared with us some of the secrets to his success.
      Q: Where do you live, Michi?
      A: I have been living in Tokyo, Japan since the end of 2012. Before that, I lived outside Japan for a total of 21 years, in countries such as Canada, the USA, and Australia.
      Q: Which NASA Citizen Science projects have you worked on?
      A: I am currently working on three different NASA-sponsored projects: Disk Detective, Backyard Worlds: Planet 9, and Planet Patrol.
      Q: What do you do when you’re not working on these projects?
      A: Until March of last year, I worked as a part-time lecturer at a local university in Tokyo. At the moment, I am unemployed and looking for similar positions. My dream is to work at a community college in the USA, but so far, my job search has been unsuccessful. In the near future, I hope to teach while also working on projects like this one. This is my dream.
      Q: How did you learn about NASA Citizen Science?
      A: It’s a very long story. A few years after completing my master’s degree, around 2011, a friend from the University of Hawaii (where I did my bachelor’s degree) introduced me to one of the Zooniverse projects. Since it was so long ago, I can’t remember exactly which project it was—perhaps Galaxy Zoo or another one whose name escapes me.
      I definitely worked on Planet Hunters, classifying all 150,000 light curves from (NASA’s) Kepler observatory. Around the time I completed my classifications for Planet Hunters, I came across Disk Detective as it was launching. A friend on Facebook shared information about it, stating that it was “NASA’s first sponsored citizen science project aimed at publishing scientific papers”.
      At that time, I was unemployed and had plenty of free time, so I joined without giving much thought to the consequences. I never expected that this project would eventually lead me to write my own paper — it was far beyond anything I had imagined.
        
      Q: What would you say you have gained from working on these NASA projects?A: Working on these NASA-sponsored projects has been an incredibly valuable experience for me in multiple ways. Scientifically, I have gained hands-on experience in analyzing astronomical data, identifying potential celestial objects, and contributing to real research efforts. Through projects like Disk Detective,Backyard Worlds: Planet 9, and Planet Patrol, I have learned how to systematically classify data, recognize patterns, and apply astrophysical concepts in a practical setting.
      Beyond the technical skills, I have also gained a deeper understanding of how citizen science can contribute to professional research. Collaborating with experts and other volunteers has improved my ability to communicate scientific ideas and work within a research community.
      Perhaps most importantly, these projects have given me a sense of purpose and the opportunity to contribute to cutting-edge discoveries. They have also led to unexpected opportunities, such as co-authoring scientific papers — something I never imagined when I first joined. Overall, these experiences have strengthened my passion for astronomy and my desire to continue contributing to the field.
      Q: How did you make the discovery that you wrote about in your paper?
      A: Well, the initial goal of this project was to discover circumstellar disks around brown dwarfs. The Disk Detective team assembled more than 1,600 promising candidates that might possess such disks. These objects were identified and submitted by volunteers from the same project, following the physical criteria outlined within it.
      Among these candidates, I found an object with the largest infrared excess and the fourth-latest spectral type. This was the moment I first encountered the object and found it particularly interesting, prompting me to investigate it further.
      Although we ultimately did not discover a disk around this object, we uncovered intriguing physical characteristics, such as its youth and the presence of a low-mass companion with a spectral type of L3 to L4.
      Q: How did you feel when your paper was accepted for publication?
      A: Thank you for asking this question—I truly appreciate it. I feel like the biggest milestone of my life has finally been achieved!
      This is the first time I genuinely feel that I have made a positive impact on society. It feels like a miracle. Imagine if we had a time machine and I could go back five years to tell my past self this whole story. You know what my past self would say? “You’re crazy.”
      Yes, I kept dreaming about this, and deep down, I was always striving toward this goal because it has been my purpose in life since childhood. I’m also proud that I accomplished something like this without being employed by a university or research institute. (Ironically, I wasn’t able to achieve something like this while I was in grad school.)
      I’m not sure if there are similar examples in the history of science, but I’m quite certain this is a rare event.
      Q: What would you say to other citizen scientists about the process of writing a paper?
      A: Oh, there are several important things I need to share with them. 
      First, never conduct research entirely on your own. Reach out to experts in your field as much as possible. For example, in my case, I collaborated with brown dwarf experts from the Backyard Worlds: Planet 9 team. When I completed the first draft of my paper, I sent it to all my collaborators to get their feedback on its quality and to check if they had any comments on the content. It took some time, but I received a lot of helpful suggestions that ultimately improved the clarity and conciseness of my paper.
      If this is your first time receiving extensive feedback, it might feel overwhelming. However, you should see it as a valuable opportunity—one that will lead you to stronger research results. I am truly grateful for the feedback I received. This process will almost certainly help you receive positive feedback from referees when you submit your own paper. That’s exactly what happened to me.
      Second, do not assume that others will automatically understand your research for you. This seems to be a common challenge among many citizen scientists. First, you must have a clear understanding of your own research project. Then, it is crucial to communicate your progress clearly and concisely, without unnecessary details. If you have questions—especially when you are stuck — be specific.
      For example, I frequently attend Zoom meetings for various projects, including Backyard Worlds: Planet 9 and Disk Detective. In every meeting, I give a brief recap of what I’ve been working on — every single time — to refresh the audience’s memory. This helps them stay engaged and remember my research. (Screen sharing is especially useful for this.) After the recap, I present my questions. This approach makes it much easier for others to understand where I am in my research and, ultimately, helps them provide potential solutions to the challenges I’m facing.
      Lastly, use Artificial Intelligence (AI) as much as possible. For tasks like editing, proofreading, and debugging, AI tools can be incredibly helpful. I don’t mean to sound harsh, but I find it surprising that some people still do these things manually. In many cases, this can be a waste of time. I strongly believe we should rely on machines for tasks that we either don’t need to do ourselves or simply cannot do. This approach saves time and significantly improves productivity.
      Q: Thank you for sharing all these useful tips! Is there anything else you would like to add?
      A: I would like to sincerely thank all my collaborators for their patience and support throughout this journey. I know we have never met in person, and for some of you, this may not be a familiar way to communicate (it wasn’t for me at first either). If that’s the case, I completely understand. I truly appreciate your trust in me and in this entirely online mode of communication. Without your help, none of what I have achieved would have been possible.
      I am now thinking about pushing myself to take on another set of research projects. My pursuit of astronomical research will not stop, and I hope you will continue to follow my journey. I will also do my best to support others along the way.
      Share








      Details
      Last Updated Mar 18, 2025 Related Terms
      Citizen Science Astrophysics Explore More
      5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet


      Article


      1 day ago
      5 min read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide


      Article


      2 days ago
      2 min read Hubble Sees a Spiral and a Star


      Article


      5 days ago
      View the full article
  • Check out these Videos

×
×
  • Create New...