Jump to content

New Modeling Assesses Age of Next Target Asteroid for NASA’s Lucy


Recommended Posts

  • Publishers
Posted

Although NASA’s Lucy spacecraft’s upcoming encounter with the asteroid Donaldjohanson is primarily a mission rehearsal for later asteroid encounters, a new paper suggests that this small, main belt asteroid may have some surprises of its own. New modeling indicates that Donaldjohanson may have been formed about 150 million years ago when a larger parent asteroid broke apart; its orbit and spin properties have undergone significant evolution since.

Comparison graphic of asteroid Donaldjohanson, shown as a blue oval on the right, to other asteroids. Asteroid Steins is shown on the left and is a similar size to Donaldjohanson. Dinkinesh, Bennu, and Ryugu are much smaller and displayed in that order from left to right below.
This artist’s concept compares the approximate size of Lucy’s next asteroid target, Donaldjohanson, to the smallest main belt asteroids previously visited by spacecraft — Dinkinesh, visited by Lucy in November 2023, and Steins — as well as two recently explored near-Earth asteroids, Bennu and Ryugu
Credits: SwRI/ESA/OSIRIS/NASA/Goddard/Johns Hopkins APL/NOIRLab/University of Arizona/JAXA/University of Tokyo & Collaborators

When the Lucy spacecraft flies by this approximately three-mile-wide space rock on April 20, 2025, the data collected could provide independent insights on such processes based on its shape, surface geology and cratering history.

“Based on ground-based observations, Donaldjohanson appears to be a peculiar object,” said Simone Marchi, deputy principal investigator for Lucy of Southwest Research Institute in Boulder, Colorado and lead author of the research published in The Planetary Science Journal. “Understanding the formation of Donaldjohanson could help explain its peculiarities.”

“Data indicates that it could be quite elongated and a slow rotator, possibly due to thermal torques that have slowed its spin over time,” added David Vokrouhlický, a professor at the Charles University, Prague, and co-author of the research.

Lucy’s target is a common type of asteroid, composed of silicate rocks and perhaps containing clays and organic matter. The new paper indicates that Donaldjohanson is a likely member of the Erigone collisional asteroid family, a group of asteroids on similar orbits that was created when a larger parent asteroid broke apart. The family originated in the inner main belt not very far from the source regions of the near-Earth asteroids Bennu and Ryugu, recently visited respectively by NASA’s OSIRIS-REx and JAXA’s (Japan Aerospace Exploration Agency’s) Hayabusa2 missions.

“We can hardly wait for the flyby because, as of now, Donaldjohanson’s characteristics appear very distinct from Bennu and Ryugu. Yet, we may uncover unexpected connections,” added Marchi.

“It’s exciting to put together what we’ve been able to glean about this asteroid,” said Keith Noll, Lucy project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But Earth-based observing and theoretical models can only take us so far – to validate these models and get to the next level of detail we need close-up data. Lucy’s upcoming flyby will give us that.”

Donaldjohanson is named for the paleontologist who discovered Lucy, the fossilized skeleton of an early hominin found in Ethiopia in 1974, which is how the Lucy mission got its name. Just as the Lucy fossil provided unique insights into the origin of humanity, the Lucy mission promises to revolutionize our knowledge of the origin of humanity’s home world. Donaldjohanson is the only named asteroid so far to be visited while its namesake is still living.

“Lucy is an ambitious NASA mission, with plans to visit 11 asteroids in its 12-year mission to tour the Trojan asteroids that are located in two swarms leading and trailing Jupiter,” said SwRI’s Dr. Hal Levison, mission principal investigator at the Boulder, Colorado branch of Southwest Research Institute in San Antonio, Texas. “Encounters with main belt asteroids not only provide a close-up view of those bodies but also allow us to perform engineering tests of the spacecraft’s innovative navigation system before the main event to study the Trojans. These relics are effectively fossils of the planet formation process, holding vital clues to deciphering the history of our solar system.”

Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the agency’s Science Mission Directorate in Washington.

By Deb Schmid and Katherine Kretke, Southwest Research Institute

Media Contact:
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Mar 17, 2025
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A super pressure balloon with the EUSO-2 payload is prepared for launch from Wānaka, New Zealand, during NASA’s campaign in 2023.NASA/Bill Rodman NASA’s Scientific Balloon Program has returned to Wānaka, New Zealand, for two scheduled flights to test and qualify the agency’s super pressure balloon technology. These stadium-sized, heavy-lift balloons will travel the Southern Hemisphere’s mid-latitudes for planned missions of 100 days or more. 
      Launch operations are scheduled to begin in late March from Wānaka Airport, NASA’s dedicated launch site for mid-latitude, ultra long-duration balloon missions.  
      “We are very excited to return to New Zealand for this campaign to officially flight qualify the balloon vehicle for future science investigations,” said Gabriel Garde, chief of NASA’s Balloon Program Office at the agency’s Wallops Flight Facility in Virginia. “Our dedicated team both in the field and at home has spent years in preparation for this opportunity, and it has been through their hard work, fortitude, and passion that we are back and fully ready for the upcoming campaign.” 
      While the primary flight objective is to test and qualify the super pressure balloon technology, the flights will also host science missions and technology demonstrations. The High-altitude Interferometer Wind Observation (HIWIND), led by High Altitude Observatory, National Center for Atmospheric Research in Boulder, Colorado, will fly as a mission of opportunity on the first flight. The HIWIND payload will measure neutral wind in the part of Earth’s atmosphere called the thermosphere. Understanding these winds will help scientists predict changes in the ionosphere, which can affect communication and navigation systems. The second flight will support several piggyback missions of opportunity, or smaller payloads, including: 
      Compact Multichannel Imaging Camera (CoMIC), led by University of Massachusetts Lowell, will study and measure how Earth’s atmosphere scatters light at high altitudes and will measure airglow, specifically the red and green emissions.   High-altitude Infrasound from Geophysical Sources (HIGS), led by NASA’s Jet Propulsion Laboratory and Sandia National Laboratories, will measure atmospheric pressure to collect signals of geophysical events on Earth such as earthquakes and volcanic eruptions. These signals will help NASA as it develops the ability to measure seismic activity on Venus from high-altitude balloons.    Measuring Ocean Acoustics North of Antarctica (MOANA), led by Sandia National Laboratories and Swedish Institute of Space Physics, aims to capture sound waves in Earth’s stratosphere with frequencies below the limit of human hearing. NASA’s Balloon Program Office at the agency’s Wallops Flight Facility is leading two technology demonstrations on the flight. The INterim Dynamics Instrumentation for Gondolas (INDIGO) is a data recorder meant to measure the shock of the gondola during the launch, termination, and landing phases of flight. The Sensor Package for Attitude, Rotation, and Relative Observable Winds – 7 (SPARROW-7), will demonstrate relative wind measurements using an ultrasonic device designed for the balloon float environment that measures wind speed and direction. NASA’s 18.8-million-cubic-foot (532,000-cubic-meter) helium-filled super pressure balloon, when fully inflated, is roughly the size of Forsyth-Barr Stadium in Dunedin, New Zealand, which has a seating capacity of more than 35,000. The balloon will float at an altitude of around 110,000 feet (33.5 kilometers), more than twice the altitude of a commercial airplane. Its flight path is determined by the speed and direction of wind at its float altitude.  
      The balloon is a closed system design to prevent gas release. It offers greater stability at float altitude with minimum altitude fluctuations during the day to night cycle compared to a zero pressure balloon. This capability will enable future missions to affordably access the near-space environment for long-duration science and technology research from the Southern Hemisphere’s mid-latitudes, including nighttime observations. 
      The public is encouraged to follow real-time tracking of the balloons’ paths as they circle the globe on the agency’s Columbia Scientific Balloon Facility website. Launch and tracking information will be shared across NASA’s social media platforms and the NASA Wallops blog.
      NASA’s return to Wānaka marks the sixth super pressure balloon campaign held in New Zealand since the agency began balloon operations there in 2015. The launches are conducted in collaboration with the Queenstown Airport Corporation, Queenstown Lake District Council, New Zealand Space Agency, and Airways New Zealand.  
      “We are especially grateful to our local hosts, partners, and collaborators who have been with us from the beginning and are critical to the success of these missions and this campaign,” said Garde. 
      NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 16 flights each year from launch sites worldwide. Peraton, which operates NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, provides mission planning, sustaining engineering services, and field operations for NASA’s scientific balloon program. The Columbia team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division.  
      For more information on NASA’s Scientific Balloon Program, visit:
      www.nasa.gov/scientificballoons.
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Mar 14, 2025 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.govLocationWallops Flight Facility Related Terms
      Scientific Balloons Astrophysics Astrophysics Division Goddard Space Flight Center Wallops Flight Facility Explore More
      7 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
      Article 3 months ago 7 min read NASA to Launch 8 Scientific Balloons From New Mexico
      Article 7 months ago 5 min read NASA’s EXCITE Mission Prepared for Scientific Balloon Flight
      Editor’s note: EXCITE successfully launched at 9:22 a.m. EDT (7:22 a.m. MDT) Saturday, Aug. 31.…
      Article 7 months ago View the full article
    • By European Space Agency
      The European Space Agency is releasing the first catalogue of astronomical data from the Euclid space telescope, including three new enormous image mosaics with zoom-ins. Follow the reveal live on Wednesday 19 March at 11:00 BST / 12:00 CET.
      View the full article
    • By European Space Agency
      While performing yesterday’s flyby of Mars, ESA’s Hera mission for planetary defence made the first use of its payload for scientific purposes beyond Earth and the Moon. Activating a trio of instruments, Hera imaged the surface of the red planet as well as the face of Deimos, the smaller and more mysterious of Mars’s two moons.
      View the full article
    • By European Space Agency
      The European Space Agency has unveiled the ESA Space HPC, a new resource for space in Europe. ESA Director General Josef Aschbacher was joined by ESA Council Chair Renato Krpoun and ASI president Teodoro Valente to cut the ribbon at ESA’s establishment in Italy, ESRIN.  
      View the full article
    • By European Space Agency
      Video: 00:01:36 On  Wednesday 12 March 2025 ESA’s Hera spacecraft for planetary defence performs a flyby of Mars. The gravity of the red planet shifts the spacecraft’s trajectory towards its final destination of the Didymos binary asteroid system, shortening its trip by months and saving substantial fuel.
      Watch the livestream release of images from Hera’s flyby by the mission’s science team on Thursday 13 March, starting at 11:50 CET!
      Hera comes to around 5000 km from the surface of Mars during its flyby. It will also image Deimos, the smaller of Mars’s two moons, from a minimum 1000 km away (while venturing as close as 300 km). Hera will also image Mars’s larger moon Phobos as it begins to move away from Mars.
      Launched on 7 October 2024, Hera on its way to visit the first asteroid to have had its orbit altered by human action. By gathering close-up data about the Dimorphos asteroid, which was impacted by NASA’s DART spacecraft in 2022, Hera will help turn asteroid deflection into a well understood and potentially repeatable technique.
      Hera will reach the Didymos asteroid and its Dimorphos moonlet in December 2026. By gathering crucial missing data during its close-up crash scene investigation, Hera will turn the kinetic impact method of asteroid deflection into a well understood technique that could potentially be used for real when needed.
      View the full article
  • Check out these Videos

×
×
  • Create New...