Jump to content

Bringing the Heat: Abigail Howard Leads Thermal Systems for Artemis Rovers, Tools


Recommended Posts

  • Publishers
Posted

Depending on where you stand at the lunar South Pole, you may experience temperatures of 130°F (54°C) during sunlit periods, or as low as -334°F (-203°C) in a permanently shadowed region. Keeping crews comfortable and tools and vehicles operational in such extreme temperatures is a key challenge for engineers at Johnson Space Center working on elements of NASA’s Artemis campaign.

Abigail Howard is part of that innovative team. Since joining Johnson in 2019, she has conducted thermal analysis for projects including the lunar terrain vehicle (LTV), pressurized rover, VIPER (Volatiles Investigating Polar Exploration Rover), and Gateway – humanity’s first lunar space station. Her work explores how different materials and components respond to different temperatures and how to manage heat transfer in products and structures.

She currently serves as the passive thermal system manager for the Extravehicular Activity and Human Surface Mobility Program, leading a small team of thermal analysts. Together, they provide expertise on passive thermal design, hardware, modeling, and testing to vendors and international partners that are developing rovers and tools for human exploration of the lunar surface.

A young woman in a teal blouse stands in front of a model of NASA's Volatiles Investigating Polar Exploration Rover.
Abigail Howard posing in front of a mockup of VIPER (Volatiles Investigating Polar Exploration Rover), which she worked on as a thermal analyst for three years. Image courtesy of Abigail Howard

Howard said her sudden shift from thermal analysis engineer to thermal system manager involved a steep learning curve. “Every day was like drinking through a firehose. I had to learn very quickly about systems engineering tasks, project phases, and leadership, while also learning about many new thermal approaches and designs so that I could provide good insight to project leadership and program vendors and partners,” she said. “Having a good group of senior engineers and friends to lean on and building up my team helped me get through it, but the single most important thing was not giving up. It gets easier and persistence pays off!”

Two young women stand in front of their NASA research poster at an international conference.
Abigail Howard (left) and Brittany Spivey (right) after presenting their poster at the 2022 International Symposium for Materials in the Space Environment in Leiden, the Netherlands. Image courtesy of Abigail Howard

Howard feels fortunate to have worked on many interesting projects at NASA and presented her work at several conferences. Top achievements include watching her first NASA project launch successfully on Artemis I and supporting the LTV Source Evaluation Board as the thermal representative. “Something I’m really proud of is obtaining funding for and managing a test that looked at thermal performance of dust mitigation for spacecraft radiators,” she added.

A NASA employee wearing a lab coat, hair net, and safety goggles conducts an experiment with lunar simulant on a round tray.
Abigail Howard removes lunar dust simulant from a tray holding radiator test coupons during a test to evaluate thermal performance of radiators with integrated Electrodynamic Dust Shield for dust mitigation. Image courtesy of Abigail Howard

She believes interesting and challenging work is important but says the biggest determinant to professional success and satisfaction is your team and your team lead. “Having a really great team and team lead on Gateway thermal taught me the kind of leader and teammate I want to be,” she said.

Howard encourages fellow members of the Artemis Generation to not let imposter syndrome get in their way. “Focus on the evidence of your abilities and remember that no one is in this alone,” she said. “It’s okay to ask for help.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Technicians with NASA and Lockheed Martin fitted three spacecraft adapter jettison fairing panels onto the service module of the agency’s Orion’s spacecraft. The operation completed on Wednesday, March 19, 2025, inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.
      The European-built service module is the powerhouse that will propel the spacecraft to the Moon. Its four solar array wings which were installed to its exterior in early March. The latest addition of fairing panels on Orion’s service module will protect the solar array wings, shielding them from the heat, wind, and acoustics of launch and ascent, and also help redistribute the load between Orion and the massive thrust of the SLS (Space Launch System) rocket during liftoff and ascent. Once the spacecraft is above the atmosphere, the three fairing panels will separate from the service module, allowing the wings to unfurl.
      In addition to power, the service module will provide propulsion and life support including thermal control, air, and water for the Artemis II test flight, NASA’s first mission with crew under the Artemis campaign that will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.  
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      Image credit: NASA/Glenn Benson
      View the full article
    • By NASA
      NASA’s Acting Associate Administrator for NASA’s Exploration Systems Development Mission Directorate Lori Glaze, right, and NASA Langley Acting Center Director Trina Dyal spoke at a dedication ceremony for NASA Langley’s Artemis Moon Tree at the center March 12.NASA/Ryan Hill A tree that sprouted from a seed that journeyed around the Moon and back is growing at NASA’s Langley Research Center in Hampton, Virginia.
      NASA’s Acting Associate Administrator for NASA’s Exploration Systems Development Mission Directorate Lori Glaze and NASA Langley Acting Center Director Trina Dyal spoke at a dedication ceremony for the Artemis Moon Tree, a loblolly pine, at the center March 12.
      “I wanted to quote an old Greek proverb that more or less says something like, ‘Society grows when its elders plant trees whose shade they know they shall never sit in,’ ” said Glaze. “I love that. We always talk about how we stand on the shoulders of giants. Those giants planted seeds, and we are still benefiting from the tremendous roots of those trees,”
      The young tree, only about two feet tall right now, is growing in an area between NASA Langley’s Integrated Engineering Services Building and its Measurement Systems Laboratory. The pine is surrounded by a wire plant protector. A yellow label identifies the species and the location of the U.S. Department of Agriculture Forest Services nursery where the seedling was grown — Charles E. Bessey Nursery in Halsey, Nebraska. A small plaque marks its status as a Moon Tree.
      “This, we plant here for all future generations to be inspired and to continue on the amazing legacy of what we’re doing,” said Glaze. “Our return to the lunar surface and our journey to Mars through the Artemis campaign is really going to lay the foundation for that future of exploration that right now we’re only dreaming about. With your help, through Langley and the rest of our NASA colleagues and partners, we’re going to achieve those visions.”
      NASA Langley’s Artemis Moon Tree is a loblolly pine.NASA/Ryan Hill The loblolly seed was one of many that flew on the Artemis I mission Nov. 16 to Dec. 11, 2022 — journeying 270,000 miles from Earth aboard the Orion spacecraft. NASA’s Office of STEM Engagement partnered with the Forest Services to fly the seeds aboard Artemis I as part of a national STEM Engagement and conservation education initiative. 
      In addition to loblolly pines, tree species on the flight included sycamores, sweetgums, Douglas firs, and giant sequoias. The Forest Services germinated the seeds.
      Locally, NASA Langley’s loblolly pine is one of three Artemis Moon Trees. The Virginia Living Museum in Newport News and the Virginia Zoo in Norfolk were also selected as Moon Tree stewards, and also received loblolly pines.
      The Artemis Moon Trees take inspiration from their Apollo precursors. In 1971, NASA astronaut Stuart Roosa, the command module pilot for the Apollo 14 mission and a former U.S. Department of Agriculture Forest Services smoke jumper, carried tree seeds into lunar orbit. The Apollo 14 Moon Trees were disseminated to national monuments and dignitaries around the world, with a large number distributed as part of the nation’s bicentennial event.  
      One of those Moon Trees, a sycamore, was planted at Albert W. Patrick III Elementary School in the Fox Hill area of Hampton in 1976. Sixth grader Marjorie White wrote a poem called “A Tree Lives” that won a contest to earn the honor.
      View the full article
    • By NASA
      Photo Credit: United Launch Alliance Photo Credit: United Launch Alliance Photo Credit: United Launch Alliance Photo Credit: NASA/Skip Williams NASA received the upper stage for the agency’s Artemis II SLS (Space Launch System) rocket on Mar. 4 supplied by Boeing and United Launch Alliance (ULA). Known as the interim cryogenic propulsion stage, it arrived at the Multi Payload Processing Facility (MPPF) at NASA’s Kennedy Space Center in Florida.
      The upper stage traveled to the spaceport from ULA’s Delta Operations Center at Cape Canaveral Space Force Station.
      While at the MPPF, technicians will fuel the SLS upper stage with hydrazine for its reaction control system before transporting it to the center’s Vehicle Assembly Building for integration with SLS rocket elements atop mobile launcher 1. The rocket’s solid rocket booster segments are already assembled for launch and the core stage soon will be integrated, as will the launch vehicle stage adapter. The upper stage will be mated to the adapter.
      The four-story propulsion system is powered by an RL10 engine, which will provide Orion with the boost it needs to orbit Earth twice before venturing toward the Moon.
      Photo Credit: United Launch Alliance and NASA/Skip Williams

      View the full article
    • By NASA
      Will you design the zero gravity indicator (ZGI) that accompanies the Artemis II mission around the Moon? If your design is one of the most compelling and resonates with the global community and the Artemis II astronauts, your design might fly into space aboard the Orion spacecraft and you could win US$1225. Zero gravity indicators are small items carried aboard spacecraft that provide a visual indicator for when a spacecraft has reached the weightlessness of microgravity. A plush Snoopy doll was the ZGI for the Artemis I mission. For that uncrewed mission, Snoopy floated around, tethered inside the vehicle to indicate when the Orion spacecraft had reached space. For this Challenge, we’re asking creatives from all over the world to design a new ZGI to be fabricated by NASA’s Thermal Blanket Lab and launched into space aboard the Artemis II mission. 
      Award: $23,275 in total prizes
      Open Date: March 7, 2025
      Close Date: May 27, 2025
      For more information, visit: https://www.freelancer.com/contest/Moon-Mascot-NASA-Artemis-II-ZGI-Design-Challenge-2527909/details
      View the full article
    • By NASA
      James Gentile always wanted to fly. As he prepared for an appointment to the U.S. Air Force Academy to become a pilot, life threw him an unexpected curve: a diagnosis of Type 1 diabetes. His appointment was rescinded. 

      With his dream grounded, Gentile had two choices—give up or chart a new course. He chose the latter, pivoting to aerospace engineering. If he could not be a pilot, he would design the flight simulations that trained those who could. 
      Official portrait of James Gentile. NASA/Robert Markowitz  As a human space vehicle simulation architect at NASA’s Johnson Space Center in Houston, Gentile leads the Integrated Simulation team, which supports the Crew Compartment Office within the Simulation and Graphics Branch. He oversees high-fidelity graphical simulations that support both engineering analysis and flight crew training for the Artemis campaign. 

      His team provides critical insight into human landing system vendor designs, ensuring compliance with NASA’s standards. They also develop human-in-the-loop simulations to familiarize teams with the challenges of returning humans to the lunar surface, optimizing design and safety for future space missions. 

      “I take great pride in what I have helped to build, knowing that some of the simulations I developed have influenced decisions for the Artemis campaign,” Gentile said.  

      One of the projects he is most proud of is the Human Landing System CrewCo Lander Simulation, which helps engineers and astronauts tackle the complexities of lunar descent, ascent, and rendezvous. He worked his way up from a developer to managing and leading the project, transforming a basic lunar lander simulation into a critical tool for the Artemis campaign. 

      What began as a simple model in 2020 is now a key training asset used in multiple facilities at Johnson. The simulation evaluates guidance systems and provides hands-on piloting experience for lunar landers. 
      James Gentile in the Simulation Exploration and Analysis Lab during a visit with Apollo 16 Lunar Module Pilot Charlie Duke. From left to right: Katie Tooher, Charlie Duke, Steve Carothers, Mark Updegrove, and James Gentile. NASA/James Blair Before joining Johnson as a contractor in 2018, Gentile worked in the aviation industry developing flight simulations for pilot training. Transitioning to the space sector was challenging at first, particularly working alongside seasoned professionals who had been part of the space program for years. 

      “I believe my experience in the private sector has benefited my career,” he said. “I’ve been able to bring a different perspective and approach to problem-solving that has helped me advance at Johnson.” 

      Gentile attributes his success to never being afraid to speak up and ask questions. “You don’t always have to be the smartest person in the room to make an impact,” he said. “I’ve been able to show my value through my work and by continuously teaching myself new skills.” 

      As he helps train the Artemis Generation, Gentile hopes to pass on his passion for aerospace and simulation development, inspiring others to persevere through obstacles and embrace unexpected opportunities. 
      “The most important lessons I’ve learned in my career are to build and maintain relationships with your coworkers and not to be afraid to step out of your comfort zone,” he said.  
      James Gentile with his son at NASA’s Johnson Space Center during the 2024 Bring Youth to Work Day. His journey did not go as planned, but in the end, it led him exactly where he was meant to be—helping humanity take its next giant leap. 

      “I’ve learned that the path to your goals may not always be clear-cut, but you should never give up on your dreams,” Gentile said. 
      View the full article
  • Check out these Videos

×
×
  • Create New...