Members Can Post Anonymously On This Site
NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10
-
Similar Topics
-
By NASA
The NISAR mission will help map crops and track their development through the entire growing season. Using synthetic aperture radar, the satellite will be able to observe both small plots of farmland and monitor trends across broad regions, gathering data to in-form agricultural decision making.Adobe Stock/Greg Kelton Data from the NISAR satellite will be used to map crop growth, track plant health, and monitor soil moisture — offering detailed, timely information for decision making.
When it launches this year, the NISAR (NASA-ISRO Synthetic Aperture Radar) satellite will provide a powerful data stream that could help farmers in the U.S. and around the world. This new Earth mission by NASA and the Indian Space Research Organisation will help monitor the growth of crops from planting to harvest, generating crucial insights on how to time plantings, adjust irrigation schedules, and, ultimately, make the most of another precious resource: time.
Using synthetic aperture radar, NISAR will discern the physical characteristics of crops, as well as the moisture content of the plants and the soil they grow in. The mission will have the resolution to see small plots of farmland, but a potentially more meaningful benefit will come from its broad, frequent coverage of agricultural regions.
The satellite will image nearly all of Earth’s land twice every 12 days and will be able to resolve plots down to 30 feet (10 meters) wide. The cadence and resolution could allow users to zoom in to observe week-to-week changes on small farms or zoom out to monitor thousands of farms for broader trends. Such big-picture perspective will be useful for authorities managing crops or setting farm policy.
Tapping NISAR data, decision-makers could, for example, estimate when rice seedlings were planted across a region and track their height and blooming through the season while also monitoring the wetness of the plants and paddies over time. An unhealthy crop or drier paddies may signal the need to shift management strategies.
NISAR will provide maps of croplands on a global basis every two weeks. Observations will be uninterrupted by weather and provide up-to-date information on the large-scale trends that affect international food security. Credit: NASA/JPL-Caltech “It’s all about resource planning and optimizing, and timing is very important when it comes to crops: When is the best time to plant? When is the best time to irrigate? That is the whole game here,” said Narendra Das, a NISAR science team member and agricultural engineering researcher at Michigan State University in East Lansing.
Mapping Crops
NISAR is set to launch this year from ISRO’s Satish Dhawan Space Centre on India’s southeastern coast. Once in operation, it will produce about 80 terabytes of data products per day for researchers and users across numerous areas, including agriculture.
Satellites have been used for large-scale crop monitoring for decades. Because microwaves pass through clouds, radar can be more effective at observing crops during rainy seasons than other technologies such as thermal and optical imaging. The NISAR satellite will be the first radar satellite to employ two frequencies, L- and S-band, which will enable it to observe a broader range of surface features than a single instrument working at one frequency.
Microwaves from the mission’s radars will be able to penetrate the canopies of crops such as corn, rice, and wheat, then bounce off the plant stalks, soil, or water below, and then back to the sensor. This data will enable users to estimate the mass of the plant matter (biomass) that’s aboveground in an area. By interpreting the data over time and pairing it with optical imagery, users will be able to distinguish crop types based on growth patterns.
Data gathered in 2017 by the European Sentinel-1 SAR satellite program shows changes to croplands in the region southeast of Florida’s Lake Okeechobee. Colors in the fields indicate various crops in different parts of their growth and harvest cycles. NISAR will gather similar data in L- and S-band radar frequencies.ESA; processing and visualization by Earth Big Data LLC Additionally, NISAR’s radars will measure how the polarization, or vertical and horizontal orientation of signals, changes after they bounce back to the satellite from the surface. This will enable a technique called polarimetry that, when applied to the data, will help identify crops and estimate crop production with better accuracy.
“Another superpower of NISAR is that when its measurements are integrated with traditional satellite observations, especially vegetation health indexes, it will significantly enhance crop information,” added Brad Doorn, who oversees NASA’s water resources and agriculture research program.
The NISAR satellite’s high-resolution data on which crops are present and how well they are growing could feed into agricultural productivity forecasts.
“The government of India — or any government in the world — wants to know the crop acreage and the production estimates in a very precise way,” said Bimal Kumar Bhattacharya, the agricultural applications lead at ISRO’s Space Applications Centre in Ahmedabad. “The high-repeat time-series data of NISAR will be very, very helpful.”
Tracking Soil Moisture
The NISAR satellite can also help farmers gauge the water content in soil and vegetation. In general, wetter soils tend to return more signals and show up brighter in radar imagery than drier soils. There is a similar relationship with plant moisture.
A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to offer insights into change in Earth’s ecosystems, including its agricultural lands. The spacecraft, depicted here in an artist’s concept, will launch from India.NASA/JPL-Caltech These capabilities mean that NISAR can estimate the water content of crops over a growing season to help determine if they are water-stressed, and it can use signals that have scattered back from the ground to estimate soil moisture.
The soil moisture data could potentially inform agriculture and water managers about how croplands respond to heat waves or droughts, as well as how quickly they absorb water and then dry out following rain — information that could support irrigation planning.
“Resource managers thinking about food security and where resources need to go are going to be able to use this sort of data to have a holistic view of their whole region,” said Rowena Lohman, an Earth sciences researcher at Cornell University in Ithaca, New York, and soil moisture lead on the NISAR science team.
More About NISAR
The NISAR satellite is a joint collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on flight hardware for an Earth-observing mission. Managed by Caltech, NASA’s Jet Propulsion Laboratory leads the U.S. component of the project and provided the L-band SAR. NASA JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center manages the Near Space Network, which will receive NISAR’s L-band data.
The ISRO Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre provided the spacecraft bus. The launch vehicle is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.
To learn more about NISAR, visit:
https://nisar.jpl.nasa.gov
How NISAR Will See Earth What Sets NISAR Apart From Other Earth Satellites News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
2025-035
Share
Details
Last Updated Mar 12, 2025 Related Terms
NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Earth Science Earth Science Division Explore More
13 min read The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science
Introduction Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a workhorse in…
Article 23 hours ago 27 min read Summary of Special Engage Session on “Remote Sensing and the Future of Earth Observations”
Introduction On October 16, 2024, a special session of the NASA Goddard Engage series took…
Article 23 hours ago 2 min read How Do We Know the Earth Isn’t Flat? We Asked a NASA Expert: Episode 53
Article 1 day ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:03:21 Meet Hera, our very own asteroid detective. Together with two CubeSats – Milani the rock decoder and Juventas the radar visionary – Hera is off on an adventure to explore Didymos, a double asteroid system that is typical of the thousands that pose an impact risk to planet Earth.
In September 2022 NASA’s DART spacecraft tested if it was possible to divert an asteroid by giving it a shove – and found out that it was! Important knowledge, should we wish to avoid going the same way as the dinosaurs. Astronomers can observe from afar how the smaller asteroid’s orbit has shifted since DART’s impact, but there is still a missing piece of the puzzle if we want to fully understand how ‘kinetic impacting’ works in practice. Suitable for kids and adults alike, this episode of ‘The Incredible Adventures of Hera’ explains what ESA’s asteroid detective and its CubeSat assistants are doing on their cosmic roadtrip through space towards the asteroid, and why it involves skimming close to Mars.
Watch the other episodes of The Incredible Adventures of the Hera Mission
View the full article
-
By NASA
Official portrait of NASA astronaut Jonny Kim, who will serve as a flight engineer during Expedition 73. Credit: NASA NASA will provide interview opportunities with astronaut Jonny Kim beginning at 9 a.m. EDT, Tuesday, March 18, to highlight his upcoming mission to the International Space Station in April.
The virtual interviews from Star City, Russia, will stream live on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 5 p.m., Monday, March 17, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online.
Kim will launch on Tuesday, April 8, aboard the Roscosmos Soyuz MS-27 spacecraft, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky. The trio will spend approximately eight months aboard the orbital laboratory before returning to Earth in the fall 2025. During his time in orbit, Kim will conduct scientific investigations and technology demonstrations to help prepare the crew for future space missions and provide benefits to people on Earth.
Kim is making his first spaceflight after selection as part of the 2017 NASA astronaut class. A native of Los Angeles, he is a U.S. Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston. He completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital. After completing initial astronaut candidate training, Kim supported mission and crew operations in various roles, including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer. Follow @jonnykimusa on X and @jonnykimusa on Instagram.
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to focus more of its resources on deep space missions to the Moon and Mars.
Learn more about International Space Station research and operations at:
https://www.nasa.gov/station
-end-
Joshua Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
Raegan Scharfetter
Johnson Space Center, Houston
281-910-4989
raegan.r.scharfetter@nasa.gov
Share
Details
Last Updated Mar 11, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Humans in Space Astronauts Expedition 73 International Space Station (ISS) ISS Research Jonny Kim View the full article
-
By European Space Agency
Video: 00:01:36 On Wednesday 12 March 2025 ESA’s Hera spacecraft for planetary defence performs a flyby of Mars. The gravity of the red planet shifts the spacecraft’s trajectory towards its final destination of the Didymos binary asteroid system, shortening its trip by months and saving substantial fuel.
Watch the livestream release of images from Hera’s flyby by the mission’s science team on Thursday 13 March, starting at 11:50 CET!
Hera comes to around 5000 km from the surface of Mars during its flyby. It will also image Deimos, the smaller of Mars’s two moons, from a minimum 1000 km away (while venturing as close as 300 km). Hera will also image Mars’s larger moon Phobos as it begins to move away from Mars.
Launched on 7 October 2024, Hera on its way to visit the first asteroid to have had its orbit altered by human action. By gathering close-up data about the Dimorphos asteroid, which was impacted by NASA’s DART spacecraft in 2022, Hera will help turn asteroid deflection into a well understood and potentially repeatable technique.
Hera will reach the Didymos asteroid and its Dimorphos moonlet in December 2026. By gathering crucial missing data during its close-up crash scene investigation, Hera will turn the kinetic impact method of asteroid deflection into a well understood technique that could potentially be used for real when needed.
View the full article
-
By NASA
Intuitive Machines’ IM-2 captured an image March 6, 2025, after landing in a crater from the Moon’s South Pole. The lunar lander is on its side about 820 feet from the intended landing site, Mons Mouton. In the center of the image between the two lander legs is the Polar Resources Ice Mining Experiment 1 suite, which shows the drill deployed.Credit: Intuitive Machines Shortly after touching down inside a crater on the Moon, carrying NASA technology and science on its IM-2 mission, Intuitive Machines collected some data for the agency before calling an early end of mission at 12:15 a.m. CST Friday.
As part of the company’s second Moon delivery for NASA under the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the IM-2 mission included a drill to bring lunar soil to the surface and a mass spectrometer to look for the presence of volatiles, or gases, that could one day help provide fuel or breathable oxygen to future Artemis explorers.
Planned to land at Mons Mouton, IM-2 touched down at approximately 11:30 a.m. March 6, more than 1,300 feet (400 meters) from its intended landing site. Intuitive Machines said images collected later confirmed the lander was on its side, preventing it from fully operating the drill and other instruments before its batteries were depleted.
The IM-2 mission landed closer to the lunar South Pole than any previous lander.
“Our targeted landing site near the lunar South Pole is one of the most scientifically interesting, and geographically challenging locations, on the Moon,” said Nicky Fox, associate administrator for science at NASA Headquarters in Washington. “Each success and setback are opportunities to learn and grow, and we will use this lesson to propel our efforts to advance science, exploration, and commercial development as we get ready for human exploration of Mars.”
The Nova-C lander, named Athena, captured and transmitted images of the landing site before activating the technology and science instruments. Among the data collected, NASA’s PRIME-1 (Polar Resources Ice Mining Experiment 1) suite, which includes the lunar drill known as TRIDENT (The Regolith and Ice Drill for Exploring New Terrain), successfully demonstrated the hardware’s full range of motion in the harsh environment of space. The Mass Spectrometer Observing Lunar Operations (MSOLO) as part of the PRIME-1 suite of instruments, detected elements likely due to the gases emitted from the lander’s propulsion system.
“While this mission didn’t achieve all of its objectives for NASA, the work that went into the payload development is already informing other agency and commercial efforts,” said Clayton Turner, associate administrator for space technology, NASA Headquarters. “As we continue developing new technologies to support exploration of the Moon and Mars, testing technologies in-situ is crucial to informing future missions. The CLPS initiative remains an instrumental method for achieving this.”
Despite the lander’s configuration, Intuitive Machines, which was responsible for launch, delivery, and surface operations under its CLPS contract, was able to complete some instrument checkouts and collect 250 megabytes of data for NASA.
“Empowering American companies to deliver science and tech to the Moon on behalf of NASA both produces scientific results and continues development of a lunar economy,” said Joel Kearns, deputy associate administrator for Exploration in the Science Mission Directorate at NASA Headquarters. “While we’re disappointed in the outcome of the IM-2 mission, we remain committed to supporting our commercial vendors as they navigate the very difficult task of landing and operating on the Moon.”
NASA’s Laser Retroreflector Array, a passive instrument meant to provide a reference point on the lunar surface and does not power on, will remain affixed to the top deck of the lander. Although Intuitive Machines’ Nova-C Hopper and Nokia’s 4G/LTE Tipping Point technologies, funded in part by NASA, were only able to complete some objectives, they provided insight into maturing technologies ready for infusion into a commercial space application including some checkouts in flight and on the surface.
Intuitive Machines’ IM-2 mission launched at 6:16 p.m., Feb. 26, aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
Intuitive Machines has two more deliveries on the books for NASA in the future, with its IM-3 mission slated for 2026, and IM-4 mission in 2027.
To date, five vendors have been awarded a total of 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the Moon’s far side and South Pole region. CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum contract value of $2.6 billion through 2028.
Learn more about NASA’s CLPS initiative at:
https://www.nasa.gov/clps
-end-
Cheryl Warner / Jasmine Hopkins
Headquarters, Washington
202-358-1600
cheryl.m.warner@nasa.gov / jasmine.s.hopkins@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Share
Details
Last Updated Mar 07, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Science & Research Science Mission Directorate Space Technology Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.