Jump to content

One of Hottest Known Stars Captured in Hubble Photograph


HubbleSite

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The guitar shape in the “Guitar Nebula” comes from bubbles blown by particles ejected from the pulsar through a steady wind as it moves through space. A movie of Chandra (red) data taken in 2000, 2006, 2012, and 2021 has been combined with a single image in optical light from Palomar. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years long, blasting away from the pulsar (seen as the bright white dot). The movie shows how this filament has changed over two decades. X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) Normally found only in heavy metal bands or certain post-apocalyptic films, a “flame-throwing guitar” has now been spotted moving through space. Astronomers have captured movies of this extreme cosmic object using NASA’s Chandra X-ray Observatory and Hubble Space Telescope.
      The new movie of Chandra (red) and Palomar (blue) data helps break down what is playing out in the Guitar Nebula. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years or 12 trillion miles long, blasting away from the pulsar (seen as the bright white dot connected to the filament).
      Astronomers have nicknamed the structure connected to the pulsar PSR B2224+65 as the “Guitar Nebula” because of its distinct resemblance to the instrument in glowing hydrogen light. The guitar shape comes from bubbles blown by particles ejected from the pulsar through a steady wind. Because the pulsar is moving from the lower right to the upper left, most of the bubbles were created in the past as the pulsar moved through a medium with variations in density.
      X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical: (Hubble) NASA/ESA/STScI and (Palomar) Hale Telescope/Palomar/CalTech; Image Processing: NASA/CXC/SAO/L. Frattare At the tip of the guitar is the pulsar, a rapidly rotating neutron star left behind after the collapse of a massive star. As it hurtles through space it is pumping out a flame-like filament of particles and X-ray light that astronomers have captured with Chandra.
      How does space produce something so bizarre? The combination of two extremes — fast rotation and high magnetic fields of pulsars — leads to particle acceleration and high-energy radiation that creates matter and antimatter particles, as electron and positron pairs. In this situation, the usual process of converting mass into energy, famously determined by Albert Einstein’s E = mc2 equation, is reversed. Here, energy is being converted into mass to produce the particles.
      Particles spiraling along magnetic field lines around the pulsar create the X-rays that Chandra detects. As the pulsar and its surrounding nebula of energetic particles have flown through space, they have collided with denser regions of gas. This allows the most energetic particles to escape the confines of the Guitar Nebula and fly to the right of the pulsar, creating the filament of X-rays. When those particles escape, they spiral around and flow along magnetic field lines in the interstellar medium, that is, the space in between stars.
      The new movie shows the pulsar and the filament flying towards the upper left of the image through Chandra data taken in 2000, 2006, 2012 and 2021. The movie has the same optical image in each frame, so it does not show changes in parts of the “guitar.” A separate movie obtained with data from NASA’s Hubble Space Telescope (obtained in 1994, 2001, 2006, and 2021) shows the motion of the pulsar and the smaller structures around it.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Hubble Space Telescope data: 1994, 2001, 2006, and 2021.X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula, which forms the outline of the guitar, also control changes in how many particles escape to the right of the pulsar, causing subtle brightening and fading of the X-ray filament, like a cosmic blow torch shooting from the tip of the guitar.
      The structure of the filament teaches astronomers about how electrons and positrons travel through the interstellar medium. It also provides an example of how this process is injecting electrons and positrons into the interstellar medium.
      A paper describing these results was published in The Astrophysical Journal and is available here.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features two short videos and a labeled composite image, all featuring what can be described as a giant flame-throwing guitar floating in space.
      In both the six second multiwavelength Guitar Nebula timelapse video and the composite image, the guitar shape appears at our lower left, with the neck of the instrument pointing toward our upper left. The guitar shape is ghostly and translucent, resembling a wispy cloud on a dark night. At the end of the neck, the guitar’s headstock comes to a sharp point that lands on a bright white dot. This dot is a pulsar, and the guitar shape is a hydrogen nebula. The nebula was formed when particles being ejected by the pulsar produced a cloud of bubbles. The bubbles were then blown into a curvy guitar shape by a steady wind. The guitar shape is undeniable, and is traced by a thin white line in the labeled composite image.
      The pulsar, known as PSR B2224+65, has also released a long filament of energetic matter and antimatter particles approximately 12 trillion miles long. In both the composite image and the six second video, this energetic, X-ray blast shoots from the bright white dot at the tip of the guitar’s headstock, all the way out to our upper righthand corner. In the still image, the blast resembles a streak of red dots, most of which fall in a straight, densely packed line. The six second video features four separate images of the phenomenon, created with Chandra data gathered in 2000, 2006, 2012, and 2021. When shown in sequence, the density of the X-ray blast filament appears to fluctuate.
      A 12 second video is also included in this release. It features four images that focus on the headstock of the guitar shape. These images were captured by the Hubble Space Telescope in 1994, 2001, 2006, and 2021. When played in sequence, the images show the headstock shape expanding. A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula also control changes in the pulsar’s blast filament. Meaning the same phenomenon that created the cosmic guitar also created the cosmic blowtorch shooting from the headstock.
      View the full article
    • By NASA
      On Nov. 6, 2024, NASA Night brought cosmic excitement to the Toyota Center, where Johnson Space Center employees joined 16,208 fans who interacted with NASA as they watched the Houston Rockets claim victory over the San Antonio Spurs. 

      Energy soared as International Space Station Program Manager Dana Weigel stepped up to take the first shot. 
      International Space Station Program Manager Dana Weigel takes the first shot on Nov. 6, 2024, as the Houston Rockets go up against the San Antonio Spurs at Toyota Center.NASA/Helen Arase Vargas The ceremonial first shot also gave back to the community, with Rockets owner Tilman Fertitta donating $1,000 to the Clutch City Foundation to support underserved youth through education, sports, and disaster relief. 

      Throughout the game, Johnson employees kept the crowd engaged with NASA trivia, creating a “launch countdown” energy that had fans cheering. The arena lit up as Adam Savage narrated a video showcasing the International Space Station’s groundbreaking contributions to science. From unlocking discoveries impossible on Earth to testing critical technologies for our return to the Moon, the orbiting laboratory plays a vital role in advancing medical and social breakthroughs that enhance life on our planet.  

      The Artemis II crew also appeared on the jumbotron, reminding everyone of NASA’s mission to establish a long-term presence on the Moon for scientific discovery, economic benefits, and to inspire a new generation of explorers. 
      Dana Weigel, center, shows off a Rockets jersey on the court with Rockets mascot Clutch, left, and NASA mascot Cosmo.NASA/Helen Arase Vargas  In the Sky Court area of the stadium concourse, Johnson volunteers held “mission control” with an interactive exhibit that drew fans in like a gravitational pull. From exploring a Space Launch System model and handling a spacesuit helmet and glove to touching a 3.4-billion-year-old Moon rock collected during Apollo 17, NASA’s booth offered attendees a glimpse into space exploration. 

      Visitors had the chance to ask questions and bring home mission pins, stickers, and hands-on activities, provided by the International Space Station Program and the Artemis campaign. Seventy-five “Lucky Row” fans also received bags filled with NASA outreach materials, courtesy of the Johnson Public Engagement team. 
      NASA’s Johnson Space Center volunteers connect with fans at the game through an interactive exhibit.NASA The Orion Flight Simulator, with its realistic switches and displays, provided an immersive experience that allowed fans to dock the Orion spacecraft to humanity’s first lunar space station, Gateway.  

      More than 600 fans eagerly lined up to experience NASA’s mobile exhibit trailer in the Toyota Center parking lot—drawing lines as long as those at the box office. 
      Fans engage with the Orion Flight Simulator at NASA’s booth. NASA/Helen Arase Vargas Fans also tested their skills with a crew assembly activity focused on science, technology, engineering, and mathematics, simulating the challenges astronauts face in orbit. NASA’s inflatable mascot, Cosmo, joined the action on the court, posing for photos and adding galactic fun to events like the T-shirt giveaway. 
      The Houston Rockets mascot Clutch and NASA mascot Cosmo team up on the court at Toyota Center in Houston.NASA/Helen Arase Vargas  NASA’s presence brought together the excitement of sports with the wonder of space exploration, inspiring fans to keep shooting for the stars. 

      View more images from the event below.  
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on Nov. 14, 2024 — sol 4363, or Martian day 4,363 of the Mars Science Laboratory mission – at 02:55:34 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 15, 2024
      The Monday plan and drive had executed successfully, so the team had high hopes for APXS and MAHLI data on several enticing targets in the rover’s workspace. Alas, it was not to be: The challenging terrain had resulted in an awkwardly perched wheel at the end of the drive, so we couldn’t risk deploying the arm from this position. Maybe next drive!
      We did plan a busy weekend of non-arm science activities regardless. Due to a “soliday” the weekend has two sols instead of three, but we had enough power available to fit in more than three hours of observations. The two LIBS observations in the plan will measure the composition of the flat, reddish material in the workspace that is fractured in a polygonal pattern (“Bloody Canyon”) and a nearby rock coating in which the composition is suspected to change with depth (“Burnt Camp Creek”). One idea is that the reddish material could be the early stage version of the thicker dark coatings we’ve been seeing.
      A large Mastcam mosaic (“Yosemite”) was planned to capture the very interesting view to the rover’s north. Nearby and below the rover is the layer of rocks in which the “Mineral King” site was drilled on the opposite side of the channel back in March. This is a stratum of sulfate-bearing rock that appears dark-toned from orbit and we’re interested to know how consistent its features are from one side of the channel to the other. Higher up, the Yosemite mosaic also captures some deformation features that may reveal past water activity, and some terrain associated with the Gediz Vallis ridge. So there’s a lot of science packed into one mosaic!
      Two long-distance RMI mosaics were planned; one is to image back into the channel, where there may be evidence of a late-stage debris flow at the base of the ridge. The second looks “forward” from the rover’s perspective instead, into the wind-shaped yardang unit above us that will hopefully be explored close-up in the rover’s future. This yardang mosaic is intended to form one part of a stereo observation.
      The modern environment on Mars will also be observed with dust devil surveys on both sols, line-of-sight and tau observations to measure atmospheric opacity (often increased by dust in the atmosphere), and zenith and suprahorizon movies with Navcam to look for clouds. There will also be standard passive observations of the rover’s environment by REMS and DAN.
      We’ll continue driving westward and upward, rounding the Texoli butte to keep climbing through the sulfate-bearing unit. It’s not always easy driving but there’s a lot more science to do!
      Written by Lucy Lim, Participating Scientist at NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Nov 18, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      6 days ago
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      6 days ago
      2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Takes a Look at Tangled… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Takes a Look at Tangled Galaxies
      This Hubble image features a pair of interacting spiral galaxies called MCG+05-31-045. ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz)
      Download this image

      This NASA/ESA Hubble Space Telescope image depicts the cosmic tangle that is MCG+05-31-045, a pair of interacting galaxies located 390 million light-years away and a part of the Coma galaxy cluster.
      The Coma Cluster is a particularly rich cluster that contains over a thousand known galaxies. Amateur astronomers can easily spot several of these in a backyard telescope (See Caldwell 35). Most of them are elliptical galaxies, and that’s typical of a dense galaxy cluster like the Coma Cluster: many elliptical galaxies form through close encounters between galaxies that stir them up, or even collisions that rip them apart. While the stars in interacting galaxies can stay together, their gas is twisted and compressed by gravitational forces and rapidly used up to form new stars. When the hot, massive, blue stars die, there is little gas left to form new generations of young stars to replace them. As spiral galaxies interact, gravity disrupts the regular orbits that produce their striking spiral arms. Whether through mergers or simple near misses, the result is a galaxy almost devoid of gas, with aging stars orbiting in uncoordinated circles: an elliptical galaxy.
      It’s very likely that a similar fate will befall MCG+05-31-045. As the smaller spiral galaxy is torn up and integrated into the larger galaxy, many new stars will form, and the hot, blue ones will quickly burn out, leaving cooler, redder stars behind in an elliptical galaxy, much like others in the Coma Cluster. But this process won’t be complete for many millions of years.
      Explore more Coma Cluster images from Hubble.
      Hubble Uncovers Thousands of Globular Star Clusters Scattered Among Galaxies Hubble’s Galaxies With Knots, Bursts Hubble Sees Near and Far Hubble Sees Plunging Galaxy Losing Its Gas Hubble Catches Galaxies Swarmed by Star Clusters Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Nov 14, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Hubble Space Telescope Spiral Galaxies Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxy Details and Mergers



      Hubble’s Galaxies



      Explore the Night Sky


      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Sees… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   5 Min Read NASA’s Hubble Sees Aftermath of Galaxy’s Scrape with Milky Way
      This artist’s concept shows a closeup of the Large Magellanic Cloud, a dwarf galaxy that is one of the Milky Way galaxy’s nearest neighbors. Credits:
      NASA, ESA, Ralf Crawford (STScI) A story of survival is unfolding at the outer reaches of our galaxy, and NASA’s Hubble Space Telescope is witnessing the saga.
      The Large Magellanic Cloud, also called the LMC, is one of the Milky Way galaxy’s nearest neighbors. This dwarf galaxy looms large on the southern nighttime sky at 20 times the apparent diameter of the full Moon.
      Many researchers theorize that the LMC is not in orbit around our galaxy, but is just passing by. These scientists think that the LMC has just completed its closest approach to the much more massive Milky Way. This passage has blown away most of the spherical halo of gas that surrounds the LMC.
      Now, for the first time, astronomers been able to measure the size of the LMC’s halo – something they could do only with Hubble. In a new study to be published in The Astrophysical Journal Letters, researchers were surprised to find that it is so extremely small, about 50,000 light-years across. That’s around 10 times smaller than halos of other galaxies that are the LMC’s mass. Its compactness tells the story of its encounter with the Milky Way.
      “The LMC is a survivor,” said Andrew Fox of AURA/STScI for the European Space Agency in Baltimore, who was principal investigator on the observations. “Even though it’s lost a lot of its gas, it’s got enough left to keep forming new stars. So new star-forming regions can still be created. A smaller galaxy wouldn’t have lasted – there would be no gas left, just a collection of aging red stars.”
      This artist’s concept shows the Large Magellanic Cloud, or LMC, in the foreground as it passes through the gaseous halo of the much more massive Milky Way galaxy. The encounter has blown away most of the spherical halo of gas that surrounds the LMC, as illustrated by the trailing gas stream reminiscent of a comet’s tail. Still, a compact halo remains, and scientists do not expect this residual halo to be lost. The team surveyed the halo by using the background light of 28 quasars, an exceptionally bright type of active galactic nucleus that shines across the universe like a lighthouse beacon. Their light allows scientists to “see” the intervening halo gas indirectly through the absorption of the background light. The lines represent the Hubble Space Telescope’s view from its orbit around Earth to the distant quasars through the LMC’s gas. NASA, ESA, Ralf Crawford (STScI)
      Download this image

      Though quite a bit worse for wear, the LMC still retains a compact, stubby halo of gas – something that it wouldn’t have been able to hold onto gravitationally had it been less massive. The LMC is 10 percent the mass of the Milky Way, making it heftier than most dwarf galaxies.
      “Because of the Milky Way’s own giant halo, the LMC’s gas is getting truncated, or quenched,” explained STScI’s Sapna Mishra, the lead author on the paper chronicling this discovery. “But even with this catastrophic interaction with the Milky Way, the LMC is able to retain 10 percent of its halo because of its high mass.”
      A Gigantic Hair Dryer
      Most of the LMC’s halo was blown away due to a phenomenon called ram-pressure stripping. The dense environment of the Milky Way pushes back against the incoming LMC and creates a wake of gas trailing the dwarf galaxy – like the tail of a comet.
      “I like to think of the Milky Way as this giant hairdryer, and it’s blowing gas off the LMC as it comes into us,” said Fox. “The Milky Way is pushing back so forcefully that the ram pressure has stripped off most of the original mass of the LMC’s halo. There’s only a little bit left, and it’s this small, compact leftover that we’re seeing now.”
      As the ram pressure pushes away much of the LMC’s halo, the gas slows down and eventually will rain into the Milky Way. But because the LMC has just gotten past its closest approach to the Milky Way and is moving outward into deep space again, scientists do not expect the whole halo will be lost.
      Only with Hubble
      To conduct this study, the research team analyzed ultraviolet observations from the Mikulski Archive for Space Telescopes at STScI. Most ultraviolet light is blocked by the Earth’s atmosphere, so it cannot be observed with ground-based telescopes. Hubble is the only current space telescope tuned to detect these wavelengths of light, so this study was only possible with Hubble.
      The team surveyed the halo by using the background light of 28 bright quasars. The brightest type of active galactic nucleus, quasars are believed to be powered by supermassive black holes. Shining like lighthouse beacons, they allow scientists to “see” the intervening halo gas indirectly through the absorption of the background light. Quasars reside throughout the universe at extreme distances from our galaxy.
      This artist’s concept illustrates the Large Magellanic Cloud’s (LMC’s) encounter with the Milky Way galaxy’s gaseous halo. In the top panel, at the middle of the right side, the LMC begins crashing through our galaxy’s much more massive halo. The bright purple bow shock represents the leading edge of the LMC’s halo, which is being compressed as the Milky Way’s halo pushes back against the incoming LMC. In the middle panel, part of the halo is being stripped and blown back into a streaming tail of gas that eventually will rain into the Milky Way. The bottom panel shows the progression of this interaction, as the LMC’s comet-like tail becomes more defined. A compact LMC halo remains. Because the LMC is just past its closest approach to the Milky Way and is moving outward into deep space again, scientists do not expect the residual halo will be lost. NASA, ESA, Ralf Crawford (STScI)
      Download this image

      The scientists used data from Hubble’s Cosmic Origins Spectrograph (COS) to detect the presence of the halo’s gas by the way it absorbs certain colors of light from background quasars. A spectrograph breaks light into its component wavelengths to reveal clues to the object’s state, temperature, speed, quantity, distance, and composition. With COS, they measured the velocity of the gas around the LMC, which allowed them to determine the size of the halo.
      Because of its mass and proximity to the Milky Way, the LMC is a unique astrophysics laboratory. Seeing the LMC’s interplay with our galaxy helps scientists understand what happened in the early universe, when galaxies were closer together. It also shows just how messy and complicated the process of galaxy interaction is.
      Looking to the Future
      The team will next study the front side of the LMC’s halo, an area that has not yet been explored.
      “In this new program, we are going to probe five sightlines in the region where the LMC’s halo and the Milky Way’s halo are colliding,” said co-author Scott Lucchini of the Center for Astrophysics | Harvard & Smithsonian. “This is the location where the halos are compressed, like two balloons pushing against each other.”
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Ann Jenkins, Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Nov 14, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Hubble Space Telescope Irregular Galaxies Spiral Galaxies The Milky Way Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxy Details and Mergers



      Hubble’s Galaxies



      Explore the Night Sky


      View the full article
  • Check out these Videos

×
×
  • Create New...