Members Can Post Anonymously On This Site
Euclid opens data treasure trove, offers glimpse of deep fields
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This image shows about 1.5% of Euclid’s Deep Field South, one of three regions of the sky that the telescope will observe for more than 40 weeks over the course of its prime mission, spotting faint and distant galaxies. One galaxy cluster near the center is located almost 6 billion light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi With contributions from NASA, the mission is looking back into the universe’s history to understand how the universe’s expansion has changed.
The Euclid mission — led by ESA (European Space Agency) with contributions from NASA — aims to find out why our universe is expanding at an accelerating rate. Astronomers use the term “dark energy” to refer to the unknown cause of this phenomenon, and Euclid will take images of billions of galaxies to learn more about it. A portion of the mission’s data was released to the public by ESA released on Wednesday, March 19.
This new data has been analyzed by mission scientists and provides a glimpse of Euclid’s progress. Deemed a “quick” data release, this batch focuses on select areas of the sky to demonstrate what can be expected in the larger data releases to come and to allow scientists to sharpen their data analysis tools in preparation.
The data release contains observations of Euclid’s three “deep fields,” or areas of the sky where the space telescope will eventually make its farthest observations of the universe. Featuring one week’s worth of viewing, the Euclid images contain 26 million galaxies, the most distant being over 10.5 billion light-years away. Launched in July 2023, the space telescope is expected to observe more than 1.5 billion galaxies during its six-year prime mission.
The entirety of the Euclid mission’s Deep Field South region is shown here. It is about 28.1 square degrees on the sky. Euclid will observe this and two other deep field regions for a total of about 40 weeks during its 6-year primary mission. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi By the end of that prime mission, Euclid will have observed the deep fields for a total of about 40 weeks in order to gradually collect more light, revealing fainter and more distant galaxies. This approach is akin to keeping a camera shutter open to photograph a subject in low light.
The first deep field observations, taken by NASA’s Hubble Space Telescope in 1995, famously revealed the existence of many more galaxies in the universe than expected. Euclid’s ultimate goal is not to discover new galaxies but to use observations of them to investigate how dark energy’s influence has changed over the course of the universe’s history.
In particular, scientists want to know how much the rate of expansion has increased or slowed down over time. Whatever the answer, that information would provide new clues about the fundamental nature of this phenomenon. NASA’s Nancy Grace Roman Space Telescope, set to launch by 2027, will also observe large sections of the sky in order to study dark energy, complementing Euclid’s observations.
The location of the Euclid deep fields are shown marked in yellow on this all-sky view from ESA’s Gaia and Planck missions. The bright horizontal band is the plane of our Milky Way galaxy. Euclid’s Deep Field South is at bottom left.ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA/Planck Collaboration Looking Back in Time
To study dark energy’s effect throughout cosmic history, astronomers will use Euclid to create detailed, 3D maps of all the stuff in the universe. With those maps, they want to measure how quickly dark energy is causing galaxies and big clumps of matter to move away from one another. They also want to measure that rate of expansion at different points in the past. This is possible because light from distant objects takes time to travel across space. When astronomers look at distant galaxies, they see what those objects looked like in the past.
For example, an object 100 light-years away looks the way it did 100 years ago. It’s like receiving a letter that took 100 years to be delivered and thus contains information from when it was written. By creating a map of objects at a range of distances, scientists can see how the universe has changed over time, including how dark energy’s influence may have varied.
But stars, galaxies, and all the “normal” matter that emits and reflects light is only about one-fifth of all the matter in the universe. The rest is called “dark matter” — a material that neither emits nor reflects light. To measure dark energy’s influence on the universe, astronomers need to include dark matter in their maps.
Bending and Warping
Although dark matter is invisible, its influence can be measured through something called gravitational lensing. The mass of both normal and dark matter creates curves in space, and light traveling toward Earth bends or warps as it encounters those curves. In fact, the light from a distant galaxy can bend so much that it forms an arc, a full circle (called an Einstein ring), or even multiple images of the same galaxy, almost as though the light has passed through a glass lens.
In most cases, gravitational lensing warps the apparent shape of a galaxy so subtly that researchers need special tools and computer software to see it. Spotting those subtle changes across billions of galaxies enables scientists to do two things: create a detailed map of the presence of dark matter and observe how dark energy influenced it over cosmic history.
It is only with a very large sample of galaxies that researchers can be confident they are seeing the effects of dark matter. The newly released Euclid data covers 63 square degrees of the sky, an area equivalent to an array of 300 full Moons. To date, Euclid has observed about 2,000 square degrees, which is approximately 14% of its total survey area of 14,000 square degrees. By the end of its mission, Euclid will have observed a third of the entire sky.
The dataset released this month is described in several preprint papers available today. The mission’s first cosmology data will be released in October 2026. Data accumulated over additional, multiple passes of the deep field locations will also be included in the 2026 release.
More About Euclid
Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, supports U.S.-based science investigations, and science data is archived at the NASA / IPAC Infrared Science Archive (IRSA). JPL is a division of Caltech.
For more information about Euclid go to:
science.nasa.gov/mission/euclid/
News Media Contact
ESA Media Relations
media@esa.int
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2025-039
Share
Details
Last Updated Mar 19, 2025 Related Terms
Euclid Galaxies, Stars, & Black Holes Jet Propulsion Laboratory Stars Explore More
5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.…
Article 24 hours ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL
Article 2 days ago 3 min read NASA Analysis Shows Unexpected Amount of Sea Level Rise in 2024
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
The U.S. Space Force published its Data and Artificial Intelligence FY 2025 Strategic Action Plan.
View the full article
-
By European Space Agency
Video: 00:06:44 The European Space Agency’s Euclid mission has scouted out the three areas in the sky where it will eventually provide the deepest observations of its mission.
In just one week of observations, with one scan of each region so far, Euclid already spotted 26 million galaxies. The farthest of those are up to 10.5 billion light-years away.
In the coming years, Euclid will pass over these three regions tens of times, capturing many more faraway galaxies, making these fields truly ‘deep’ by the end of the nominal mission in 2030.
The first glimpse of 63 square degrees of the sky, the equivalent area of more than 300 times the full Moon, already gives an impressive preview of the scale of Euclid’s grand cosmic atlas when the mission is complete. This atlas will cover one-third of the entire sky – 14 000 square degrees – in this high-quality detail.
Explore the three deep field previews in ESASky:
- Euclid Deep Field South
- Euclid Deep Field Fornax:
- Euclid Deep Field North:
Read more: Euclid opens data treasure trove, offers glimpse of deep fields
View the full article
-
By NASA
4 min read
NASA Atmospheric Wave-Studying Mission Releases Data from First 3,000 Orbits
Following the 3,000th orbit of NASA’s AWE (Atmospheric Waves Experiment) aboard the International Space Station, researchers publicly released the mission’s first trove of scientific data, crucial to investigate how and why subtle changes in Earth’s atmosphere cause disturbances, as well as how these atmospheric disturbances impact technological systems on the ground and in space.
“We’ve released the first 3,000 orbits of data collected by the AWE instrument in space and transmitted back to Earth,” said Ludger Scherliess, principal investigator for the mission and physics professor at Utah State University. “This is a view of atmospheric gravity waves never captured before.”
Available online, the data release contains more than five million individual images of nighttime airglow and atmospheric gravity wave observations collected by the instrument’s four cameras, as well as derived temperature and airglow intensity swaths of the ambient air and the waves.
This image shows AWE data combined from two of the instrument’s passes over the United States. The red and orange wave-structures show increases in brightness (or radiance) in infrared light produced by airglow in Earth’s atmosphere. NASA/AWE/Ludger Scherliess “AWE is providing incredible images and data to further understand what we only first observed less than a decade ago,” said Esayas Shume, AWE program scientist at NASA Headquarters in Washington. “We are thrilled to share this influential data set with the larger scientific community and look forward to what will be discovered.”
Members of the AWE science team gather in the mission control room at Utah State University to view data collected by the mapping instrument mounted on the outside of the International Space Station. SDL/Allison Bills Atmospheric gravity waves occur naturally in Earth’s atmosphere and are formed by Earth’s weather and topography. Scientists have studied the enigmatic phenomena for years, but mainly from a few select sites on Earth’s surface.
“With data from AWE, we can now begin near-global measurements and studies of the waves and their energy and momentum on scales from tens to hundreds and even thousands of kilometers,” Scherliess said. “This opens a whole new chapter in this field of research.”
Data from AWE will also provide insight into how terrestrial and space weather interactions affect satellite communications, and navigation, and tracking.
“We’ve become very dependent on satellites for applications we use every day, including GPS navigation,” Scherliess said. “AWE is an attempt to bring science about atmospheric gravity waves into focus, and to use that information to better predict space weather that can disrupt satellite communications. We will work closely with our collaborators to better understand how these observed gravity waves impact space weather.”
AWE’s principal investigator, Ludger Scherliess, briefs collaborators of initial analysis of early AWE data. Information from the NASA-funded mission is helping scientists better understand how weather on Earth affects weather in space. SDL/Allison Bills The tuba-shaped AWE instrument, known as the Advanced Mesospheric Temperature Mapper or AMTM, consists of four identical telescopes. It is mounted to the exterior of the International Space Station, where it has a view of Earth.
As the space station orbits Earth, the AMTM’s telescopes capture 7,000-mile-long swaths of the planet’s surface, recording images of atmospheric gravity waves as they move from the lower atmosphere into space. The AMTM measures and records the brightness of light at specific wavelengths, which can be used to create air and wave temperature maps. These maps can reveal the energy of these waves and how they are moving through the atmosphere.
To analyze the data and make it publicly available, AWE researchers and students at USU developed new software to tackle challenges that had never been encountered before.
“Reflections from clouds and the ground can obscure some of the images, and we want to make sure the data provide clear, precise images of the power transported by the waves,” Scherliess said. “We also need to make sure the images coming from the four separate AWE telescopes on the mapper are aligned correctly. Further, we need to ensure stray light reflections coming off the solar panels of the space station, along with moonlight and city lights, are not masking the observations.”
As the scientists move forward with the mission, they’ll investigate how gravity wave activity changes with seasons around the globe. Scherliess looks forward to seeing how the global science community will use the AWE observations.
“Data collected through this mission provides unprecedented insight into the role of weather on the ground on space weather,” he said.
AWE is led by Utah State University in Logan, Utah, and it is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Utah State University’s Space Dynamics Laboratory built the AWE instrument and provides the mission operations center.
By Mary-Ann Muffoletto
Utah State University, Logan, UT
NASA Media Contact: Sarah Frazier
Share
Details
Last Updated Mar 14, 2025 Related Terms
Heliophysics Heliophysics Division Ionosphere Mesosphere Science Mission Directorate The Sun Uncategorized Explore More
2 min read Hubble Sees a Spiral and a Star
Article
7 hours ago
5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10
Article
2 days ago
4 min read Discovery Alert: ‘Super-Earth’ Swings from Super-Heated to Super-Chill
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Earth (ESD) Earth Explore Explore Earth Science Climate Change Air Quality Science in Action Multimedia Image Collections Videos Data For Researchers About Us 6 Min Read NASA Data Supports Everglades Restoration
Mangroves blanket roughly 600 square miles of South Florida’s coastal terrain. This dense grove — one of the largest in the world — is the ecological backbone of the Everglades system. This story is the second installment of a series on NASA’s mission to measure greenhouse gases in Florida’s mangrove ecosystem. Read the first part here.
Along the southernmost rim of the Florida Peninsula, the arching prop roots of red mangroves line the coast. Where they dip below the water’s surface, fish lay their eggs, using the protection from predators that the trees provide. Among their branches, wading birds like the great blue heron and the roseate spoonbill find rookeries to rear their young. The tangled matrix of roots collects organic matter and ocean-bound sediments, adding little by little to the coastline and shielding inland biology from the erosive force of the sea.
In these ways, mangroves are equal parts products and engineers of their environment. But their ecological value extends far beyond the coastline.
Tropical wetlands absorb carbon dioxide (CO2) from the atmosphere with impressive efficiency. Current estimates suggest they sequester carbon dioxide 10 times faster and store up to five times more carbon than old-growth forests. But as part of the ever-changing line between land and sea, coastal wetlands are vulnerable to disturbances like sea level rise, hurricanes, and changes in ocean salinity. As these threats intensify, Florida’s wetlands — and their role as a critical sink for carbon dioxide — face an uncertain future.
A new data product developed by NASA-funded researchers will help monitor from space the changing relationship between coastal wetlands and atmospheric carbon. It will deliver daily measurements of gaseous flux — the rate at which gas is exchanged between the planet’s surface and atmosphere. The goal is to improve local and global estimates of carbon dioxide levels and help stakeholders evaluate wetland restoration efforts.
NASA measures carbon dioxide from ground, air and space
At SRS-6, an eddy covariance tower measures carbon dioxide and methane flux among a dense grove of red, black, and white mangroves. (The term eddy covariance refers to the statistical technique used to calculate gaseous flux based on the meteorological and scalar atmospheric data collected by the flux towers.) Credits: NASA / Nathan Marder In the Everglades, flux measurements have historically relied on data from a handful of “flux towers.” The first of these towers was erected in June 2003, not far from the edge of Shark River at a research site known as SRS-6. A short walk from the riverbank, across a snaking path of rain-weathered, wooden planks, sits a small platform where the tower is anchored to the forest floor. Nearly 65 feet above the platform, a suite of instruments continuously measures wind velocity, temperature, humidity, and concentrations of atmospheric gases. These measurements are used to quantify the amount of carbon dioxide that wetland vegetation removes from the atmosphere — and the amount of methane released.
“Hundreds of research papers have come from this site,” said David Lagomasino, a professor of coastal ecology at East Carolina University. The abundance of research born from SRS-6 underscores its scientific value. But the BlueFlux campaign is committed to detailing flux across a much larger area — to fill in the gaps between the towers.
A true-color image of South Florida captured by the MODIS instrument aboard NASA’s Terra satellite. The area of Earth’s surface that the instrument’s sensors can “see” at one time — its swath — has a width of roughly 1,448 miles. Areas where primary BlueFlux fieldwork deployments occurred are marked with red triangles. NASA/ Nathan Marder Part of NASA’s new greenhouse-gas product is a machine-learning model that estimates gaseous flux using observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on NASA’s Aqua and Terra satellites. The MODIS instruments capture images and data of South Florida every one to two days, measuring the wavelength of sunlight reflected by the planet’s surface to produce a dataset called surface spectral reflectance.
Different surfaces — like water, vegetation, sand, or decaying organic matter — reflect different wavelengths of light. With the help of some advanced statistical algorithms, modelers can use these measurements to generate a grid of real-time flux data.
To help ensure the satellite-based model is making accurate predictions, researchers compare its outputs to measurements made on the ground. But with only a handful of flux towers in the region, ground-based flux data can be hard to come by.
To augment existing datasets, NASA researchers use a relatively new airborne technique for measuring flux. Since April 2022, NASA’s airborne science team has conducted 34 flights equipped with a payload known colloquially as “CARAFE,” short for the CARbon Airborne Flux Experiment. The CARAFE instrument measures concentrations of methane, carbon dioxide, and water vapor, generating readings that researchers combine with information about the plane’s speed and orientation to estimate rates of gaseous flux at fixed points along each flight’s path.
“This is one of the first times an instrument like this has flown over a mangrove forest anywhere in the world,” said Lola Fatoyinbo, a forest ecologist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
Erin Delaria, a research scientist at the University of Maryland, monitors live, in-flight readings made by the CARbon Airborne Flux Experiment (CARAFE), the instrument package responsible for measuring atmospheric levels of carbon dioxide, methane, and water vapor concentrations above the wetland landscape. These data — along with information like the plane’s speed, flight path, and humidity levels — allow researchers to calculate flux at fixed points along the flight’s path. NASA/ Nathan Marder Early findings from space-based flux data confirm that, in addition to acting as a sink of carbon dioxide, tropical wetlands are a significant source of methane — a greenhouse gas that traps heat roughly 80 times more efficiently than carbon dioxide. In fact, researchers estimate that Florida’s entire wetland expanse produces enough methane to offset the benefits of wetland carbon removal by about 5%.
“There are also significant differences in fluxes between healthy mangroves and degraded ones,” Fatoyinbo said. In areas where mangrove forests are suffering, say after a major hurricane, “you end up with more greenhouse gases in the atmosphere.” As wetland ecology responds to intensifying natural and human pressures, the data product will help researchers precisely monitor the impact of ecological changes on global carbon dioxide and methane levels.
‘We need this reliable science’
The Everglades today are roughly half their original size — primarily the result of a century’s worth of uninterrupted land development and wetland drainage projects. It’s difficult to quantify the impact of wetland losses at this scale. Florida’s tropical wetlands aren’t just an important reminder of the beauty and richness of the state’s natural history. They’re also a critical reservoir of atmospheric carbon and a source of drinking water for millions of South Florida residents.
“We know how valuable the wetlands are, but we need this reliable science to help translate their benefits into something that can reach people and policymakers,” said Steve Davis, chief science officer for the Everglades Foundation, a non-profit organization in Miami-Dade County that provides scientific research and advocacy in an effort to protect and restore the Everglades.
As new policies and infrastructure are designed to support Everglades restoration, researchers hope NASA’s daily flux product will help local officials evaluate their restoration efforts in real time — and adjust the course as needed.
The prototype of the product, called Daily Flux Predictions for South Florida, is slated for release this year and will be available through NASA’s Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
By Nathan Marder
NASA’s Goddard Space Flight Center, Greenbelt, Maryland
About the Author
Nathan Marder
Share
Details
Last Updated Mar 14, 2025 Location Goddard Space Flight Center Related Terms
Earth Climate Change Earth’s Atmosphere Greenhouse Gases Explore More
8 min read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture
In the Florida Everglades, NASA’s BlueFlux Campaign investigates the relationship between tropical wetlands and greenhouse…
Article
23 hours ago
5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10
Article
2 days ago
2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.