Jump to content

Recommended Posts

  • Publishers
Posted
6 Min Read

NASA Data Supports Everglades Restoration

Mangroves blanket roughly 600 square miles of South Florida’s coastal terrain. This dense grove — one of the largest in the world — is the ecological backbone of the Everglades system.

This story is the second installment of a series on NASA’s mission to measure greenhouse gases in Florida’s mangrove ecosystem. Read the first part here.

Along the southernmost rim of the Florida Peninsula, the arching prop roots of red mangroves line the coast. Where they dip below the water’s surface, fish lay their eggs, using the protection from predators that the trees provide. Among their branches, wading birds like the great blue heron and the roseate spoonbill find rookeries to rear their young. The tangled matrix of roots collects organic matter and ocean-bound sediments, adding little by little to the coastline and shielding inland biology from the erosive force of the sea.

In these ways, mangroves are equal parts products and engineers of their environment. But their ecological value extends far beyond the coastline. 

Tropical wetlands absorb carbon dioxide (CO2) from the atmosphere with impressive efficiency. Current estimates suggest they sequester carbon dioxide 10 times faster and store up to five times more carbon than old-growth forests. But as part of the ever-changing line between land and sea, coastal wetlands are vulnerable to disturbances like sea level rise, hurricanes, and changes in ocean salinity. As these threats intensify, Florida’s wetlands — and their role as a critical sink for carbon dioxide — face an uncertain future.

A new data product developed by NASA-funded researchers will help monitor from space the changing relationship between coastal wetlands and atmospheric carbon. It will deliver daily measurements of gaseous flux — the rate at which gas is exchanged between the planet’s surface and atmosphere. The goal is to improve local and global estimates of carbon dioxide levels and help stakeholders evaluate wetland restoration efforts.

NASA measures carbon dioxide from ground, air and space

Blueflux Photo 4
At SRS-6, an eddy covariance tower measures carbon dioxide and methane flux among a dense grove of red, black, and white mangroves. (The term eddy covariance refers to the statistical technique used to calculate gaseous flux based on the meteorological and scalar atmospheric data collected by the flux towers.)
Credits: NASA / Nathan Marder

In the Everglades, flux measurements have historically relied on data from a handful of “flux towers.” The first of these towers was erected in June 2003, not far from the edge of Shark River at a research site known as SRS-6. A short walk from the riverbank, across a snaking path of rain-weathered, wooden planks, sits a small platform where the tower is anchored to the forest floor. Nearly 65 feet above the platform, a suite of instruments continuously measures wind velocity, temperature, humidity, and concentrations of atmospheric gases. These measurements are used to quantify the amount of carbon dioxide that wetland vegetation removes from the atmosphere — and the amount of methane released.

“Hundreds of research papers have come from this site,” said David Lagomasino, a professor of coastal ecology at East Carolina University. The abundance of research born from SRS-6 underscores its scientific value. But the BlueFlux campaign is committed to detailing flux across a much larger area — to fill in the gaps between the towers.

A map of South Florida identifying primary BlueFlux fieldwork locations. Those locations include two on Shark River and one near the Flamingo Visitors Center.
A true-color image of South Florida captured by the MODIS instrument aboard NASA’s Terra satellite. The area of Earth’s surface that the instrument’s sensors can “see” at one time — its swath — has a width of roughly 1,448 miles. Areas where primary BlueFlux fieldwork deployments occurred are marked with red triangles.
NASA/ Nathan Marder

Part of NASA’s new greenhouse-gas product is a machine-learning model that estimates gaseous flux using observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on NASA’s Aqua and Terra satellites. The MODIS instruments capture images and data of South Florida every one to two days, measuring the wavelength of sunlight reflected by the planet’s surface to produce a dataset called surface spectral reflectance.

Different surfaces — like water, vegetation, sand, or decaying organic matter — reflect different wavelengths of light. With the help of some advanced statistical algorithms, modelers can use these measurements to generate a grid of real-time flux data.

To help ensure the satellite-based model is making accurate predictions, researchers compare its outputs to measurements made on the ground. But with only a handful of flux towers in the region, ground-based flux data can be hard to come by.

To augment existing datasets, NASA researchers use a relatively new airborne technique for measuring flux. Since April 2022, NASA’s airborne science team has conducted 34 flights equipped with a payload known colloquially as “CARAFE,” short for the CARbon Airborne Flux Experiment. The CARAFE instrument measures concentrations of methane, carbon dioxide, and water vapor, generating readings that researchers combine with information about the plane’s speed and orientation to estimate rates of gaseous flux at fixed points along each flight’s path.

“This is one of the first times an instrument like this has flown over a mangrove forest anywhere in the world,” said Lola Fatoyinbo, a forest ecologist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

A computer screen displays live readings of carbon dioxide, methane, and water vapor concentrations. Scientists monitor readings from inside the Gulfstream’s small cabin.
Erin Delaria, a research scientist at the University of Maryland, monitors live, in-flight readings made by the CARbon Airborne Flux Experiment (CARAFE), the instrument package responsible for measuring atmospheric levels of carbon dioxide, methane, and water vapor concentrations above the wetland landscape. These data — along with information like the plane’s speed, flight path, and humidity levels — allow researchers to calculate flux at fixed points along the flight’s path.
NASA/ Nathan Marder

Early findings from space-based flux data confirm that, in addition to acting as a sink of carbon dioxide, tropical wetlands are a significant source of methane — a greenhouse gas that traps heat roughly 80 times more efficiently than carbon dioxide. In fact, researchers estimate that Florida’s entire wetland expanse produces enough methane to offset the benefits of wetland carbon removal by about 5%.

“There are also significant differences in fluxes between healthy mangroves and degraded ones,” Fatoyinbo said. In areas where mangrove forests are suffering, say after a major hurricane, “you end up with more greenhouse gases in the atmosphere.” As wetland ecology responds to intensifying natural and human pressures, the data product will help researchers precisely monitor the impact of ecological changes on global carbon dioxide and methane levels.

‘We need this reliable science’

The Everglades today are roughly half their original size — primarily the result of a century’s worth of uninterrupted land development and wetland drainage projects. It’s difficult to quantify the impact of wetland losses at this scale. Florida’s tropical wetlands aren’t just an important reminder of the beauty and richness of the state’s natural history. They’re also a critical reservoir of atmospheric carbon and a source of drinking water for millions of South Florida residents.

“We know how valuable the wetlands are, but we need this reliable science to help translate their benefits into something that can reach people and policymakers,” said Steve Davis, chief science officer for the Everglades Foundation, a non-profit organization in Miami-Dade County that provides scientific research and advocacy in an effort to protect and restore the Everglades.

As new policies and infrastructure are designed to support Everglades restoration, researchers hope NASA’s daily flux product will help local officials evaluate their restoration efforts in real time — and adjust the course as needed.

The prototype of the product, called Daily Flux Predictions for South Florida, is slated for release this year and will be available through NASA’s Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

By Nathan Marder

NASA’s Goddard Space Flight Center, Greenbelt, Maryland

About the Author

Nathan Marder

Share

Details

Last Updated
Mar 14, 2025
Location
Goddard Space Flight Center
Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A SpaceX Falcon 9 rocket propelled the Dragon spacecraft into orbit carrying NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov. (Credit: NASA) Four crew members of NASA’s SpaceX Crew-10 mission launched at 7:03 p.m. EDT Friday from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for a science expedition aboard the International Space Station.
      A SpaceX Falcon 9 rocket propelled the Dragon spacecraft into orbit carrying NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov. The spacecraft will dock autonomously to the forward-facing port of the station’s Harmony module at approximately 11:30 p.m. on Saturday, March 15. Shortly after docking, the crew will join Expedition 72/73 for a long-duration stay aboard the orbiting laboratory.
      “Congratulations to our NASA and SpaceX teams on the 10th crew rotation mission under our commercial crew partnership. This milestone demonstrates NASA’s continued commitment to advancing American leadership in space and driving growth in our national space economy,” said NASA acting Administrator Janet Petro. “Through these missions, we are laying the foundation for future exploration, from low Earth orbit to the Moon and Mars. Our international crew will contribute to innovative science research and technology development, delivering benefits to all humanity.”
      During Dragon’s flight, SpaceX will monitor a series of automatic spacecraft maneuvers from its mission control center in Hawthorne, California. NASA will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center in Houston.
      NASA’s live coverage resumes at 9:45 p.m., March 15, on NASA+ with rendezvous, docking, and hatching opening. After docking, the crew will change out of their spacesuits and prepare cargo for offload before opening the hatch between Dragon and the space station’s Harmony module around 1:05 a.m., Sunday, March 16. Once the new crew is aboard the orbital outpost, NASA will broadcast welcome remarks from Crew-10 and farewell remarks from the agency’s SpaceX Crew-9 crew, beginning at about 1:40 a.m.
      Learn how to watch NASA content through a variety of platforms, including social media.
      The number of crew aboard the space station will increase to 11 for a short time as Crew-10 joins NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Don Pettit, as well as Roscosmos cosmonauts Aleksandr Gorbunov, Alexey Ovchinin, and Ivan Vagner. Following a brief handover period, Hague, Williams, Wilmore, and Gorbunov will return to Earth no earlier than Wednesday, March 19.Ahead of Crew-9’s departure from station, mission teams will review weather conditions at the splashdown sites off the coast of Florida. 
      During their mission, Crew-10 is scheduled to conduct material flammability tests to contribute to future spacecraft and facility designs. The crew will engage with students worldwide via the ISS Ham Radio program and use the program’s existing hardware to test a backup lunar navigation solution. The astronauts also will serve as test subjects, with one crew member conducting an integrated study to better understand physiological and psychological changes to the human body to provide valuable insights for future deep space missions.
      With this mission, NASA continues to maximize the use of the orbiting laboratory, where people have lived and worked continuously for more than 24 years, testing technologies, performing science, and developing the skills needed to operate future commercial destinations in low Earth orbit and explore farther from our home planet. Research conducted at the space station benefits people on Earth and paves the way for future long-duration missions to the Moon under NASA’s Artemis campaign and beyond.
      More about Crew-10
      McClain is the commander of Crew-10 and is making her second trip to the orbital outpost since her selection as an astronaut in 2013. She will serve as a flight engineer during Expeditions 72/73 aboard the space station. Follow McClain on X.
      Ayers is the pilot of Crew-10 and is flying her first mission. Selected as an astronaut in 2021, Ayers will serve as a flight engineer during Expeditions 72/73. Follow Ayers on X and Instagram.
      Onishi is a mission specialist for Crew-10 and is making his second flight to the space station. He will serve as a flight engineer during Expeditions 72/73. Follow Onishi on X.
      Peskov is a mission specialist for Crew-10 and is making his first flight to the space station. Peskov will serve as a flight engineer during Expeditions 72/73.
      Learn more about NASA’s SpaceX Crew-10 mission and the agency’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Kenna Pell / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Mar 14, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) View the full article
    • By Amazing Space
      LIVE LAUNCH / SpaceX - NASA Crew 10 Launch
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A super pressure balloon with the EUSO-2 payload is prepared for launch from Wānaka, New Zealand, during NASA’s campaign in 2023.NASA/Bill Rodman NASA’s Scientific Balloon Program has returned to Wānaka, New Zealand, for two scheduled flights to test and qualify the agency’s super pressure balloon technology. These stadium-sized, heavy-lift balloons will travel the Southern Hemisphere’s mid-latitudes for planned missions of 100 days or more. 
      Launch operations are scheduled to begin in late March from Wānaka Airport, NASA’s dedicated launch site for mid-latitude, ultra long-duration balloon missions.  
      “We are very excited to return to New Zealand for this campaign to officially flight qualify the balloon vehicle for future science investigations,” said Gabriel Garde, chief of NASA’s Balloon Program Office at the agency’s Wallops Flight Facility in Virginia. “Our dedicated team both in the field and at home has spent years in preparation for this opportunity, and it has been through their hard work, fortitude, and passion that we are back and fully ready for the upcoming campaign.” 
      While the primary flight objective is to test and qualify the super pressure balloon technology, the flights will also host science missions and technology demonstrations. The High-altitude Interferometer Wind Observation (HIWIND), led by High Altitude Observatory, National Center for Atmospheric Research in Boulder, Colorado, will fly as a mission of opportunity on the first flight. The HIWIND payload will measure neutral wind in the part of Earth’s atmosphere called the thermosphere. Understanding these winds will help scientists predict changes in the ionosphere, which can affect communication and navigation systems. The second flight will support several piggyback missions of opportunity, or smaller payloads, including: 
      Compact Multichannel Imaging Camera (CoMIC), led by University of Massachusetts Lowell, will study and measure how Earth’s atmosphere scatters light at high altitudes and will measure airglow, specifically the red and green emissions.   High-altitude Infrasound from Geophysical Sources (HIGS), led by NASA’s Jet Propulsion Laboratory and Sandia National Laboratories, will measure atmospheric pressure to collect signals of geophysical events on Earth such as earthquakes and volcanic eruptions. These signals will help NASA as it develops the ability to measure seismic activity on Venus from high-altitude balloons.    Measuring Ocean Acoustics North of Antarctica (MOANA), led by Sandia National Laboratories and Swedish Institute of Space Physics, aims to capture sound waves in Earth’s stratosphere with frequencies below the limit of human hearing. NASA’s Balloon Program Office at the agency’s Wallops Flight Facility is leading two technology demonstrations on the flight. The INterim Dynamics Instrumentation for Gondolas (INDIGO) is a data recorder meant to measure the shock of the gondola during the launch, termination, and landing phases of flight. The Sensor Package for Attitude, Rotation, and Relative Observable Winds – 7 (SPARROW-7), will demonstrate relative wind measurements using an ultrasonic device designed for the balloon float environment that measures wind speed and direction. NASA’s 18.8-million-cubic-foot (532,000-cubic-meter) helium-filled super pressure balloon, when fully inflated, is roughly the size of Forsyth-Barr Stadium in Dunedin, New Zealand, which has a seating capacity of more than 35,000. The balloon will float at an altitude of around 110,000 feet (33.5 kilometers), more than twice the altitude of a commercial airplane. Its flight path is determined by the speed and direction of wind at its float altitude.  
      The balloon is a closed system design to prevent gas release. It offers greater stability at float altitude with minimum altitude fluctuations during the day to night cycle compared to a zero pressure balloon. This capability will enable future missions to affordably access the near-space environment for long-duration science and technology research from the Southern Hemisphere’s mid-latitudes, including nighttime observations. 
      The public is encouraged to follow real-time tracking of the balloons’ paths as they circle the globe on the agency’s Columbia Scientific Balloon Facility website. Launch and tracking information will be shared across NASA’s social media platforms and the NASA Wallops blog.
      NASA’s return to Wānaka marks the sixth super pressure balloon campaign held in New Zealand since the agency began balloon operations there in 2015. The launches are conducted in collaboration with the Queenstown Airport Corporation, Queenstown Lake District Council, New Zealand Space Agency, and Airways New Zealand.  
      “We are especially grateful to our local hosts, partners, and collaborators who have been with us from the beginning and are critical to the success of these missions and this campaign,” said Garde. 
      NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 16 flights each year from launch sites worldwide. Peraton, which operates NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, provides mission planning, sustaining engineering services, and field operations for NASA’s scientific balloon program. The Columbia team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division.  
      For more information on NASA’s Scientific Balloon Program, visit:
      www.nasa.gov/scientificballoons.
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Mar 14, 2025 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.govLocationWallops Flight Facility Related Terms
      Scientific Balloons Astrophysics Astrophysics Division Goddard Space Flight Center Wallops Flight Facility Explore More
      7 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
      Article 3 months ago 7 min read NASA to Launch 8 Scientific Balloons From New Mexico
      Article 7 months ago 5 min read NASA’s EXCITE Mission Prepared for Scientific Balloon Flight
      Editor’s note: EXCITE successfully launched at 9:22 a.m. EDT (7:22 a.m. MDT) Saturday, Aug. 31.…
      Article 7 months ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Test flights help airplane and drone manufacturers identify which parts of the aircraft are creating the most noise. Using hundreds of wired microphones makes it an expensive and time-consuming process to improve the design to meet noise requirements. Credit: NASA Airplane manufacturers running noise tests on new aircraft now have a much cheaper option than traditional wired microphone arrays. It’s also sensitive enough to help farmers with pest problems. A commercial wireless microphone array recently created with help from NASA can locate crop-threatening insects by listening for the sounds they make in fields. 

      Since releasing its first commercial product in 2017, a sensor for wind tunnel testing developed with extensive help from NASA (Spinoff 2020), Interdisciplinary Consulting Corporation (IC2) has doubled its staff and moved to a larger lab and office space to produce its new WirelessArray product. Interested in making its own flight tests more affordable, NASA’s Langley Research Center in Hampton, Virginia, supported this project with Small Business Innovation Research contracts and expert consulting.

      Airplanes go through noise testing and require certification that they don’t exceed the noise level set for their body type by the Federal Aviation Administration. When an airplane flies directly overhead, the array collects noise data to build a two-dimensional map of the sound pressure and its source. A custom software package translates that information for the end user.

      For previous NASA noise testing, multiple semi-trucks hauled all the sensors, wires, power generators, racks of servers, and other equipment required for one flight test. The setup and teardown took six people three days. By contrast, two people can pack the WirelessArray into a minivan and set it up in a day. 

      IC2 is working with an entomologist to use acoustic data to listen for high-frequency insect sounds in agricultural settings. Discovering where insects feed on crops will make it possible for farmers to intervene before they do too much damage while limiting pesticide use to those areas. Whether it’s helping planes in the sky meet noise requirements or keeping harmful insects away from crops, NASA technology is finding sound-based solutions for the benefit of all. 
      Read More Share
      Details
      Last Updated Mar 14, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
      Article 1 week ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
      Article 3 months ago 3 min read NASA Gives The World a Brake
      Article 3 months ago Keep Exploring Discover Related Topics
      Langley Expertise and Facilities
      Humans in Space
      Technology Transfer & Spinoffs
      Solar System
      View the full article
    • By NASA
      NICER (left) is shown mounted to the International Space Station, and LEXI (right) is shown attached to the top of Firefly Aerospace’s Blue Ghost in an artist’s rendering.NASA/Firefly Aerospace The International Space Station supports a wide range of scientific activities from looking out at our universe to breakthroughs in medical research, and is an active proving ground for technology for future Moon exploration missions and beyond. Firefly Aerospace’s Blue Ghost Mission-1 landed on the Moon on March 2, 2025, kicking off science and technology operations on the surface, including three experiments either tested on or enabled by space station research. These projects are helping scientists study space weather, navigation, and computer performance in space— knowledge crucial for future Moon missions.
      One of the experiments, the Lunar Environment Heliospheric X-ray Imager (LEXI), is a small telescope designed to study the Earth’s magnetic environment and its interaction with the solar wind. Like the Neutron star Interior Composition Explorer (NICER) telescope mounted outside of the space station, LEXI observes X-ray sources. LEXI and NICER observed the same X-ray star to calibrate LEXI’s instrument and better analyze the X-rays emitted from Earth’s upper atmosphere, which is LEXI’s primary target. LEXI’s study of the interaction between the solar wind and Earth’s protective magnetosphere could help researchers develop methods to safeguard future space infrastructure and understand how this boundary responds to space weather.
      Other researchers sent the Radiation Tolerant Computer System (RadPC) to the Moon to test how computers can recover from radiation-related faults. Before RadPC flew on Blue Ghost, researchers tested a radiation tolerant computer on the space station and developed an algorithm to detect potential hardware faults and prevent critical failures. RadPC aims to demonstrate computer resilience in the Moon’s radiation environment. The computer can gauge its own health in real time, and RadPC can identify a faulty location and repair it in the background as needed. Insights from this investigation could improve computer hardware for future deep-space missions.
      In addition, the Lunar Global Navigation Satellite System (GNSS) Receiver Experiment (LuGRE) located on the lunar surface has officially received a GNSS signal at the farthest distance from Earth, the same signals that on Earth are used for navigation on everything from smartphones to airplanes. Aboard the International Space Station, Navigation and Communication Testbed (NAVCOM) has been testing a backup system to Earth’s GNSS using ground stations as an alternative method for lunar navigation where GNSS signals may have limitations. Bridging existing systems with emerging lunar-specific navigation solutions could help shape how spacecraft navigate the Moon on future missions.
      The International Space Station serves as an important testbed for research conducted on missions like Blue Ghost and continues to lay the foundation for technologies of the future.
      Keep Exploring Discover More Topics From NASA
      International Space Station News
      Space Station Research and Technology Tools and Information
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      Space Station Research Results
      View the full article
  • Check out these Videos

×
×
  • Create New...