Jump to content

Recommended Posts

  • Publishers
Posted

5 min read

NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10

Since its launch on March 12, 2015, NASA’s MMS, or Magnetospheric Multiscale, mission has been rewriting our understanding of a key physical process that is important across the universe, from black holes to the Sun to Earth’s protective magnetic field.

This process, called magnetic reconnection, occurs when magnetic field lines tangle and explosively realign, flinging away nearby particles. Around Earth, a single magnetic reconnection event can release as much energy in a couple of hours as the entire United States uses in a day.

Over the past 10 years, thousands of research papers with discoveries by MMS have enabled a wide range of technical and scientific advances, such as those about the conditions on the Sun that create space weather, which can impact technology and communications at Earth. It has also enabled insights for fusion energy technologies.

“The MMS mission has been a very important asset in NASA’s heliophysics fleet observatory,” said Guan Le, MMS mission lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It has utterly changed how we understand magnetic reconnection.”

Infographic celebrating NASA's 10 years of the Magnetospheric Multiscale Mission (MMS). Includes a satellite image and stats: 1,500 papers, 6,448 orbits, 36 instruments, 5.4 million files, 4.5-mile range record, and 300 GB of gathered data.
An infographic noting the accomplishments of NASA’s Magnetospheric Multiscale mission after 10 years in space.
NASA’s Goddard Space Flight Center/Kristen Perrin

Studying magnetic reconnection is key to understanding where this energy goes and how it can affect us down on the ground.

“The MMS mission not only studies universal physical processes, but it also allows us to probe the mechanisms that connect big eruptions on the Sun to things we experience on Earth, such as auroras, geomagnetic storms, and even power outages in extreme cases,” said Kevin Genestreti, MMS science deputy principal investigator and lead scientist at Southwest Research Institute’s Space Sector in Durham, New Hampshire.

The Perfect Laboratory

Using four identical spacecraft, MMS studies magnetic reconnection while traveling in a long, oval-shaped orbit around Earth — a perfect laboratory for closely studying magnetic reconnection.

“You can measure reconnection in a laboratory, but the scales are so very small there that you can’t make the detailed measurements needed to really understand reconnection,” said Jim Burch, principal investigator for MMS at the Southwest Research Institute in San Antonio, Texas.

Magnetic reconnection primarily happens in two locations around Earth, one located on the side facing the Sun, and another behind Earth farther away from the Sun. In their orbit, the four MMS spacecraft repeatedly pass through these key locations.

This artist’s concept shows magnetic reconnection at Earth during a solar storm.
NASA Goddard’s Conceptual Image Lab/Krystofer Kim

Before MMS, scientists only had a limited understanding of magnetic reconnection. But by improving instrument measurement speeds tenfold, MMS has been able to dramatically reshape what we know about the process. To date, MMS data has led to over 1,500 published scientific articles.

“For example, it turned out that the basic theory of reconnection in turbulent regions was wrong because previous missions couldn’t make observations at the level MMS can,” Burch said. “We also found reconnection in a lot of places that weren’t predicted.”

Working out new and refined theories of magnetic reconnection was an integral part of the MMS mission from the outset. 

“One of the truly groundbreaking findings from MMS is that the heart of reconnection has a well-ordered beat – even if everything around is turbulent,” said Michael Hesse, MMS theory and modeling lead at NASA’s Ames Research Center in California’s Silicon Valley. “This shows that precision measurement can decide between competing theories.”

Enabling Breakthroughs for Science and Scientists

The mission’s successes have also been a boon to young scientists, who are closely involved with the mission at all levels.

“In addition to its scientific achievements, it has also helped almost 50 students get doctorate degrees and enabled early career scientists to grow into leadership positions,” Le said.

To foster young scientists, MMS provides early career research grants to team members. The MMS team also created “Leads In-Training” roles to bring early career scientists to the table for big mission decisions and provide them the experience they need to move into leadership positions. The program has been so successful it is now required for all NASA Heliophysics missions.

Breaking Records

Beyond its scientific achievements, MMS also holds several records. Only months after launch, MMS received its first Guinness World Record for highest GPS fix at 44,000 miles above Earth. It would later shatter this record as it moved into a longer orbit, taking it 116,300 miles — halfway to the Moon — away from GPS transponders at Earth. GPS is designed to send signals down toward Earth, so using it in space, where signals are weak, is challenging. By using GPS at high altitudes, MMS has shown its potential for other applications.

“This GPS demonstration has been of great interest for the developers of the Artemis missions, which is testing GPS at lunar distances,” said Jim Clapsadle, MMS mission director at NASA Goddard.

The mission also holds the Guinness World Record for smallest satellite formation, with just 2.6 miles between spacecraft. Over the years, MMS’ four spacecraft have flown in lines and pyramid-shaped formations from 5 to 100 miles across to help scientists study magnetic reconnection on a range of scales. In that time, the spacecraft’s health has remained remarkably well.

This artist’s concept beauty pass shows the MMS spacecraft flying on Earth’s nightside, where MMS continues to study magnetic reconnection.
NASA’s Goddard Space Flight Center Conceptual Image Lab

“The hardware has proved very reliable, even now, 10 years into flight,” said Trevor Williams, MMS flight dynamics lead at NASA Goddard.

After launch, Williams and the flight operations team came up with more fuel-efficient ways to maneuver the spacecraft and keep them at their designated separations. As a result, the mission still has about a fourth of the fuel it launched with. This economy leaves enough fuel to continue operating the mission for decades. That’s good news to mission scientists who are eager to continue studying magnetic reconnection with MMS.

“We have thousands of magnetic reconnection events on the day side, but far fewer on the nightside,” Burch said. “But over the next three years we’ll be in a prime location to finish investigating nightside reconnection.”

By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact: Sarah Frazier

Share

Details

Last Updated
Mar 12, 2025
Editor
Miles Hatfield
Contact
Mara Johnson-Groh
Location
Goddard Space Flight Center
Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Science Activation GLOBE Mission Earth Supports… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      GLOBE Mission Earth Supports Career Technical Education
      The NASA Science Activation program’s GLOBE Mission EARTH (GME) project is forging powerful connections between career technical education (CTE) programs and real-world science, inspiring students across the United States to pursue careers in Science, Technology, Engineering, and Mathematics (STEM).
      GME is a collaborative effort between NASA scientists, educators, and schools that brings NASA Earth science and the GLOBE Program into classrooms to support hands-on, inquiry-based learning. GLOBE (Global Learning and Observations to Benefit the Environment) is an international science and education program that provides students and the public with the opportunity to participate in data collection and the scientific process, contributing meaningfully to our understanding of the Earth system.
      By connecting students directly to environmental research and NASA data, GME helps make science more relevant, engaging, and applicable to students’ futures. In CTE programs—where project-based and work-based learning are key instructional strategies—GME’s integration of GLOBE protocols offers students the chance to develop not only technical skills, but also essential data literacy and professional competencies like collaboration, critical thinking, and communication. These cross-cutting skills are valuable across a wide range of industries, from agriculture and advanced manufacturing to natural resources and public safety.
      The real-world, hands-on approach of CTE makes it an ideal setting for implementing GLOBE to support STEM learning across industries. At Skyline High School in Oakland, California, for example, GLOBE has been embedded in multiple courses within the school’s Green Energy Pathway, originally launched by GLOBE partner Tracy Ostrom. Over the past decade, nearly 1,000 students have participated in GLOBE activities at Skyline. Many of these students describe their experiences with environmental data collection and interactions with NASA scientists as inspiring and transformative. Similarly, at Toledo Technology Academy, GME is connecting students with NASA science and renewable energy projects—allowing them to study how solar panels impact their local environment and how weather conditions affect wind energy generation.
      To expand awareness of how GLOBE can enhance CTE learning and career preparation, WestEd staff Svetlana Darche and Nico Janik presented at the Educating for Careers Conference on March 3, 2025, in Sacramento, California. This event, sponsored by the California chapter of the Association for Career and Technical Education (ACTE), brought together over 2,600 educators dedicated to equipping students with the tools they need to succeed in an evolving job market. Darche and Janik’s session, titled “Developing STEM Skills While Contributing to Science,” showcased GLOBE’s role in work-based learning and introduced new federal definitions from the Carl D. Perkins Act (Perkins V) that emphasize:
      Interactions with industry professionals A direct link to curriculum and instruction First-hand engagement with real-world tasks in a given career field GLOBE’s approach to scientific data collection aligns perfectly with these criteria. Janik led 40 educators through a hands-on experience using the GLOBE Surface Temperature Protocol, demonstrating how students investigate the Urban Heat Island Effect while learning critical technical and analytical skills. By collecting and analyzing real-world data, students gain firsthand experience with the tools and methods used by scientists, bridging the gap between classroom learning and future career opportunities.
      Through GME’s work with CTE programs, students are not only learning science—they are doing science. These authentic experiences inspire, empower, and prepare students for careers where data literacy, scientific inquiry, and problem-solving are essential. With ongoing collaborations between GLOBE, NASA, and educators nationwide, the next generation of STEM professionals is already taking shape—one real-world investigation at a time.
      GME is supported by NASA under cooperative agreement award number NNX16AC54A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      GreenEnergyPathway presenting the Green Energy Pathway CTE program. Share








      Details
      Last Updated Apr 11, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Earth Science For Kids and Students Opportunities For Educators to Get Involved Explore More
      1 min read Kudos Test Article


      Article


      3 hours ago
      4 min read New York Math Teacher Measures Trees & Grows Scientists with GLOBE


      Article


      24 hours ago
      3 min read NASA Science Supports Data Literacy for K-12 Students


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Science Launching on SpaceX's 32nd Cargo Resupply Mission to the Space Station
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA and SpaceX are launching the company’s 32nd commercial resupply services mission to the International Space Station later this month, bringing a host of new research to the orbiting laboratory. Aboard the SpaceX Dragon spacecraft are experiments focused on vision-based navigation, spacecraft air quality, materials for drug and product manufacturing, and advancing plant growth with less reliance on photosynthesis.
      This and other research conducted aboard the space station advances future space exploration, including missions to the Moon and Mars, and provides many benefits to humanity.
      Investigations traveling to the space station include:
      Robotic spacecraft guidance
      Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a vision-based sensor developed by NASA to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
      Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
      Two of the space station’s Astrobee robots are used to test a vision-based guidance system for Smartphone Video Guidance Sensor (SVGS)NASA Protection from particles
      During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors in space to determine which is best suited to protect crew health and ensure mission success. The investigation also tests a device for distinguishing between smoke and dust. Aboard the space station, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
      Better materials, better drugs
      The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
      Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
      Stem cells grown along the Janus base nanomaterials (JBNs) made aboard the International Space Station.University of Connecticut Next-generation pharmaceutical nanostructures
      The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
      Helping plants grow
      Rhodium USAFA NIGHT examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use. The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
      Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
      Hardware for the Rhodium Plant LIFE, which was the first in a series used to study how space affects plant growth.NASA Atomic clocks in space
      An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
      An artist’s concept shows the Atomic Clock Ensemble in Space hardware mounted on the Earth-facing side of the space station’s exterior.ESA Download high-resolution photos and videos of the research mentioned in this article.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Latest News from Space Station Research
      Station Benefits for Humanity
      Space Station Research Results
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Portrait of David Mitchell, Thursday, Jan. 27, 2022, NASA Headquarters Mary W. Jackson building in Washington.NASA/Bill Ingalls David Mitchell, the Associate Administrator for MSD.   
      Have you ever wondered how NASA manages to achieve all the incredible missions it does, like probing the Sun and studying the history of our Universe? We do it through teamwork, one of our core values. And an essential part of NASA’s team is what we call Mission Support. Mission Support makes sure NASA’s missions, centers, and programs have the capabilities and services they need to explore the unknown, innovate for the future, and inspire the world.  
      To illustrate Mission Support at NASA, look at the example of the Roman Space Telescope. It’s not just scientists and engineers who are making the telescope happen. The program works with NASA’s financial office to plan the budget for the telescope. Engineers design the telescope with tools developed in coordination with NASA’s shared services and information technology offices. NASA’s engineering authority checks the design, and international relations manages NASA’s collaborations with other countries on the telescope. All of this is Mission Support. 
      Of course, there is much more to Mission Support, but I think you get the picture. MSD enables Mission Support by:  
      Planning and executing the Mission Support budgets for safety, security, and mission services as well as construction and environmental management.   Executing strategy and governance to ensure Mission Support is financially sound, aligned with the agency’s goals, and serving NASA’s missions.  Addressing Mission Support’s financial, operational, legal, and reputational risks to ensure resilience and mission success.  Working with mission directorates and centers to ensure NASA is prioritizing the Mission Support services they need most urgently to be successful.  Integrating Mission Support services across the agency to maximize efficiency and effectiveness.  Current and future missions require significant support to be successful. MSD is working today to ensure Mission Support is there for NASA to explore the unknown, innovate for the future, and inspire the world.  
      To learn more, visit MSD Organization.  
      View the full article
    • By NASA
      Credit: NASA NASA has selected ARES Technical Services of McLean, Virginia, to provide safety and mission assurance services at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, and Wallops Flight Facility in Virginia.
      The Safety and Mission Assurance Services III contract is a cost-plus-fixed-fee contract with an estimated total value of $226 million. The contract will have a five-year effective ordering period starting on June 1, 2025, with an optional six-month extension period.
      Under the contract, the vendor will provide support to the agency’s Safety and Mission Assurance Directorate at NASA Goddard. This includes performing independent surveillance, audits, reviews, and assessments of design, development, test, and mission operations activities on site at NASA and supplier facilities.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Jacob Richmond
      Goddard Space Flight Center, Maryland
      301-286-6255
      jacob.a.richmond@nasa.gov
      Share
      Details
      Last Updated Apr 07, 2025 LocationNASA Headquarters Related Terms
      Goddard Space Flight Center Wallops Flight Facility View the full article
  • Check out these Videos

×
×
  • Create New...