Jump to content

Recommended Posts

  • Publishers
Posted

3 min read

Sols 4479-4480: What IS That Lumpy, Bumpy Rock?

A grayscale photograph of the Martian surface by the Curiosity rover captures medium gray soil with exposed small to medium sized rocks scattered around. Two medium sized rocks just in front of the rover stand out – unlike the smooth or sharp-edged ones around them, they look very rough-textured and bumpy, like a large clump of granola. The bottom of the frame shows parts of the rover, running from the middle left edge to the lower right corner of the image, including part of its robotic arm which carries a nameplate imprinted with “Curiosity” outlined in white, all-capital letters, and to the right of that a line drawing of the rover.
NASA’s Mars rover Curiosity acquired this image of its workspace, including two rocks in front of it with interesting textures, different from anything seen before in the mission. The rover took the image with its Left Navigation Camera on March 12, 2025 — sol 4478, or Martian day 4,478 of the Mars Science Laboratory mission — at 07:00:42 UTC.
NASA/JPL-Caltech

Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory

Earth planning date: Wednesday, March 12, 2025

The days are getting shorter and colder for Curiosity as we head into winter. So our rover is sleeping in a bit before waking up to a busy plan. Today I served as the Engineering Uplink Lead, managing the engineering side of the plan to support all the science activities. 

We are seeing a lot of rocks with different, interesting textures, so Curiosity’s day begins with a lot of targeted imaging of this interesting area. The two rocks right in front of us (see image above) are different from anything that we have looked at before on the mission, so we are eager to know what they are. We are taking Mastcam images of “Manzana Creek” and “Palo Comado,” two of these interestingly textured rocks, and also of an area named “Vincent Gap,” where the rover disturbed some bedrock and exposed some regolith by driving over it in the prior plan. ChemCam is making a LIBS observation of a target called “Sturtevant Falls,” which is a nodule on the left-hand block in our workspace (on which we are later doing some contact science). ChemCam is also taking a long-distance RMI image in the direction of the potential boxworks formation (large veins), which is an area we will be exploring close-up in the future. There are also a Navcam dust devil movie and suprahorzion movie. Check out this article from November for more information on the boxwork formations.

After a nap, Curiosity wakes up to get in her arm exercise. I do not envy the Arm Rover Planner today (OK, maybe a little bit) in dealing with this very challenging workspace. The rock of interest (the left-hand rock in the above image) has jagged, vertical surfaces and a lot of crazy rough texture. Examining this rock is even more challenging because our primary targets are on the left side of the rock, rather than the side that is facing the rover. We are looking at two different targets, “Stunt Ranch,” which is a nodule on the rock, and “Pacifico Mountain,” which is the left-side face of the rock, with MAHLI and also doing a long APXS integration on Stunt Ranch. After the arm work, Curiosity is tucking herself in for the night by stowing the arm. 

The next morning, after again getting to sleep in a bit, Curiosity will make some more targeted observations, starting with another dust-devil survey. ChemCam will make a LIBS observation of “Switzer Falls,” which is a target on the right-hand rock in the workspace (and in the image), an RMI of “Colby Canyon,” a soft sediment deformation, and “Gould,” which is another target on the boxworks formation. Lastly, Mastcam takes a look at “Potrero John,” yet another interestingly textured rock.

Curiosity will then be ready to drive away. Today’s drive is on slightly better terrain that we have been seeing recently, with fewer large and pointy rocks. Though, the mobility rover planners still have to be careful about picking the safest path through. We’re heading about 25 meters (about 82 feet) to another rock target named “Humber Park,” where we hope to do additional contact science. After the drive, we have our standard set of post-drive imaging, a Mastcam solar tau, and then an early-morning Navcam cloud observation.

Share

Details

Last Updated
Mar 14, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Origins Uncertain: ‘Skull Hill’ Rock
      Written by Margaret Deahn, Ph.D. Student at Purdue University
      Last week, NASA’s Mars 2020 rover continued its journey down lower ‘Witch Hazel Hill’ on the Jezero crater rim. The rover stopped along a boundary visible from orbit dividing light and dark rock outcrop (also known as a contact) at a site the team has called ‘Port Anson’. In addition to this contact, the rover has encountered a variety of neat rocks that may have originated from elsewhere and transported to their current location, also known as float.
      This image from NASA’s Mars Perseverance rover, taken by the Mastcam-Z instrument’s right eye, shows the ‘Skull Hill’ target, a dark-toned float rock. The rover acquired this image while driving west downslope towards lower ‘Witch Hazel Hill’. Perseverance acquired this image on April 11, 2025, or sol 1472 of the Mars 2020 mission NASA/JPL-Caltech/ASU Pictured above is an observation named ‘Skull Hill’ taken by the rover’s Mastcam-Z instrument. This float rock uniquely contrasts the surrounding light-toned outcrop with its dark tone and angular surface, and it features a few pits in the rock. If you look closely, you might even spot spherules within the surrounding regolith! See Alex Jones’ recent blog post for more information on these neat features: https://science.nasa.gov/blog/shocking-spherules/. The pits on Skull Hill may have formed via the erosion of clasts from the rock or scouring by wind. We’ve found a few of these dark-toned floats in the Port Anson region, and the team is working to better understand where these rocks came from and how they got here.
      Skull Hill’s dark color is reminiscent of meteorites found in Gale crater by the Curiosity rover: https://www.jpl.nasa.gov/news/curiosity-mars-rover-checks-odd-looking-iron-meteorite/. Chemical composition is an important factor in identifying a meteorite, and Gale’s meteorites contain significant amounts of iron and nickel. However, recent analysis of SuperCam data from nearby similar rocks suggests a composition inconsistent with a meteorite origin. 
      Alternatively, ‘Skull Hill’ could be an igneous rock eroded from a nearby outcrop or ejected from an impact crater. On Earth and Mars, iron and magnesium are some of the main contributors to igneous rocks, which form from the cooling of magma or lava. These rocks can include dark-colored minerals such as olivine, pyroxene, amphibole, and biotite. Luckily for us, the rover has instruments that can measure the chemical composition of rocks on Mars. Understanding the composition of these darker-toned floats will help the team to interpret the origin of this unique rock!
      Explore More
      2 min read Sols 4511-4512: Low energy after a big weekend?


      Article


      2 days ago
      3 min read Sols 4509-4510: A weekend of long drives


      Article


      2 days ago
      2 min read Sols 4507-4508: “Just Keep Driving”


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      Mars 2020 Perseverance Rover


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4511-4512: Low energy after a big weekend?
      This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4510 (2025-04-14 03:43:40 UTC). NASA/JPL-Caltech Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
      Earth planning date: Monday, April 14, 2025
      We all know the feeling: it’s Monday morning after a big weekend and you’re coming into the week wishing you’d had a little more time to rest and recharge.  Well, Curiosity probably feels the same way today. Curiosity accomplished a lot over the weekend, including full contact science, a MAHLI stereo imaging test, testing the collection of ChemCam passive spectral data at the same time as data transmission with one of the orbiters, and some APXS and MAHLI calibration target activities, plus a long 57 m drive. It was great to see all of those activities in the plan and to see some great drive progress. But that means we’re a bit tight on power for today’s plan!
      I was on shift as Long Term Planner today, and the team had to think carefully about science priorities to fit within our power limit for today’s plan, and how that will prepare us for the rest of the week.  The team still managed to squeeze a lot of activities into today’s 2-sol plan. First, Curiosity will acquire Mastcam mosaics to investigate local stratigraphic relationships and diagenetic features. Then we’ll acquire some imaging to document the sandy troughs between bedrock blocks to monitor active surface processes. We’ll also take a Navcam mosaic to assess atmospheric dust. The science block includes a ChemCam LIBS observation on the bedrock target “Santa Margarita” and a long distance RMI mosaic of “Ghost Mountain” to look for possible boxwork structures. Then Curiosity will use the DRT, APXS and MAHLI to investigate the finely-laminated bedrock in our workspace at a target named “The Grotto.”  We’ll also collect APXS and MAHLI data on a large nodule in the workspace named “Torrey Pines” (meanwhile the Torrey Pines here on Earth was shaking in today’s southern California earthquakes! All is well but it gave some of our team members an extra jolt of adrenaline right before the SOWG meeting).  The second sol is focused on continuing our drive to the south and taking post-drive imaging to prepare for Wednesday’s plan.
      Phew! Good job Curiosity, you made it through Monday.
      Explore More
      3 min read Sols 4509-4510: A weekend of long drives


      Article


      38 mins ago
      2 min read Sols 4507-4508: “Just Keep Driving”


      Article


      4 days ago
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      The Mars Report


      The Mars Report newsletter from NASA is your source for everything on or about the Red Planet. We bring you…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4509-4510: A weekend of long drives
      This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4507 (2025-04-11 03:54:35 UTC). Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, April 11, 2025
      Curiosity is continuing to book it to the potential boxwork structures.  The rover drove over 50 meters on Wednesday, and we plan to drive more than 50 meters again in today’s plan thanks to an unusually good viewshed that allows us to see far ahead.  We’ve been able to see glimpses of the boxwork structures in the distance for a few weeks now, and I am really excited about being able to plan long drives that get us closer and closer. What will we find when we reach them?
      Power was on everyone’s mind as we put the plan together today. The science team had lots of amazing ideas about observations to collect from our current location, but we had to carefully plan and prioritize them to make sure we didn’t use too much power and leave the rover battery lower than we’d like for Monday’s plan.  Winter on Mars certainly keeps us on our toes!  We ended up putting together what I think is a pretty good set of activities for the weekend.  MAHLI, APXS, and ChemCam will all work together to observe a flat rock in front of us named “Iron Mountain.” MAHLI will also do an experiment with this rock, testing different combinations of camera positions to see which produces the best data to help us generate 3D models of the rock’s surface.  I know rocks don’t have feelings, but if they did, I hope Iron Mountain can use this time to feel a bit like a movie star on the red carpet, getting photographed from all angles. Mastcam will also be photographing the surroundings, working with ChemCam’s RMI imager to take images the ridge containing boxwork structures named “Ghost Mountain,” and taking some solo shots of targets in the foreground named “Redondo Flat,” “Silverwood Sanctuary,” and the oft photographed Gould Mesa.  Navcam, REMS, and DAN round out the science plan with some environmental observations. We’ll be getting one more science and engineering hybrid observation when we collect ChemCam passive spectral data of the instrument’s calibration target in parallel with one of our communication passes.  This observation is part of a series of tests we’re doing to run rover activities in parallel with these passes, and if successful, will allow us to be more even more power efficient in the future.
      We’re also celebrating a soliday this weekend, which means we only have a two-sol plan instead of our usual three as the Mars and Earth time zones re-align for the next few weeks.  I’m looking forward to seeing where Curiosity drives next week.
      Explore More
      2 min read Sols 4511-4512: Low energy after a big weekend?


      Article


      16 mins ago
      2 min read Sols 4507-4508: “Just Keep Driving”


      Article


      4 days ago
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      The Mars Report


      The Mars Report newsletter from NASA is your source for everything on or about the Red Planet. We bring you…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4507-4508: “Just Keep Driving”
      NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on April 9, 2025, Sol 4505 of the Mars Science Laboratory Mission, at 00:56:30 UTC. NASA/JPL-Caltech/MSSS Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Earth planning date: Wednesday, April 9, 2025
      Our drive from Monday’s plan was mostly successful, putting us ~22 meters down the “road” out of an expected 30 meters. A steering command halted the drive a little short when we tried to turn-in-place but instead turned into a rock, which also had the effect of making our position too unstable for arm activities. Oh well! APXS data has been showing the recent terrain as being pretty similar in composition, so the team isn’t complaining about trying again after another drive. Plus, keeping the arm stowed should give us a little more power to play with in the coming sols (an ongoing struggle this Martian winter).
      Recently, my job on Mastcam has been to make sure our science imaging is as concurrent as possible with required rover activities. This strategy helps save rover awake time, AKA power consumption. Today we did a pretty good job with this, only increasing the total awake time by ~2 minutes even though we planned 52 images! Our imaging today included a mosaic of the “Devil’s Gate” ridge including some nodular bedrock and distant “Torote Bowl,” a mosaic of a close-by vein network named “Moonstone Beach,” and several sandy troughs surrounding the bedrock blocks we see here. 
      ChemCam is planning a LIBS raster on a vertical vein in our workspace named “Jackrabbit Flat,” and a distant RMI mosaic of “Condor Peak” (a butte to the north we’re losing view of). Our drive will happen in the 1400 hour on the first sol, hopefully landing us successfully 53 meters further into this new valley on our way to the boxwork structures to the west! Post-drive, we’re including a test of a “Post Traverse Autonav Terrain Observation” AKA PoTATO – an easy drop-in activity for ground analysis of a rover-built navigation map of our new terrain. Plus we get to say PoTATO a lot.
      Explore More
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      3 days ago
      3 min read Sols 4502-4504: Sneaking Past Devil’s Gate


      Article


      4 days ago
      3 min read Sols 4500-4501: Bedrock With a Side of Sand


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Curiosity Rover (MSL)


      View the full article
  • Check out these Videos

×
×
  • Create New...