Members Can Post Anonymously On This Site
Students Dive Into Robotics at Competition Supported by NASA JPL
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Thursday, Nov. 9, 2023, on the company’s 29th commercial resupply services mission for the agency to the International Space Station.SpaceX NASA invites the public to participate in virtual activities ahead of the launch of SpaceX’s 32nd commercial resupply services mission for the agency. NASA and SpaceX are targeting launch at 4:15 a.m. EDT Monday, April 21, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
In addition to food, supplies, and equipment for the crew, the SpaceX Dragon spacecraft will deliver several new experiments, including a demonstration of refined maneuvers for free-floating robots. Dragon also carries an enhanced air quality monitoring system that could protect crew members on exploration missions to the Moon and Mars, and two atomic clocks to examine fundamental physics concepts, such as relativity, and test worldwide synchronization of precision timepieces.
The public can register to be virtual launch guests and receive curated mission resources, interactive opportunities, timely launch updates, and a mission-specific collectible stamp for their virtual guest passports delivered straight to their inbox after liftoff.
A new way to collect and share passport stamps has arrived! Receive one for your virtual guest passport and another that is sized perfectly for sharing. Don’t have a passport yet? Print one here and start collecting!
Learn more about NASA research and activities on the International Space Station at:
https://www.nasa.gov/station.
Share
Details
Last Updated Apr 16, 2025 EditorJason Costa Related Terms
Kennedy Space Center Commercial Resupply Get Involved International Space Station (ISS) ISS Research SpaceX Commercial Resupply Virtual Guest Program Explore More
4 min read Atomic Clock and Plant DNA Research Launching Aboard NASA’s SpaceX CRS-32 Mission
NASA’s SpaceX 32nd commercial resupply services mission, scheduled to lift off from the agency’s Kennedy…
Article 1 day ago 1 min read Why Do We Grow Plants in Space?
Article 1 day ago 4 min read GLOBE Mission Earth Supports Career Technical Education
The NASA Science Activation program’s GLOBE Mission EARTH (GME) project is forging powerful connections between…
Article 5 days ago Keep Exploring Discover Related Topics
NASA’s SpaceX Crew-10
The 11th flight of the Dragon spacecraft with people as part of NASA's Commercial Crew Program launched March 14, 2025,…
International Space Station (ISS) (A)
The Ocean and Climate Change
Our ocean is changing. With 70 percent of the planet covered in water, the seas are important drivers of the…
Our Solar System
Overview Our planetary system is located in an outer spiral arm of the Milky Way galaxy. We call it the…
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A digital rendering of the baseline configuration for Blue Origin’s free-flying commercial space station, Orbital Reef, which continues to be developed as part of a Space Act Agreement with NASA.Blue Origin A NASA-supported commercial space station, Blue Origin’s Orbital Reef, recently completed a human-in-the-loop testing milestone as the agency works toward developing commercial space stations in low Earth orbit.
The human-in-the-loop test scenarios utilized individual participants or small groups to perform day-in-the-life walkthroughs in life-sized mockups of major station components. Participants provided feedback while simulating microgravity operations, including cargo transfer, trash transfer, stowage, and worksite assessments.
“Human-in-the-loop and iterative testing are essential to inform key decisions and mitigate risks to crew health and safety,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “NASA’s insight into our partner’s testing milestones enables the agency to gain insight into partner progress and share expertise, ultimately improving industry and NASA’s mission success.”
Test subjects in the mockup for Blue Origin’s free-flying commercial space station, Orbital Reef, during the human-in-the-loop test.Blue Origin The milestone is part of a NASA Space Act Agreement originally awarded to Blue Origin in 2021 and focused on the design progress for multiple worksites, floors, and translation paths within the station. This ensures a commercial station can support human life, which is critical to advancing scientific research in a microgravity environment and maintaining a continuous human presence in low Earth orbit.
The test evaluated various aspects of Orbital Reef’s environment to provide information needed for the space station’s design. Assessment areas included the private crew quarters, dining area, lavatory, research laboratory, and berthing and docking hatches.
To facilitate the test, Blue Origin built stand-alone mockups of each floor in the internally developed habitable module. These mockups will be iteratively updated as the fidelity of components and subsystems matures, enabling future human-in-the-loop testing.
The research team’s observations will be used to provide design recommendations for worksite volumes, layouts, restraint and mobility aid layouts, usability and workload, and positioning of interfaces and equipment.
NASA supports the design and development of multiple commercial space stations, including Orbital Reef, through funded and unfunded agreements. The current design and development phase will soon be followed by the procurement of services from one or more companies, where NASA aims to be one of many customers for low Earth orbit stations.
NASA is committed to maintaining a continuous human presence in low Earth orbit as the agency transitions from the International Space Station to commercial space stations. For nearly 25 years, NASA has supported a continuous presence in low Earth orbit aboard the space station and will continue to build on the agency’s extensive human spaceflight experience to advance future scientific and exploration goals.
For more information about commercial space stations, visit:
www.nasa.gov/commercialspacestations
A test subject in the mockup for Blue Origin’s free-flying commercial space station, Orbital Reef, during the human-in-the-loop test.Blue Origin Keep Exploring Discover More Topics
Low Earth Orbit Economy
Commercial Space
Commercial Crew Program
Humans In Space
View the full article
-
By NASA
This S-3 supported vital flight research by donating parts to its sister plane, another S3-B Viking that was retired in 2021.Credit: NASA/Jordan Cochran After supporting the center’s research missions for more than a decade, NASA’s S-3B Viking aircraft is moving on from NASA’s Glenn Research Center in Cleveland to begin a new and honorable assignment.
The aircraft is heading to the National POW/MIA Memorial and Museum in Jacksonville, Florida, where it will be on display, honoring all Prisoners of War (POW), those Missing in Action (MIA), and the families who seek the return of their loved ones. The museum gives visitors a place of solace to reflect, learn, and hear stories about America’s POW and MIA service members through exhibits and events.
A team of volunteers, many of whom are veterans, converged to disassemble an S-3B Viking at NASA’s Glenn Research Center in Cleveland so it could be transported by truck to the National Pow/MIA Memorial and Museum in Jacksonville, Florida. Credit: NASA/Lillianne Hammel “We are honored to be part of it,” said JD Demers, chief of Aircraft Operations at NASA Glenn. “Moving the S-3 is a win-win for everybody. The museum gets an aircraft in beautiful shape, and our S-3 gets to continue living a meaningful life.”
Originally designed by Lockheed Martin as an anti-submarine warfare aircraft, NASA’s S-3B Viking will travel south to its new museum home, which is located at the former Naval Air Station Cecil Field where S-3B Vikings once flew. It will be displayed with a plaque recognizing the 54 service members who perished during S-3 flight missions.
NASA’s JD Demers poses with National POW/MIA Memorial and Museum’s Ed Turner in front of NASA’s S-3B Viking aircraft. Credit: NASA/Jordan Cochran “It’s really fortunate for us that this S-3 has such a well-kept, beautiful airframe that we can use as part of this plaza,” said Ed Turner, executive director of the National POW/MIA Memorial and Museum. “Cecil Field was the East Coast home for the S-3B Vikings, so we are proud to have it for display here as one of Cecil’s legacy aircraft.”
Behind the scenes, this S-3 supported vital NASA flight research by donating parts to its sister plane, another S3-B Viking that was retired in 2021. Through the donation of its parts, the S-3 contributed to communications research in advanced air mobility and monitoring of algal bloom growth in Lake Erie.
“Having this aircraft added an extra 10 years of life to its sister plane,” Demers said. “Those 10 years were vital for research. This plane allowed us to keep flying that aircraft after the Navy retired the S-3B Vikings in 2009. We wouldn’t have been able to find parts.”
NASA prepares its S-3B Viking for its journey to the National POW/MIA Memorial and Museum in Jacksonville, Florida.Credit: NASA/Sara Lowthian-Hanna The U.S. Navy flew S-3 Vikings primarily out of three locations: North Island Naval Air Station, Naval Air Station Cecil Field, and Naval Air Station Jacksonville. There were S-3B Vikings in all locations except Jacksonville, until now.
“There are three bases in three locations that used to fly S-3s, and now each area has an S-3 as part of its display,” Demers said. “It belongs there. It’s going back to its original home.”
Explore More
3 min read NASA Supports Wildland Fire Technology Demonstration
Article 2 weeks ago 4 min read NASA Makes Progress on Advanced Drone Safety Management System
Article 2 weeks ago 5 min read NASA History News and Notes–Spring 2025
Article 2 weeks ago View the full article
-
By NASA
Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are developing the first space-based quantum sensor for measuring gravity. Supported by NASA’s Earth Science Technology Office (ESTO), this mission will mark a first for quantum sensing and will pave the way for groundbreaking observations of everything from petroleum reserves to global supplies of fresh water.
A map of Earth’s gravity. Red indicates areas of the world that exert greater gravitational pull, while blue indicates areas that exert less. A science-grade quantum gravity gradiometer could one day make maps like this with unprecedented accuracy. Image Credit: NASA Earth’s gravitational field is dynamic, changing each day as geologic processes redistribute mass across our planet’s surface. The greater the mass, the greater the gravity.
You wouldn’t notice these subtle changes in gravity as you go about your day, but with sensitive tools called gravity gradiometers, scientists can map the nuances of Earth’s gravitational field and correlate them to subterranean features like aquifers and mineral deposits. These gravity maps are essential for navigation, resource management, and national security.
“We could determine the mass of the Himalayas using atoms,” said Jason Hyon, chief technologist for Earth Science at JPL and director of JPL’s Quantum Space Innovation Center. Hyon and colleagues laid out the concepts behind their Quantum Gravity Gradiometer Pathfinder (QGGPf) instrument in a recent paper in EPJ Quantum Technology.
Gravity gradiometers track how fast an object in one location falls compared to an object falling just a short distance away. The difference in acceleration between these two free-falling objects, also known as test masses, corresponds to differences in gravitational strength. Test masses fall faster where gravity is stronger.
QGGPf will use two clouds of ultra-cold rubidium atoms as test masses. Cooled to a temperature near absolute zero, the particles in these clouds behave like waves. The quantum gravity gradiometer will measure the difference in acceleration between these matter waves to locate gravitational anomalies.
Using clouds of ultra-cold atoms as test masses is ideal for ensuring that space-based gravity measurements remain accurate over long periods of time, explained Sheng-wey Chiow, an experimental physicist at JPL. “With atoms, I can guarantee that every measurement will be the same. We are less sensitive to environmental effects.”
Using atoms as test masses also makes it possible to measure gravity with a compact instrument aboard a single spacecraft. QGGPf will be around 0.3 cubic yards (0.25 cubic meters) in volume and weigh only about 275 pounds (125 kilograms), smaller and lighter than traditional space-based gravity instruments.
Quantum sensors also have the potential for increased sensitivity. By some estimates, a science-grade quantum gravity gradiometer instrument could be as much as ten times more sensitive at measuring gravity than classical sensors.
The main purpose of this technology validation mission, scheduled to launch near the end of the decade, will be to test a collection of novel technologies for manipulating interactions between light and matter at the atomic scale.
“No one has tried to fly one of these instruments yet,” said Ben Stray, a postdoctoral researcher at JPL. “We need to fly it so that we can figure out how well it will operate, and that will allow us to not only advance the quantum gravity gradiometer, but also quantum technology in general.”
This technology development project involves significant collaborations between NASA and small businesses. The team at JPL is working with AOSense and Infleqtion to advance the sensor head technology, while NASA’s Goddard Space Flight Center in Greenbelt, Maryland is working with Vector Atomic to advance the laser optical system.
Ultimately, the innovations achieved during this pathfinder mission could enhance our ability to study Earth, and our ability to understand distant planets and the role gravity plays in shaping the cosmos. “The QGGPf instrument will lead to planetary science applications and fundamental physics applications,” said Hyon.
To learn more about ESTO visit: https://esto.nasa.gov
Share
Details
Last Updated Apr 15, 2025 Editor NASA Science Editorial Team Contact Gage Taylor gage.taylor@nasa.gov Location NASA Goddard Space Flight Center Related Terms
Science-enabling Technology Earth Science Technology Office Technology Highlights Explore More
5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Article
4 weeks ago
4 min read Novel Metasurface Optical Element Could Shed New Light on Atmospheric Aerosols
Article
1 month ago
5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
Article
2 months ago
View the full article
-
By NASA
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA has announced the winners of it’s 31st Human Exploration Rover Challenge . The annual engineering competition – one of the agency’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. NASA NASA has announced the winning student teams in the 2025 Human Exploration Rover Challenge. This year’s competition challenged teams to design, build, and test a lunar rover powered by either human pilots or remote control. In the human-powered division, Parish Episcopal School in Dallas, Texas, earned first place in the high school division, and the Campbell University in Buies Creek, North Carolina, captured the college and university title. In the remote-control division, Bright Foundation in Surrey, British Columbia, Canada, earned first place in the middle and high school division, and the Instituto Tecnologico de Santa Domingo in the Dominican Republic, captured the college and university title.
The annual engineering competition – one of NASA’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. The complete list of 2025 award winners is provided below:
Human-Powered High School Division
First Place: Parish Episcopal School, Dallas, Texas Second Place: Ecambia High School, Pensacola, Florida Third Place: Centro Boliviano Americano – Santa Cruz, Bolivia Human-Powered College/University Division
First Place: Campbell University, Buies Creek, North Carolina Second Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Third Place: University of Alabama in Huntsville Remote-Control Middle School/High School Division
First Place: Bright Foundation, Surrey, British Columbia, Canada Second Place: Assumption College, Brangrak, Bangkok, Thailand Third Place: Erie High School, Erie, Colorado Remote-Control College/University Division
First Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Second Place: Campbell University, Buies Creek, North Carolina Third Place: Tecnologico de Monterey – Campus Cuernvaca, Xochitepec, Morelos, Mexico Ingenuity Award
Queen’s University, Kingston, Ontario, Canada Phoenix Award
Human-Powered High School Division: International Hope School of Bangladesh, Uttara, Dhaka, Bangladesh College/University Division: Auburn University, Auburn, Alabama Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Southwest Oklahoma State University, Weatherford, Oklahoma Task Challenge Award
Remote-Control Middle School/High School Division: Assumption College, Bangrak, Bangkok, Thailand College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Project Review Award
Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: Campbell University, Buies Creek, North Carolina Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Featherweight Award
Campbell University, Buies Creek, North Carolina Safety Award
Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: University of Alabama in Huntsville Crash and Burn Award
Universidad de Monterrey, Nuevo Leon, Mexico (Human-Powered Division) Team Spirit Award
Instituto Tecnologico de Santo Domingo, Dominican Republic (Human-Powered Division) STEM Engagement Award
Human-Powered High School Division: Albertville Innovation School, Albertville, Alabama College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Remote-Control Middle School/High School Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic College/University Division: Tecnologico de Monterrey, Nuevo Leon, Mexico Social Media Award
Human-Powered High School Division: International Hope School of Bagladesh, Uttara, Dhaka, Bangladesh College/University Division: Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Remote-Control Middle School/High School Division: ATLAS SkillTech University, Mumbai, Maharashtra, India College/University Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic Most Improved Performance Award
Human-Powered High School Division: Space Education Institute, Leipzig, Germany College/University Division: Purdue University Northwest, Hammond, Indiana Remote-Control Middle School/High School Division: Erie High School, Erie, Colorado College/University Division: Campbell University, Buies Creek, North Carolina Pit Crew Award
Human-Powered High School Division: Academy of Arts, Career, and Technology, Reno, Nevada College/University Division: Queen’s University, Kingston, Ontario, Canada Artemis Educator Award
Fabion Diaz Palacious from Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Rookie of the Year
Deira International School, Dubai, United Arab Emirates
More than 500 students with 75 teams from around the world participated in the 31st year of the competition. Participating teams represented 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations. Teams were awarded points based on navigating a half-mile obstacle course, conducting mission-specific task challenges, and completing multiple safety and design reviews with NASA engineers.
NASA expanded the 2025 challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate.
“This student design challenge encourages the next generation of scientists and engineers to engage in the design process by providing innovative concepts and unique perspectives,” said Vemitra Alexander, who leads the challenge for NASA’s Office of STEM Engagement at Marshall. “This challenge also continues NASA’s legacy of providing valuable experiences to students who may be responsible for planning future space missions, including crewed missions to other worlds.”
The rover challenge is one of NASA’s eight Artemis Student Challenges reflecting the goals of the Artemis campaign, which will land Americans on the Moon while establishing a long-term presence for science and exploration, preparing for future human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics.
The competition is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. Since its inception in 1994, more than 15,000 students have participated – with many former students now working at NASA, or within the aerospace industry.
To learn more about the Human Exploration Rover Challenge, please visit:
https://www.nasa.gov/roverchallenge/home/index.html
News Media Contact
Taylor Goodwin
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
taylor.goodwin@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.