Jump to content

NASA to Provide Live Coverage of Crew-9 Return, Splashdown


Recommended Posts

  • Publishers
Posted
NASA's SpaceX Crew-9 members pose together for a portrait inside the vestibule between the International Space Station and the SpaceX Dragon crew spacecraft. Clockwise from left, are NASA astronauts Butch Wimore, Nick Hague, and Suni Williams, and Roscosmos cosmonaut Aleksandr Gorbunov.
NASA’s SpaceX Crew-9 members pose together for a portrait inside the vestibule between the International Space Station and the SpaceX Dragon crew spacecraft. Clockwise from left, are NASA astronauts Butch Wilmore, Nick Hague, and Suni Williams, and Roscosmos cosmonaut Aleksandr Gorbunov.
NASA

NASA will provide live coverage of the agency’s SpaceX Crew-9 return to Earth from the International Space Station, beginning with Dragon spacecraft hatch closure preparations at 10:45 p.m. EDT Monday, March 17.

NASA and SpaceX met on Sunday to assess weather and splashdown conditions off Florida’s coast for the return of the agency’s Crew-9 mission from the International Space Station. Mission managers are targeting an earlier Crew-9 return opportunity based on favorable conditions forecasted for the evening of Tuesday, March 18. The updated return target continues to allow the space station crew members time to complete handover duties while providing operational flexibility ahead of less favorable weather conditions expected for later in the week.

NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, as well as Roscosmos cosmonaut Aleksandr Gorbunov, are completing a long-duration science expedition aboard the orbiting laboratory and will return time-sensitive research to Earth.

Mission managers will continue monitoring weather conditions in the area, as Dragon’s undocking depends on various factors, including spacecraft readiness, recovery team readiness, weather, sea states, and other factors. NASA and SpaceX will confirm the specific splashdown location closer to the Crew-9 return.

Watch Crew-9 return activities on NASA+. Learn how to watch NASA content through a variety of additional platforms, including social media. For schedule information, visit:

https://www.nasa.gov/live

For Crew-9 return, NASA’s live operations coverage is as follows (all times Eastern and subject to change based on real-time operations):

Monday, March 17

10:45 p.m. – Hatch closing coverage begins on NASA+

Tuesday, March 18

12:45 a.m. – Undocking coverage begins on NASA+

1:05 a.m. – Undocking

Following the conclusion of undocking coverage, NASA will switch to audio only.

Pending weather conditions at the splashdown sites, continuous coverage will resume on March 18 on NASA+ prior to the start of deorbit burn.

4:45 p.m. – Return coverage begins on NASA+

5:11 p.m. – Deorbit burn (time is approximate)

5:57 p.m. – Splashdown (time is approximate)

7:30 p.m. – Return-to-Earth media conference on NASA+, with the following participants:

  • Joel Montalbano, deputy associate administrator, NASA’ Space Operations Mission Directorate
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Jeff Arend, manager for systems engineering and integration, NASA’s International Space Station, NASA’s International Space Station Office
  • Sarah Walker, director, Dragon Mission Management, SpaceX

To participate in the briefing media must contact the newsroom at NASA Johnson Space Center in Houston  by 5 p.m., March 17, at: jsccommu@mail.nasa.gov or 281-483-5111. To ask questions, media must dial in no later than 10 minutes before the start of the call. The agency’s media credentialing policy is available online.

Find full mission coverage, NASA’s commercial crew blog, and more information about the Crew-9 mission at:

https://www.nasa.gov/commercialcrew

-end-

Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Kenna Pell / Sandra Jones
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov

Steve Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov

Share

Details

Last Updated
Mar 16, 2025
Editor
Jennifer M. Dooren

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Artemis II SLS (Space Launch System) rocket poised to send four astronauts from Earth on a journey around the Moon next year may appear identical to the Artemis I SLS rocket. On closer inspection, though, engineers have upgraded the agency’s Moon rocket inside and out to improve performance, reliability, and safety.
      SLS flew a picture perfect first mission on the Artemis I test flight, meeting or exceeding parameters for performance, attitude control, and structural stability to an accuracy of tenths or hundredths of a percent as it sent an uncrewed Orion thousands of miles beyond the Moon. It also returned volumes of invaluable flight data for SLS engineers to analyze to drive improvements.
      Teams with NASA’s Exploration Ground Systems integrate the SLS (Space Launch System) Moon rocket with the solid rocket boosters onto mobile launcher 1 inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in March 2025. Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.NASA/Frank Michaux For Artemis II, the major sections of SLS remain unchanged – a central core stage, four RS-25 main engines, two five-segment solid rocket boosters, the ICPS (interim cryogenic propulsion stage), a launch vehicle stage adapter to hold the ICPS, and an Orion stage adapter connecting SLS to the Orion spacecraft. The difference is in the details.
      “While we’re proud of our Artemis I performance, which validated our overall design, we’ve looked at how SLS can give our crews a better ride,” said John Honeycutt, NASA’s SLS Program manager. “Some of our changes respond to specific Artemis II mission requirements while others reflect ongoing analysis and testing, as well as lessons learned from Artemis I.”
      Engineers have outfitted the ICPS with optical targets that will serve as visual cues to the astronauts aboard Orion as they manually pilot Orion around the upper stage and practice maneuvers to inform docking operations for Artemis III.
      The Artemis II rocket includes an improved navigation system compared to Artemis I.  Its communications capability also has been improved by repositioning antennas on the rocket to ensure continuous communications with NASA ground stations and the U.S. Space Force’s Space Launch Delta 45 which controls launches along the Eastern Range.
      An emergency detection system on the ICPS allows the rocket to sense and respond to problems and notify the crew. The flight safety system adds a time delay to the self-destruct system to allow time for Orion’s escape system to pull the capsule to safety in event of an abort.
      The separation motors that push the solid rocket booster away after the elements are no longer needed were angled an additional 15 degrees to increase separation clearance as the rest of the rocket speeds by.
      Additionally, SLS will jettison the spent boosters four seconds earlier during Artemis II ascent than occurred during Artemis I. Dropping the boosters several seconds closer to the end of their burn will give engineers flight data to correlate with projections that shedding the boosters several seconds sooner will yield approximately 1,600 pounds of payload to Earth orbit for future SLS flights.
      Engineers have incorporated additional improvements based on lessons learned from Artemis I. During the Artemis I test flight the SLS rocket experienced higher-than-expected vibrations near the solid rocket booster attachment points that was caused by unsteady airflow.
      To steady the airflow, a pair of six-foot-long strakes flanking each booster’s forward connection points on the SLS intertank will smooth vibrations induced by airflow during ascent, and the rocket’s electronics system was requalified to endure higher levels of vibrations.
      Engineers updated the core stage power distribution control unit, mounted in the intertank, which controls power to the rocket’s other electronics and protects against electrical hazards.
      These improvements have led to an enhanced rocket to support crew as part of NASA’s Golden Age of innovation and exploration.
      The approximately 10-day Artemis II test flight is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars.
      https://www.nasa.gov/artemis
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.631.9126
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2025 EditorLee MohonContactJonathan DealLocationMarshall Space Flight Center Related Terms
      Space Launch System (SLS) Artemis Artemis 2 Exploration Ground Systems Marshall Space Flight Center Explore More
      2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 6 min read Artemis II Crew to Advance Human Spaceflight Research
      Article 5 days ago 9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      NASA’s IMAP Mission to Study Boundaries of Our Home in Space
      Summary
      NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, will launch no earlier than Tuesday, Sept. 23 to study the heliosphere, a giant shield created by the Sun. The mission will chart the heliosphere’s boundaries to help us better understand the protection it offers life on Earth and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of the solar wind, data that can be used to improve models predicting the impacts of space weather ranging from power-line disruptions to loss of satellites, to the health of voyaging astronauts. Space is a dangerous place — one that NASA continues to explore for the benefit of all. It’s filled with radiation and high-energy particles that can damage DNA and circuit boards alike. Yet life endures in our solar system in part because of the heliosphere, a giant bubble created by the Sun that extends far beyond Neptune’s orbit.
      With NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, launching no earlier than Tuesday, Sept. 23, humanity is set to get a better look at the heliosphere than ever before. The mission will chart the boundaries of the heliosphere to help us better understand the protection it offers and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of space weather conditions essential for the Artemis campaign and deep space travel. 
      “With IMAP, we’ll push forward the boundaries of knowledge and understanding of our place not only in the solar system, but our place in the galaxy as a whole,” said Patrick Koehn, IMAP program scientist at NASA Headquarters in Washington. “As humanity expands and explores beyond Earth, missions like IMAP will add new pieces of the space weather puzzle that fills the space between Parker Solar Probe at the Sun and the Voyagers beyond the heliopause.”
      Download this video from NASA’s Scientific Visualization Studio.
      Domain of Sun
      The heliosphere is created by the constant outflow of material and magnetic fields from the Sun called the solar wind. As the solar system moves through the Milky Way, the solar wind’s interaction with interstellar material carves out the bubble of the heliosphere. Studying the heliosphere helps scientists understand our home in space and how it came to be habitable.
      As a modern-day celestial cartographer, IMAP will map the boundary of our heliosphere and study how the heliosphere interacts with the local galactic neighborhood beyond. It will chart the vast range of particles, dust, ultraviolet light, and magnetic fields in interplanetary space, to investigate the energization of charged particles from the Sun and their interaction with interstellar space.
      The IMAP mission builds on NASA’s Voyager and IBEX (Interstellar Boundary Explorer) missions. In 2012 and 2018, the twin Voyager spacecraft became the first human-made objects to cross the heliosphere’s boundary and send back measurements from interstellar space. It gave scientists a snapshot of what the boundary looked like and where it was in two specific locations. While IBEX has been mapping the heliosphere, it has left many questions unanswered. With 30 times higher resolution and faster imaging, IMAP will help fill in the unknowns about the heliosphere.
      Energetic neutral atoms: atomic messengers from our heliosphere’s edge
      Of IMAP’s 10 instruments, three will investigate the boundaries of the heliosphere by collecting energetic neutral atoms, or ENAs. Many ENAs originate as positively charged particles released by the Sun but after racing across the solar system, these particles run into particles in interstellar space. In this collision, some of those positively charged particles become neutral, and an energetic neutral atom is born. The interaction also redirects the new ENAs, and some ricochet back toward the Sun.
      Charged particles are forced to follow magnetic field lines, but ENAs travel in a straight line, unaffected by the twists, turns, and turbulences in the magnetic fields that permeate space and shape the boundary of the heliosphere. This means scientists can track where these atomic messengers came from and study distant regions of space from afar. The IMAP mission will use the ENAs it collects near Earth to trace back their origins and construct maps of the boundaries of the heliosphere, which would otherwise be invisible from such a distance.
      “With its comprehensive state-of-the-art suite of instruments, IMAP will advance our understanding of two fundamental questions of how particles are energized and transported throughout the heliosphere and how the heliosphere itself interacts with our galaxy,” said Shri Kanekal, IMAP mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The IMAP mission will study the heliosphere, our home in space. NASA/Princeton University/Patrick McPike Space weather: monitoring solar wind
      The IMAP mission will also support near real-time observations of the solar wind and energetic solar particles, which can produce hazardous conditions in the space environment near Earth. From its location at Lagrange Point 1, about 1 million miles from Earth toward the Sun, IMAP will provide around a half hour’s warning of dangerous particles headed toward our planet. The mission’s data will help with the development of models that can predict the impacts of space weather ranging from power-line disruptions to loss of satellites.
      “The IMAP mission will provide very important information for deep space travel, where astronauts will be directly exposed to the dangers of the solar wind,” said David McComas, IMAP principal investigator at Princeton University.
      Cosmic dust: hints of the galaxy beyond
      In addition to measuring ENAs and solar wind particles, IMAP will also make direct measurements of interstellar dust — clumps of particles originating outside of the solar system that are smaller than a grain of sand. This space dust is largely composed of rocky or carbon-rich grains leftover from the aftermath of supernova explosions. 
      The specific elemental composition of this space dust is a postmark for where it comes from in the galaxy. Studying cosmic dust can provide insight into the compositions of stars from far outside our solar system. It will also help scientists significantly advance what we know about these basic cosmic building materials and provide information on what the material between stars is made of.
      David McComas leads the mission with an international team of 27 partner institutions. APL is managing the development phase and building the spacecraft, and it will operate the mission. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio. The Explorers and Heliophysics Projects Division at NASA Goddard manages the STP Program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate. NASA’s Launch Services Program, based at NASA’s Kennedy Space Center in Florida, manages the launch service for the mission.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 17, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division IMAP (Interstellar Mapping and Acceleration Probe) Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Explore More
      4 min read NASA Interns Apply NASA data to Real-World Problems to Advance Space Research and Aerospace Innovation


      Article


      2 hours ago
      3 min read Regions on Asteroid Explored by NASA’s Lucy Mission Get Official Names
      The IAU (International Astronomical Union), a global naming authority for celestial objects, has approved official…


      Article


      1 day ago
      5 min read Connecting Educators with NASA Data: Learning Ecosystems Northeast in Action


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      From left to right, NASA’s Carruthers Geocorona Observatory, IMAP (Interstellar Mapping and Acceleration Probe), and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1) missions will map our Sun’s influence across the solar system in new ways. Credit: NASA NASA will provide live coverage of prelaunch and launch activities for an observatory designed to study space weather and explore and map the boundaries of our solar neighborhood.
      Launching with IMAP (Interstellar Mapping and Acceleration Probe) are two rideshare missions, NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1), both of which will provide insight into space weather and its impacts at Earth and across the solar system.
      Liftoff of the missions on a SpaceX Falcon 9 rocket is targeted for 7:32 a.m. EDT, Tuesday, Sept. 23, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Watch coverage beginning at 6:40 a.m. on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      The IMAP spacecraft will study how the Sun’s energy and particles interact with the heliosphere — an enormous protective bubble of space around our solar system — to enhance our understanding of space weather, cosmic radiation, and their impacts on Earth and human and robotic space explorers. The spacecraft and its two rideshares will orbit approximately one million miles from Earth, positioned toward the Sun at a location known as Lagrange Point 1.
      NASA’s Carruthers Geocorona Observatory is a small satellite that will observe Earth’s outermost atmospheric layer, the exosphere. It will image the faint glow of ultraviolet light from this region, called the geocorona, to better understand how space weather impacts our planet. The Carruthers mission continues the legacy of the Apollo era, expanding on measurements first taken during Apollo 16.
      The SWFO-L1 spacecraft will monitor space weather and detect solar storms in advance, serving as an early warning beacon for potentially disruptive space weather, helping safeguard Earth’s critical infrastructure and technological-dependent industries. The SWFO-L1 spacecraft is the first NOAA observatory designed specifically for and fully dedicated to continuous, operational space weather observations.
      Media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Sunday, Sept. 21
      2:30 p.m. – NASA Prelaunch News Conference on New Space Weather Missions
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Brad Williams, IMAP program executive, NASA Headquarters Irene Parker, deputy assistant administrator for Systems at NOAA’s National Environmental Satellite, Data, and Information Service Denton Gibson, launch director, NASA’s Launch Services Program, NASA Kennedy Julianna Scheiman, director, NASA Science Missions, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation for previously credentialed media. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      3:45 p.m. – NASA, NOAA Science News Conference on New Space Weather Missions
      Joe Westlake, director, Heliophysics Division, NASA Headquarters David McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign Jamie Favors, director, Space Weather Program, Heliophysics Division, NASA Headquarters Clinton Wallace, director, NOAA Space Weather Prediction Center James Spann, senior scientist, NOAA Office of Space Weather Observations Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. Members of the public may ask questions on social media using the hashtag #AskNASA.
      Monday, Sept. 22
      11:30 a.m. – In-person media one-on-one interviews with the following:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Kieran Hegarty, IMAP project manager, Johns Hopkins University Applied Physics Lab Jamie Rankin, IMAP instrument lead for Solar Wind and Pickup Ion, Princeton University John Clarke, Carruthers deputy principal investigator, Boston University Dimitrios Vassiliadis, SWFO-L1 program scientist, NOAA Brent Gordon, deputy director, NOAA Space Weather Prediction Center Remote media may request a one-on-one video interview online by 3 p.m. on Thursday, Sept. 18.
      Tuesday, Sept. 23
      6:40 a.m. – Launch coverage begins on NASA+,  Amazon Prime and more. NASA’s Spanish launch coverage begins on NASA+, and the agency’s Spanish-language YouTube channel.
      7:32 a.m. – Launch
      Audio-Only Coverage
      Audio-only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 6 a.m., Sept. 23, as the countdown milestones occur. Streaming video and photos of the launch will be accessible on demand shortly after liftoff. Follow countdown coverage on the IMAP blog.
      For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con María-José Viñas: maria-jose.vinasgarcia@nasa.gov.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:


      X: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellies
      Facebook: NASA, NASA Kennedy, NASA Solar System, NOAA Satellites
      Instagram: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellites
      For more information about these missions, visit:
      https://www.nasa.gov/sun
      -end-
      Abbey Interrante
      Headquarters, Washington
      301-201-0124
      abbey.a.interrante@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Leejay Lockhart
      Kennedy Space Center, Fla.
      321-747-8310
      leejay.lockhart@nasa.gov
      John Jones-Bateman
      NOAA’s Satellite and Information Service, Silver Spring, Md.
      202-242-0929
      john.jones-bateman@noaa.gov
      Share
      Details
      Last Updated Sep 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Division Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Science Mission Directorate View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
  • Check out these Videos

×
×
  • Create New...