Jump to content

Space Telescope Science Institute Prepares a "Desktop Universe" For Astronomers


Recommended Posts

low_STSCI-H-p-9215a-k1340x520.png

Imagine turning your home computer into the equivalent of a professional telescope which can display millions of stars and galaxies located anywhere in the sky.. Astronomers as well as educators will soon be able to have the sky at their fingertips thanks to an ambitious effort now being funded by NASA and being carried out by the Space Telescope Science Institute (STScI) in Baltimore, Maryland.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Haghighi Quadchart
      Azadeh Haghighi
      University of Illinois, Chicago
      In-space manufacturing and assembly are vital to NASA’s long-term exploration goals, especially for the Moon and Mars missions. Deploying welding technology in space enables the assembly and repair of structures, reducing logistical burdens and supply needs from Earth. The unique challenges and extreme conditions of space–high thermal variations, microgravity, and vacuum–require advanced welding techniques and computational tools to ensure reliability, repeatability, safety, and structural integrity in one-shot weld scenarios. For the first time, this project investigates these challenges by focusing on three key factors: (1) Very low temperatures in space degrade the weldability of high thermal conductivity materials, like aluminum alloys, making it harder to achieve strong, defect-free welds. (2) The extreme vacuum in space lowers the boiling points of alloying elements, altering the keyhole geometry during welding. This selective vaporization changes the weld’s final chemical composition, affecting its microstructure and properties. (3) Microgravity nearly eliminates buoyancy-driven flow of liquid metal inside the molten pool, preventing gas bubbles from escaping, which leads to porosity and defects in the welds. By examining these critical factors using multi-scale multi-physics models integrated with physics-informed machine learning, and forward/inverse uncertainty quantification techniques, this project provides the first-ever real-time digital twin platform to evaluate welding processes under extreme space/lunar conditions. The models are validated through Earth-based experiments, parabolic flight tests, and publicly available data from different databases and agencies worldwide. Moreover, the established models will facilitate extendibility to support in-situ resource utilization on the Moon, including construction and repair using locally sourced materials like regolith. The established fundamental scientific knowledge will minimize trial-and-error, enable high-quality one-shot welds in space, and reduce the need for reworks, significantly reducing the costs and time needed for space missions.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By Space Force
      SSC and USC partnered up to pair USC Trojans with SSC Guardians to work within real USSF programs. This partnership team acted as a “living laboratory” to identify strategies for implementing agile development into complex defense projects.

      View the full article
    • By NASA
      Pictured (clockwise) from bottom left are astronauts Charles O. Hobaugh, commander; Mike Foreman, Leland Melvin, Robert L. Satcher Jr. and Randy Bresnik, all mission specialists; along with Barry E. “Butch” Wilmore, pilot; and Nicole Stott, mission specialist.NASA The STS-129 crew members pose for a portrait following a joint news conference with the Expedition 21 crew members on Nov. 24, 2009. Astronauts Charles O. Hobaugh, Mike Foreman, Leland Melvin, Robert L. Satcher Jr., Randy Bresnik, Butch Wilmore, and Nicole Stott launched from NASA’s Kennedy Space Center in Florida on Nov. 16, 2009, aboard the space shuttle Atlantis. Traveling with them was nearly 30,000 pounds of replacement parts and equipment that would keep the orbital outpost supplied for several years to come.
      The Atlantis crew performed three demanding but successful spacewalks – and enjoyed a surprise Thanksgiving dinner on the station, courtesy of the Expedition 21 crew.
      Image credit: NASA
      View the full article
    • By NASA
      Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers 14 Min Read NASA’s Brad Doorn Brings Farm Belt Wisdom to Space-Age Agriculture
      This image shows corn cultivation patterns across the U.S. Midwest in 2020, with lands planted in corn marked in yellow. Credits:
      NASA Earth Observatory/ Lauren Dauphin Bradley Doorn grew up in his family’s trucking business, which hauled milk and animal feed across the sprawling plains of South Dakota. Home was Mitchell, a small town famous for its Corn Palace, where murals crafted from corn kernels and husks have adorned its facade since 1892—a tribute to the abundance of the surrounding farmland.
      Trucking was often grueling work for the family, the day breaking early and ending in headlights. Like farming, driving a truck wasn’t just a job; it was the engine of daily life, thrumming through nearly every conversation and decision.
      Brad loved the outdoors, and by the time he started college in the early 1980s, studying geological engineering felt like a natural fit. “I wanted to be out in the field somewhere, working under the big skies of the West,” Brad recalled. But in his sophomore year at the South Dakota School of Mines and Technology, the tuition money dried up.
      Dean Doorn, Brad Doorn’s father, stands beside a milk truck used in the family’s business of hauling milk across South Dakota in the 1960s and ’70s. Credit: B. Doorn Doorn found himself at a crossroads familiar to many in rural America: return to the certainty of a family trade or chart a new route. “That’s when the Army stepped in,” he said. The ROTC program offered a way to continue with school and a path into the world of remote sensing—a field that would come to define his career.
      Brad’s choice to join the Army would eventually place him at the forefront of a mapping revolution, equipping him to see and analyze Earth in ways never possible before the advent of satellites. But more than the technical skills, the military showed him the allure of a life anchored to mission and team.
      Even as his career took him far from Mitchell, Doorn would remain connected to his rural America roots. Today, he leads NASA’s agriculture programs within the agency’s Earth Science Division. “My family wasn’t made up of farmers, but farming was a part of everything growing up,” said Brad. “Even now, working with NASA, that connection to the land—the sense of how weather, crops, and people are tied together—it’s still in everything I do.”
      Amid the dazzle of NASA’s feats exploring the solar system and universe, it’s easy to miss the agency’s quiet work in fields of soy and wheat. But for more than 60 years, the agency has harnessed the power of its satellites to deliver crucial data on temperature, precipitation, crop yields, and more to farmers, policymakers, and food security experts worldwide.
      The Landsat 9 satellite captured this false-color image of Louisiana rice fields in February 2023. Dark blue shows flooded areas, while green indicates vegetation. Grid-like levees separate fields pre-planting. Louisiana is the third largest producer of rice in the U.S. Credit: NASA Earth Observatory/ Lauren Dauphin From orbit, satellites beam down streams of data—numbers and pixels that, when paired with farmers’ knowledge of the land, can guide growers as they adjust irrigation levels or plan for the next planting. But the satellites don’t just yield data; they tell stories that call for action, enabling nations to brace for droughts, floods, and the prospect of empty grain silos.
      “Under Brad’s guidance, NASA’s agriculture program has become a global leader for satellite-driven solutions, tackling food security and sustainability head-on,” said Lawrence Friedl, the senior engagement officer for NASA Earth Science. Reflecting on years of collaboration, he added: “I am so impressed and grateful for what he and his teams have accomplished.”
      Boots Meet Satellites in the First Gulf War
      Long before Brad began guiding NASA’s agricultural initiatives, he was already navigating tricky terrain, both literal and figurative, with satellite imagery. His career in remote sensing didn’t start with crops, but with the deserts of Iraq and Kuwait.
      As part of the Army’s 18th Airborne Corps, Brad led a company at Fort Bragg (now Fort Liberty) in North Carolina that had just returned from operations in the First Gulf War, in the early 1990s. “I loved being part of a unit, part of something bigger than just me,” Brad recalled. “It felt good to have that purpose and mission.”
      Far from the combat zone, Doorn’s company became cartographers of the invisible. Their task: merge data from the Landsat satellite with the gritty reality of desert warfare depicted on military maps.
      Brad Doorn, then a U.S. Army officer, sits at his desk during his early career in remote sensing. His military experience would later shape his work at NASA, applying satellite technology to real-world challenges. Credit: B. Doorn Landsat, a civilian satellite built by NASA and operated by the U.S. Geological Survey, could see what the soldiers on the ground could not. Its thermal infrared sensor—a camera with a penchant for temperature and moisture—read the desert floor like an ancient script, picking out the cold, soggy signature of mud lurking beneath the desert’s deceptive crust. Each pixel of satellite data became a brushstroke in a new kind of map, keeping tanks out of the mire and the missions on track.
      “It was so neat to see the remote sensing techniques I’d learned about in school actually making a difference,” Doorn said.
      With this knowledge, he helped guide his unit’s shift from analog maps—paper grids and grease pencils—to the emerging world of digital mapping, a leap that sharpened the military’s ability to read the landscape and steer clear of trouble.
      From Desert Muck to Farm Fields
      Brad’s military experience gave him an early look at how satellite data could address tangible, on-the-ground challenges. In the Army, he saw how integrating satellite data into military maps could offer soldiers critical information. That experience set the foundation for his later work at NASA, where he would help develop technology with lasting, practical impacts.
      Consider OpenET, a NASA-funded initiative that uses Landsat data to give farmers insights into water use and irrigation needs at field scale. The ET in OpenET stands not for the little alien who phoned home, but for evapotranspiration. It’s a combination of water evaporating from the ground and water released by plants into the air.
      The program relies on the same thermal technology Doorn used during the Gulf War. Just as cooler, wetter areas in the desert hint at muddy spots, cooler patches in farm fields show where there’s more moisture or plants are releasing more water. These data are key to managing water resources wisely and keeping crops healthy.
      “OpenET has transformed our understanding of water demand,” explained Doorn.
      To better manage water, state officials and farmers in California are using satellite data through OpenET to track evapotranspiration. Here, the colors represent total evapotranspiration for 2023 as the equivalent depth of water in millimeters. Dark blue regions have higher evapotranspiration rates, such as in the Central Valley. Credit: NASA Earth Observatory using openetdata.org In the late 2000s, when a new generation of Landsat satellites was being planned, the thermal infrared imagers were initially left off the drawing board. “Landsat 8’s design caused a lot of consternation in some Western states that were beginning to use the instrument for measuring and monitoring water use,” said Tony Willardson, the executive director of the Western States Water Council, a government entity that advises western governors on water policy.
      Brad played a key role in conveying to NASA the critical need for this technology, both for agriculture and water management, Willardson said. The thermal imager was eventually reinstated and has since “helped to close a gap in western water management.”
      “A lot of the technologies that we are using more and more were developed by NASA,” said Willardson. “We need NASA to be doing even more in Earth science.”
      Sowing Global Food Stability from Space
      Brad ended up serving in the Army for nearly a decade. “You hit that 10-year mark in the military, and you sort of have to decide if you’re staying in for 20 or if you’re getting out,” said Brad. “My wife, Kristen, was able to manage her career as a registered dietician through the first four moves in six years, but eventually it was too much. So, I told her: ‘Your choice. You decide where we go next.’”
      She chose southern Pennsylvania to be closer to her family. Brad was 32 years old, and the couple had two small children at the time—one of whom had had open-heart surgery at 6 weeks old to fix a heart defect. They would go on to have another child.
      In the late 1990s, within a few years of leaving the military, Doorn found himself someplace he had never imagined: sitting behind a desk at the U.S. Department of Agriculture. For a boy who had grown up driving trucks across the plains of South Dakota—who had vowed never to work in an office, much less live east of the Mississippi—this was an unexpected detour. But he had long since learned that the best paths are often the ones you don’t see coming.
      At USDA, he moved forward not with a grand plan, but with an instinctive trust in where curiosity and challenge might lead. He rose through the ranks, from a programmer to directing the agency’s international food production analysis program. He was increasingly driven by a conviction that satellite data, if used the right way, could transform how we see the land and the way we feed the world.
      While at USDA, and later at NASA, which he joined in 2009, Brad was instrumental in developing and overseeing the Global Agricultural Monitoring (GLAM) system. This real-time interactive satellite platform delivers massive amounts of ready-to-use satellite data directly to USDA crop analysts, eliminating the burden of data processing and enabling them to focus on rapid crop analysis across the globe. It was a pioneering tool, said Inbal Becker-Reshef, a research professor at University of Maryland’s Department of Geographical Sciences, who played a central role in developing the GLAM system.
      At a 2022 Kansas gathering, Brad Doorn presents to farmers about NASA’s Earth Science Division and its activities supporting agriculture. Credit: A. Whitcraft GLAM set the stage for GEOGLAM, a separate, international initiative launched in 2011 by agriculture ministers from the G20—a group of the world’s major economies—partly as a response to global food price volatility. GEOGLAM, which stands for Group on Earth Observations Global Agricultural Monitoring, uses satellite data to monitor global crop conditions, from drought stress to excessive rain, around the world.
      Joseph Glauber, a former USDA chief economist, noted that there was initial uncertainty within USDA about the initiative’s longevity, but he credited Brad’s background with rallying support. Today, GEOGLAM’s monthly crop assessments, produced by over 40 organizations including USDA and NASA, serve as a global consensus on crop conditions, helping governments and humanitarian organizations anticipate food shortages.
      “Even today, the G20 points to GEOGLAM and its sister initiative, the Agricultural Market Information System—which tracks how crop conditions affect markets—as major successes,” Glauber said.
      Harvesting Data Amid Conflict
      Doorn’s work crosses continents. When war broke out between Russia and Ukraine in 2022, it rattled global food markets. The Ukrainian government turned to NASA Harvest—a global food security and agriculture consortium led by the University of Maryland and funded by NASA—for help. As manager of NASA’s agriculture program, Brad was a driving force behind the launch of NASA Harvest in 2017, envisioning it as a program that would harness satellite data to provide timely, actionable insights for global agriculture.
      From orbit, satellites could observe the sown and the harvested wheat, sunflowers, and barley, offering some of the only reliable estimates for fields in the war zone. Satellite imagery revealed that, despite the conflict, more cropland had been planted and harvested in Ukraine than anyone had expected, a finding that helped stabilize volatile global food prices.
      “Brad and the team recognized that providing that type of rapid agricultural assessment for policy support is what NASA Harvest exists for,” said Becker-Reshef, who is the director of the consortium.
      NASA Harvest’s reach stretches well beyond Europe. In sub-Saharan Africa, the consortium collaborates with local and international partners, tracking the health of crops and the creeping spread of drought. This information helps equip governments, aid organizations, and farmers to act before disaster strikes, making each data point a crucial defense against hunger.
      NASA Harvest has since been joined by NASA Acres, founded in 2023 to provide satellite data and tools that help farmers make well-informed decisions for healthier crops and soil in the United States. One project, for example, involves working with farmers in Illinois to manage nitrogen use more effectively, leveraging satellite data to enhance crop yields while reducing environmental impact.
      This image shows corn cultivation patterns across the U.S. Midwest in 2020, with lands planted in corn marked in yellow. The map was built from the Cropland Data Layer product provided by the National Agricultural Statistics Service, which includes data from the USGS National Land Cover Database and from satellites such as Landsat 8. Credit: NASA Earth Observatory/ Lauren Dauphin Friedl noted that Doorn understands the missions of both NASA and the USDA, and with his agricultural roots, he knows the needs of farmers and agricultural businesses firsthand. “Often in meetings, Brad would remind us that the margins for a farmer are in the pennies,” Friedl said. “They wouldn’t be able to afford remote sensing,” so making sure NASA’s satellite information was free and accessible was that much more important.
      “It’s hard to imagine that NASA would have the agriculture program it does without somebody like Brad continuing to advocate and push for this to exist,” said Alyssa Whitcraft, the director of NASA Acres. “He knows how critical it is for satellite data to be accessible and useful to those on the ground. He makes sure we never lose sight of that.”
      An Emissary Between Worlds
      Colleagues say Doorn’s strength lies in his ability to bridge worlds, whether it’s making connections between agencies like NASA and USDA, or connecting such agencies to state water councils or farming communities. His fluency in translating complex science into simple terms makes him equally at ease in whichever world he finds himself.
      “There’s NASA language and there’s farm language,” says Lance Lillibridge, who farms about 1,400 acres of corn and soybeans in Benton County, Iowa, and has helped lead the Iowa Corn Growers Association. “Sometimes you need an interpreter, and Brad’s that guy.” He recalled a meeting where some farmers were skeptical, wary of NASA’s “big brother” eyes in the sky, “but Brad had a way of putting people at ease, keeping everyone focused on the shared goal of better data for better decisions.”
      Brad Doorn speaks during NASA’s “Space for Ag” roadshow in Iowa, July 2023, highlighting NASA’s role in supporting sustainable farming practices. Credit: N. Pepper “One of my favorite memories of Brad,” said Forrest Melton, the OpenET project scientist at NASA’s Ames Research Center, “is an afternoon spent visiting with farmers in western Nebraska, drinking iced tea and talking with them about the challenges facing their family farm.”
      Colleagues describe Brad as a nearly unflappable guide, one who knows the agricultural landscape so well that he makes the impossible seem manageable. They say his calm, approachable style, paired with a ready smile, puts people at ease whether in Washington conference rooms or Midwestern barns. And he listens closely to understand where there may be opportunities to help.
      “Few people in the water and agriculture communities, from the small-scale farmer to the federal government appointee, aren’t familiar with some aspect of the work Brad has enabled over the decades,” said Sarah Brennan, a former deputy program manager for NASA’s water resources programs. “He has supported the development of some of the greatest advancements in using remote sensing in these communities.”
      It’s About the People and the Team
      Doorn’s leadership is less about issuing directives, colleagues say, and more about cultivating growth—in crops, in data systems, and in people. Like a farmer tending to his fields, he nurtures the potential in every project and person he encounters. “Almost everyone who has worked for Brad can point back to the opportunities he provided them that launched their successful careers,” said Brennan.
      Over the years, he’s added layers to this work of creating paths for others to succeed: as president of the American Society of Photogrammetry and Remote Sensing, as an adjunct professor at Penn State, and as a youth basketball league director.
      “What I’ve learned, probably in the military and I’ve carried it forward, is that it’s the people that matter,” Brad said. “I had great mentors who believed it’s just as important to help others grow as it is to meet the day’s demands. Those roles shift your focus toward the people around you, and often, the more you give of your time, the more you end up getting back.”
      Young Brad Doorn (front center) stands with his siblings, capturing a family moment in 1960s South Dakota. His youngest brother isn’t pictured. Credit: B. Doorn It has been a long journey from hauling milk and animal feed across the South Dakota plains to surveying them now as a scientist. The tools of his career have changed—from truck routes to satellite orbits, from paper maps to digital data—but his mission remains the same: helping farmers feed the world.
      “Growing up in South Dakota, I saw firsthand the challenges farmers face. Today, I’m proud to help provide the tools and data that can make a real difference in their lives,” Doorn added. “Whether it’s a farmer, an economist, or a military analyst, if you give them the right tools, they’ll take them to places you never even thought about. That’s what excites me—seeing where they go.”
      By Emily DeMarco
      NASA’s Earth Science Division, Headquarters
      Share








      Details
      Last Updated Nov 20, 2024 Related Terms
      Earth People of NASA Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.

      View the full article
    • By NASA
      Associate Director for Mission Planning, Earth Sciences, and environmental scientist Robert J. “Bob” Swap makes a difference by putting knowledge into action.
      Name: Robert J. “Bob” Swap
      Title: Associate Director for Mission Planning, Earth Sciences
      Organization: Earth Science Division (Code 610)
      Robert Swap (right) and Karen St. Germain, NASA Earth science director (left) joined NASA’s Student Airborne Research Program, an eight-week summer internship program for rising senior undergraduates during summer 2023. Photo courtesy of Robert Swap What do you do and what is most interesting about your role here at Goddard?
      I work with our personnel to come up with the most viable mission concepts and put together the best teams to work on these concepts. I love working across the division, and with the center and the broader community, to engage with diverse competent teams and realize their potential in address pressing challenges in the earth sciences.
      Why did you become an Earth scientist?
      In the mid to late ’70s, the environment became a growing concern. I read all the Golden Guides in the elementary school library to learn about different creatures. I grew up exploring and discovering the surrounding woods, fields, and creeks, both on my own and through scouting and became drawn to nature, its connectedness, and its complexity. The time I spent fishing with my father, a military officer who also worked with meteorology, and my brother helped cement that love. I guess you could say that I became “hooked.”
      What is your educational background?
      In 1987, I got a B.A. in environmental science from the University of Virginia. While at UVA, I was a walk-on football player, an offensive lineman on UVA’s first ever post-season bowl team. This furthered my understanding of teamwork, how to work with people who were much more skilled than I was, and how to coach. I received master’s and Ph.D. degrees in environmental science from UVA in 1990 and 1996, respectively.
      As an undergraduate in environmental sciences, I learned about global biochemical cycling — meaning how carbon and nitrogen move through the living and nonliving systems — while working on research teams in the Chesapeake Bay, the Blue Ridge Mountains and the Amazon Basin.
      Before graduating I had the good fortune to participate in the NASA Amazon Boundary Layer Experiment (ABLE-2B) in the central Amazon, which I used to kick off my graduate studies. I then focused on southern African aerosol emissions, transports and depositions for my doctoral studies that ultimately led to a university research fellow postdoc at the University of the Witwatersrand in Johannesburg, South Africa.
      What are some of your career highlights?
      It has been a crazy journey!
      While helping put up meteorological towers in the Amazon deep jungle, we would encounter massive squall lines. These storms were so loud as they rained down on the deep forest that you could not hear someone 10 feet away. One of the neatest things that I observed was that after the storms passed, we would see a fine red dust settling on top of our fleet of white Volkswagen rental vehicles in the middle of the rainforest.
      That observation piqued my interest and led to a paper I wrote about Saharan dust being transported to the Amazon basin and its potential implications for the Amazon, especially regarding nutrient losses from the system. Our initial work suggested there was not enough input from Northern Africa to support the system’s nutrient losses. That caused us to start looking to Sub-Saharan Africa as a potential source of these nutritive species.
      I finished my master’s during the first Persian Gulf War, and finding a job was challenging. During that phase I diversified my income stream by delivering newspapers and pizzas and also bouncing at a local nightspot so that I could focus on writing papers and proposals related to my research. One of my successes was the winning of a joint National Science Foundation proposal that funded my doctoral research to go to Namibia and examine sources of aerosol and trace gases as part of the larger NASA TRACE-Southern African Atmosphere Fire Research Initiative – 92 (SAFARI-92). We were based at Okaukuejo Rest Camp inside of Namibia’s Etosha National Park for the better part of two months. We characterized conservative chemical tracers of aerosols, their sources and long-range transport from biomass burning regions, which proved, in part, that Central Southern Africa was providing mineral and biomass burning emissions containing biogeochemically important species to far removed, downwind ecosystems thousands of kilometers away.  
      When I returned to Africa as a postdoctoral fellow, I  was able to experience other countries and cultures including Lesotho, Mozambique, and Zambia. In 1997, NASA’s AERONET project was also expanding into Africa and I helped Brent Holben and his team deploy instruments throughout Africa in preparation for vicarious validation of instrumentation aboard NASA’s Terra satellite platform.
      I returned to UVA as a research scientist to work for Chris Justice and his EOS MODIS/Terra validation team. I used this field experience and the international networks I developed, which contributed to my assuming the role of U.S. principal investigator for NASA’s Southern African Regional Science Initiative. Known as SAFARI 2000, it was an effort that involved 250 scientists from 16 different countries and lasted more than three years. When it ended, I became a research professor and began teaching environmental science and mentoring UVA students on international engagement projects.
      Around 2000, I created a regional knowledge network called Eastern/Southern Africa Virginia Network and Association (ESAVANA) that leveraged the formal and informal structures and networks that SAFARI 2000 established. I used my team building and science diplomacy skills to pull together different regional university partners, who each had unique pieces for unlocking the larger puzzle of how southern Africa acted as a regional coupled human-natural system. Each partner had something important to contribute while the larger potential was only possible by leveraging their respective strengths together as a team.
      I traveled extensively during this time and was supported in 2001 partially by a Fulbright Senior Specialist Award which allowed me to spend time at the University of Eduardo Mondlane in Maputo Mozambique to help them with hydrology ecosystem issues in the wake of massive floods. We kept the network alive by creating summer study abroad, service learning and intersession January educational programs that drew upon colleagues and their expertise from around the world that attracted new people, energy, and resources to ESAVANA. All of these efforts contributed to a “community of practice” focused on learning about the ethics and protocols of international research. The respectful exchange of committed people and their energies and ideas was key to the effort’s success. I further amplified the impact of this work by contributing my lived and learned experiences to the development of the first ever global development studies major at UVA.
      In 2004, I had a bad car accident and as a result have battled back and hip issues ever since. After falling off the research funding treadmill, I had to reconfigure myself in the teaching and program consultant sector. I grew more into a teaching role and was recognized for it by UVA’s Z-Society 2008 Professor of the Year, the Carnegie Foundation for the Advancement of Teaching’s Virginia’s 2012 Professor of the Year, as well as my 2014 induction into UVA’s Academy of Teaching — all while technically a research professor. I was also heavily involved for almost a decade with the American Association for the Advancement of Science and its Center for Science Diplomacy and tasks related to activities such as reviewing the Inter-American Institute for Global Change Research and teaching science diplomacy in short courses for the World Academy of Sciences for the Advancement of Science in Developing Countries located in Trieste, Italy, and the Academy of Science of South Africa.
      I worked in the Earth Sciences Division at NASA Headquarters from 2014 to early 2017 as a rotating program support officer as part of the Intergovernmental Personnel Act (IPA), where I supported the atmospheric composition focus area. One of my responsibilities involved serving as a United States Embassy science fellow in the summer of 2015, where I went to Namibia to support one of our Earth Venture Suborbital field campaigns. I came to Goddard in April 2017 to help revector their nascent global network of ground-based, hyperspectral ultraviolet and visible instruments known as the Pandora.
      What is your next big project?
      I am currently working with the NASA Goddard Earth Science Division front office to craft a vision for the next 20 years, which involves the alignment of people around a process to achieve a desired product. With the field of Earth System Science changing so rapidly, we need to position ourselves within this ever evolving “new space” environment of multi-sectoral partners — governmental, commercial, not-for-profit, and academic — from the U.S. and beyond to study the Earth system. This involves working with other governmental agencies, universities and industrial partners to chart a way forward. We will have a lot of new players. We will be working with partners we never imagined.
      We need people who know how to work across these different sectors. One such attempt to “grow our own timber” involves my development of an experimental version of the first NASA Student Airborne Research Program East Coast Edition (SARP and SARP-East), where student participants from a diversity of institutions of higher learning can see the power and promise of what NASA does, how we work together on big projects, and hopefully be inspired to take on the challenges of the future. In other words, I am pushing an exposure to field-based, Earth system science down earlier into their careers to expose them to what NASA does in an integrated fashion.
      What assets do you bring to the Earth Science Division front office?
      In 2020, I came to the Earth science front office to help lead the division. I make myself available across the division to help inspire, collect, suggest, and coach our rank and file into producing really cool mission concept ideas.
      Part of why the front office wanted me is because I use the skills of relationship building, community building, and science diplomacy to make things happen, to create joint ventures.  Having had to support myself for over 20 years on soft money, I learned to become an entrepreneur of sorts — to be scientifically and socially creative — and I was forced to look inward and take an asset-based approach. I look at all the forms of capital I have at hand and use those to make the best of what I have got. In Appalachia, there is an expression: use everything but the squeal from the pig.
      Lastly, I bring a quick wit with a good dose of self-deprecating humor that helps me connect with people.
      How do you use science diplomacy to make things happen?
      Two of the things that bind people together about science are the process of inquiry and utilizing the scientific method, both of which are universally accepted. As such, they allow us to transcend national and cultural divides.
      Science diplomacy works best when you start with this common foundation. Starting with this premise in collaborative science allows for conversations to take place focusing on what everyone has in common. You can have difficult conversations and respectful confrontations about larger issues.
      Scientists can then talk and build bridges in unique ways. We did this with SAFARI 2000 while working in a region that had seen two major wars and the system of Apartheid within the previous decade. We worked across borders of people who were previously at odds. We did that by looking at something apart from national identity, which was Southern Africa. We focused on how a large-scale system functions and how to make something that incorporates 10 different countries operate as a unit. We wanted to conduct studies showing how the region operated as a functional unit while dealing with transboundary issues. It took a lot of community and trust, and we began with the science community.
      What drives you?
      I want to put knowledge into action to make a difference. I realize it is not about me, it is about “we.” That is why I came to NASA, to make a difference. There is no other agency in the world where we can harness such a unique and capable group of people.
      What do you do for fun?
      I enjoy watching sports. I still enjoy hiking, fishing, and tubing down the river. My wife and I like long walks through natural settings with our rescues, Lady, our black-and-tan coonhound, and Duchess, our long-haired German Shepherd Dog. They are our living hot water bottles in the winter.
      My wife and I also like to cook together.
      Who would you like to thank?
      Without a doubt, it starts with my wife, family, and children whom without none of what I have accomplished would have been possible. I have had the good fortune to be able to bring them along on some of my international work, including to Africa.
      I am also very grateful to all those people during my school years who stepped in and who did not judge me initially by my less than stellar grades. They gave me the chance to become who I am today.
      Who inspires you?
      There is an old television show that I really liked called “Connections,” by James Burke. He would start with a topic, go through the history, and show how one action led to another action with unforeseen consequences. He would take something modern like plastics and link it back to Viking times. Extending that affinity for connections, the Resilience Alliance out of Sweden also influences me with their commitment to showing connections and cycles.
      My mentors at UVA were always open to serving as a sounding board. They treated me as a colleague, not a student, as a member of the guild even though I was still an apprentice. That left an indelible impression upon me and I always try to do the same. My doctoral mentor Mike Garstang said that he already had a job and that this job was to let me stand on his shoulders to allow me to get to the next level, which is my model.
      Another person who was very formative during my early professional career was Jerry Melillo who showed me what it was like to be an effective programmatic mentor. I worked with him as his chief staffer of an external review of the IAI and learned a lot by watching how he ran that activity program.
      With respect to NASA, a number of people come to mind: Michael King, Chris Justice, and Tim Suttles, as well as my South African Co-PI, Harold Annegarn, all of whom, at one time or another, took me under their respective wings and mentored me through the whole SAFARI 2000 process. From each of their different perspectives, they taught me how NASA works, how to engage, how to implement a program, and how to navigate office politics. And my sister and our conversations about leadership and what it means to be a servant leader. To be honest, there are scores more individuals who have contributed to my development that I don’t have the space to mention here.
      What are some of your guiding principles?
      Never lose the wonder — stay curious. “We” not “me.” Seeking to understand before being understood. We all stand on somebody’s shoulders. Humility rather than hubris. Respect. Be the change you wish to see.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Nov 19, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      6 min read Matthew Kowalewski: Aerospace Engineer and Curious About Everything
      Matthew Kowalewski describes himself as “curious about too many things,” but that curiosity comes in…
      Article 7 days ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
      Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
      Article 7 days ago 5 min read Carissa Arillo: Testing Spacecraft, Penning the Owner’s Manuals
      Article 3 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...