Jump to content

NASA Astronaut Jonny Kim to Discuss Upcoming Launch, Mission


Recommended Posts

  • Publishers
Posted
NASA astronaut Jonny Kim looks off-camera, dressed in a white space suit with an American flag on the sleeve.
Official portrait of NASA astronaut Jonny Kim, who will serve as a flight engineer during Expedition 73.
Credit: NASA

NASA will provide interview opportunities with astronaut Jonny Kim beginning at 9 a.m. EDT, Tuesday, March 18, to highlight his upcoming mission to the International Space Station in April.

The virtual interviews from Star City, Russia, will stream live on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.

Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 5 p.m., Monday, March 17, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online.

Kim will launch on Tuesday, April 8, aboard the Roscosmos Soyuz MS-27 spacecraft, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky. The trio will spend approximately eight months aboard the orbital laboratory before returning to Earth in the fall 2025. During his time in orbit, Kim will conduct scientific investigations and technology demonstrations to help prepare the crew for future space missions and provide benefits to people on Earth.

Kim is making his first spaceflight after selection as part of the 2017 NASA astronaut class. A native of Los Angeles, he is a U.S. Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston. He completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital. After completing initial astronaut candidate training, Kim supported mission and crew operations in various roles, including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer. Follow @jonnykimusa on X and @jonnykimusa on Instagram.

For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to focus more of its resources on deep space missions to the Moon and Mars.

Learn more about International Space Station research and operations at:

https://www.nasa.gov/station

-end-

Joshua Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Raegan Scharfetter
Johnson Space Center, Houston
281-910-4989
raegan.r.scharfetter@nasa.gov

Share

Details

Last Updated
Mar 11, 2025
Editor
Jessica Taveau

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut and Expedition 72 Commander Suni Williams displays a set of BioNutrients production packs during an experiment aboard the International Space Station. The experiment uses engineered yeast to produce nutrients and vitamins to support future astronaut health.NASA NASA’s BioNutrients series of experiments is testing ways to use microorganisms to make nutrients that will be needed for human health during future long-duration deep space exploration missions. Some vital nutrients lack the shelf-life needed to span multi-year human missions, such as a mission to Mars, and may need to be produced in space to support astronaut health. To meet this need, the BioNutrients project uses a biomanufacturing approach similar to making familiar fermented foods, such as yogurt. But these foods also will include specific types and amounts of nutrients that crew will be able to consume in the future.
       
      The first experiment in the series, BioNutrients-1, set out to assess the five-year stability and performance of a hand-held system – called a production pack – that uses an engineered microorganism, yeast, to manufacture fresh vitamins on-demand and in space. The BioNutrients-1 experiments began after multiple sets of production packs launched to the station in 2019. This collection included spare production packs as backups to be used in case an experiment needs to be re-run during the five-year study. The planned experiments concluded in January 2024 spare production packs still remaining aboard the orbiting lab and in the BioNutrients lab at NASA’s Ames Research Center in California’s Silicon Valley, where the ground team runs experiments in parallel to the crew operations.
       
      Leaders at NASA’s International Space Station and Game Changing Development programs worked to coordinate the crew time needed to perform an additional BioNutrients-2 experiment using the spare packs. This extended the study’s timeline to almost six years in orbit, allowing valuable crew observations and data from the additional experiment run to be applied to a follow-on experiment, BioNutrients-3, which completed its analog astronaut experiment in April 2024, and is planned to launch to the station this year. Astronauts on the space station will freeze the sample and eventually it will be returned to Earth for analysis to see how much yeast grew and how much nutrient the experiment produced. This will help us understand how the shelf stability of the packets.
      Share
      Details
      Last Updated Mar 11, 2025 Related Terms
      General Explore More
      2 min read NASA Ames Science Directorate: Stars of the Month – March 2025
      Article 1 day ago 3 min read James Gentile: Shaping the Artemis Generation, One Simulation at a Time 
      Article 1 day ago 3 min read NASA Seeks Commercial Partner for Robots Aboard Space Station
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Bionutrients
      Synthetic Biology
      International Space Station
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 13 min read
      The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science
      Introduction
      Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a workhorse in NASA’s Airborne Science Program (ASP)—see Photo 1. The aircraft, located at NASA’s Armstrong Flight Research Center (AFRC) in California, flew countless missions as a science laboratory, producing science data that supports projects serving the world’s scientific community, particularly the NASA Earth science community. NASA recently decided to retire the venerable DC-8 aircraft, which made its last science flight in April 2024. The DC-8 is being replaced with a similarly refurbished Boeing 777 aircraft, which will be even more capable than the DC-8.
      Photo 1. NASA’s DC-8 flying laboratory flew Earth science missions for NASA’s. Airborne Science Program (ASP) from 1987–2024. The versatile aircraft was used to conduct a variety of research experiments that spanned all seven continents. Photo credit: Lori Losey [NASA’s Armstrong Flight Research Center (AFRC)] More information is available about the full history of ASP, its primary objectives, and its many achievements in an archived article: see “Flying in the ‘Gap’ Between Earth and Space: NASA’s Airborne Science Program” [The Earth Observer, September–October 2020, 32:5, 4–14].
      Workshop Overview
      The NASA History Office and NASA Earth Science Division cohosted a workshop, titled “Contributions of the DC-8 to Earth System Science at NASA,” on October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC – see Photo 2.
      The agenda included not just the DC-8’s contributions to Earth Science at NASA, but also its role supporting the Aeronautics Research Mission Directorate and work in space science. Many DC-8 veterans – including several who are now retired – attended the event in person or online. The program consisted of six panels and roundtables, each calling attention to a unique aspect of the DC-8 story.
      Photo 2. Group photo of the in person and remote participants of the workshop on “Contributions of the DC-8 to Earth System Science at NASA,” which took place October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC. Photo credit: Rafael Luis Méndez Peña [NASA’s Ames Research Center, Earth Science Program Office] The event featured 38 individuals (speakers, panelists, and moderators) from NASA HQ, five NASA centers, eight universities, the Search for Extraterrestrial Intelligence Institute, and the National Oceanic and Atmospheric Administration. In addition, Spanish filmmaker Rafael Luis Méndez Peña debuted a trailer for his documentary film, NASA-817, on October 24 and took photographs during the workshop. The ??? agenda a workshop recording ???, and other related materials are available through the NASA History Office.
      The Tale of the NASA DC-8
      The article follows the outline of the workshop that places the DC-8 in the context of the overall history of NASA aircraft observations, science campaigns, community, and international collaboration, education and outreach activities.
      A History in Context: the DC-8 and NASA’s Airborne Science Program
      NASA’s involvement in airborne science extends to the agency’s inception. The National Aeronautics and Space Act of 1958 states that NASA’s first objective shall be “the expansion of human knowledge of phenomena in the atmosphere and space.” Subsequent legislation expanded NASA’s role in atmospheric and Earth system science. To fulfill this objective, NASA maintains a fleet of airborne platforms through ASP – see Figure –to study the environment, develop new technologies, verify satellite data, and monitor space vehicle activity.
      Figure. The DC-8 was but one aircraft is NASA’s sizeable Airborne Science Fleet – which is maintained and operated by ASP. Note that in addition to a variety of piloted aircraft operating at different altitudes shown in this drawing, NASA also operates uncrewed aircraft systems and even uses kites to conduct Earth observations. Figure credit: NASA Science Suborbital Platforms, NASA’s Goddard Space Flight Center, Science Support Office NASA operated two large flying laboratories prior to the DC-8 Airborne Science Laboratory. Both aircraft were converted Convair (CV) 990s. Regrettably, both aircraft succumbed to catastrophic accidents. The first, known as Galileo, collided with a U.S. Navy P-3 Orion near Moffett Field, CA, in April 1973, killing 11 NASA personnel. Its replacement, Galileo II, crashed on takeoff at March Air Force Base in July 1985. While there were no fatalities in the second accident, the ensuing fire consumed the aircraft and its instruments. The loss of Galileo II left a gaping hole in NASA’s ability to conduct essential scientific and engineering research.
      In January 1986, after months of bureaucratic scrambling, NASA finalized the purchase of former commercial airliner (DC-8-72) for $24 million, which included costs to modify the aircraft to carry a science payload and crew. The modified DC-8 Airborne Science Laboratory—shown in Photo 2— arrived at NASA Ames Research Center during the Summer of 1987.
      Overview Presentations on Airborne Science
      Jack Kaye [NASA Headquarters—Associate Director for Research of the Earth Science Division] gave the meeting’s opening remarks, where he placed the DC-8’s activities in a larger perspective. He noted that one of the features that makes airborne science so unique at NASA is the combination of platforms, sensors, systems, people, and opportunities. The DC-8 was able to carry a large number of people as well as instruments to carry out long-range operations under diverse conditions.
      “[The DC-8 offered] a really versatile, flexible platform that’s allowed for lots of science,” said Kaye.
      Later in the meeting, Karen St. Germain [NASA Headquarters—Director of the Earth Science Division] built upon Kaye’s comments. She noted that while NASA’s satellite missions receive most of the public’s attention, airborne science is an essential part of the NASA mission.
      “This is the grassroots of science,” she stressed. “It’s where a lot of the great ideas are born. It’s where a lot of the fledgling sensor technologies are demonstrated.”
      First Flight for the DC-8
      NASA routinely conducts field campaigns – where ground observations are timed and coordinated with aircraft flights (often at more than one altitude) and with satellite overpasses to gain a comprehensive (multilayered, multiscale) picture of the atmosphere over a certain area. A more detailed account of two NASA field campaigns from the 1980s and 1990s, and their follow-up missions, is available in an archived article: see “Reflections on FIFE and BOREAS: Historical Perspective and Meeting Summary” [The Earth Observer, January–February 2017, 29:1, 6–23]. The article illustrates scaled observations as they were conducted during FIFE and BOREAS.
      Researchers first used the DC-8 Airborne Science Laboratory on a high-profile interagency field campaign – Antarctic Airborne Ozone Expedition (AAOE), the first airborne experiment to study the chemistry and dynamics of the Antarctic ozone hole. The scientific data collected during AAOE produced unequivocable evidence that human-made chemicals were involved in the destruction of ozone over the Antarctic. This data served as a major impetus toward the enactment of amendments to the Montreal Protocol, which banned the manufacture of chlorofluorocarbons.
      Estelle Condon [NASA’s Ames Research Center (ARC), emeritus] was a program manager for AAOE. During the meeting, she shared her memories of the hectic days leading up to the DC-8’s first mission.
      “There was an enormous task in front of [the aircraft team] – just a huge task – to get all the relay racks, all the wiring, all the ports for the windows designed and built so that when the scientists finally came, all that instrumentation could actually be put on the aircraft,” said Condon. She added that the ARC staff worked day and night and every weekend to make the plane ready.
      “It’s a miracle that they were able to put everything together and get it to the tip of South America in time for the mission,” she said.
      Other Noteworthy Field Campaigns Involving the DC-8
      The DC-8 would go on to be used in many other field campaigns throughout its 37-year history
      and was central to several of NASA’s research disciplines. For example, Michael Kurylo [NASA Headquarters—Atmospheric Composition Program Scientist] was the manager of NASA’s Upper Atmosphere Research Program, where he developed, promoted, and implemented an extramural research program in stratospheric and upper tropospheric composition and directed its advanced planning at a national and international level. Kurylo summarized the DC-8’s many flights to study stratospheric chemistry beyond the AAOE missions.
      Kurylo also discussed the DC-8’s role in tropospheric chemistry investigations, especially through the many field campaigns that were conducted as part of the Global Troposphere Experiment (GTE). He also touched on the culture of NASA airborne science and the dynamic that existed between scientists and those who operated and maintained the aircraft.  “The scientists were always referred to [by NASA pilots and groundcrew] as ‘coneheads’…. Too much college, not enough high school,” Kurylo explained. But he and his colleagues have such fond memories of their time spent working together onboard the DC-8. 
      James Crawford [NASA’s Langley Research Center], a project scientist for many of the GTE campaigns, explained that from 1983–2001 16 GTE aircraft-based missions, each with its own name and location, took place. Each mission collected a rich set of data records of atmospheric observations and on many occasions the data were used as baselines for subsequent campaigns. The DC-8 was one of several NASA aircraft involved, the others being the Corvair-990, Electra, and P-3B.
      Joshua Schwarz [NOAA’s Chemical Sciencc Laboratory] discussed the airplane’s role in global atmospheric monitoring.  He recall thinking, after his first experience with the DC-8 that this flying airborne laboratory, “…was going to make things possible that wouldn’t otherwise be possible,” Schwarz concluded after his first encounter with the DC-8.
      Other workshop participants went on to describe how – for nearly four decades – investigators used data collected by instruments on the DC-8 to conduct research and write papers on important scientific and engineering topics.
      The People Behind the Aircraft: The DC-8 Community
      The DC-8 was a large and durable aircraft capable of long-range flights, which made it ideal for conducting scientific research. Around these research efforts a strong community emerged. Over three decades, the DC-8 accommodated many investigators from NASA, interagency offices, U.S. universities, and international organizations on extended global missions. Agency officials also moved the DC-8 base of operations several times between 1986 and 2024, thereby demanding tremendous cross-center cooperation.
      “Looking around the room, it’s clear that what brought us together [for the workshop] is more than just an aircraft,” said Nickelle Reid [NASA’s Armstrong Flight Research Center]. “It’s been a shared commitment, decades of passion and dedication from scientists, yes, but also mechanics, technicians, integration engineers, project managers, mission planners, operations engineers, flight engineers, mission directors, mission managers, logistics technicians and, of course, pilots. This village of people has been the beating heart of the DC-8 program.”
      This DC-8 community was well represented at this workshop and played a key role in its success.
      The DC-8 as a Means of International Engagement
      The DC-8 community expanded beyond the U.S., opening unique opportunities for international engagement. The campaigns of the DC-8 Airborne Science Laboratory routinely involved foreign students, institutions, and governments. For example, the Korea–U.S. Air Quality (KORUS-AQ) campaign, an international cooperative air quality field study in Korea, took place in 2016. For more information about this campaign, see the archived Earth Observer article, “Flying in the ‘Gap’ Between Earth and Space: NASA’s Airborne Science Program” [The Earth Observer, September–October 2022, 32:5, 4–14].
      Yunling Lou [NASA/Jet Propulsion Laboratory] spoke to the workshop audience about the value of international collaboration.
      “I think [international collaboration] really helped – not just doing the collaboration [to accomplish a specific mission] but doing the training, the capacity building in these countries to build the community of global scientists and engineers,” said Lou.
      Trina Dryal [LaRC—Deputy Director] continued that the DC-8 and NASA’s other airborne assets are more than just science laboratories.
      “[They] are opportunities for science, diplomacy, international collaboration, cross learning, educational inspiration, and goodwill,” said Dryal—see Photo 3.
      Photo 3. International collaborations included educational endeavors.  Here, Walter Klein [AFRC—DC-8 Mission Manager] poses with a group of Chilean students onboard the DC-8 Airborne Science Laboratory in Punta Arenas, Chile, March 2004. Photo credit: Jim Closs [NASA’s Langley Research Center] Student Investigations on the DC-8
      Closer to home, the flying scientific laboratory affected the lives of many U.S. students and early career professionals. NASA’s Student Airborne Research Program (SARP), is an eight-week summer internship for rising-senior undergraduates that takes place annually on the East and West coasts of the U.S – see Photo 4. During the program, students gain hands-on experience conducting all aspects of a scientific campaign. They conduct field research, analyze the data, and gain access to one or more of NASA’s ASP flying science laboratories.  Since 2009, this program alone has provided hands on experience in conducting NASA Earth science research to XXXX students.
      Berry Lefer [NASA Headquarters—Tropospheric Composition Program Manager] pointed out that SARP helped to integrate American students into DC-8 scientific missions.
      “I want to make sure the NASA historians understand that the DC-8 is the premier flying laboratory on the planet, bar none,” said Lefer. “You’ve seen over the whole three-decade life of the DC-8 that education and outreach, student involvement has been a hallmark of the DC-8 [program].”
      Yaitza Luna-Cruz [NASA Headquarters—Program Executive] was one among several SARP alumni who delivered testimony on the impact of the SARP program at the workshop.
      “SARP unleashed my potential in ways that I cannot even describe,” said Luna-Cruz. “You never know what a single opportunity could do to shape the career of a student or early career researcher.
      Luna-Cruz hopes these efforts continue with the coming of NASA’s new Boeing 777 airborne laboratory.
      Photo 4. One of the most popular student investigations flown on the DC-8 (and other ASP aircraft) was (is) the Student Airborne Research Program (SARP), in which upper-level undergraduate students can gain valuable hands-on experience conducting field research.  Students taking part in SARP and their mentors posed with the DC-8 at AFRC in 2019 [top] and in 2022 [bottom]. The 2022 SARP group flew flights over California’s Central Valley to study air quality. Photo credit: [Top] NASA; [bottom] Lauren Hughes [ARC] Final Flight and Retirement of the DC-8
      The DC-8 Airborne Science Laboratory flew its last science flight during the international Airborne and Satellite Investigation of Asian Air Quality mission (ASIA-AQ) in April 2024. Since its final flight, the aircraft has been retired to Idaho State University (ISU). Today, students in ISU’s aircraft maintenance program work on the airplane to develop real-world technical skills – continuing the DC-8’s mission as an educational platform. According to Gerald Anhorn [ISU—Dean of College of Technology], ISU students have a unique opportuning to gain experience working on a legendary research aircraft.
      “Our students have that opportunity because of [NASA’s] donation” to the school, said Auborn.
      Conclusion: Flying Toward the Future – From DC-8 to Boeing 777
      While the DC-8 is retiring from active service, airborne observations continue to be a vital part of NASA’s mission. The agency recently acquired a Boeing 777and will modify it to support its ongoing airborne scientific research efforts. This new addition expands beyond the capacity of the DC-8 by allowing for even longer flights with larger payloads and more researchers to gather data. Several members of the Boeing 777 team from NASA’s Langley Research Center (LaRC) attended the workshop.
       “I mentioned I was in charge of the ‘replacement’ for the DC-8,” said Martin Nowicki [LaRC—Boeing 777 Lead]. “Over the last two days, here, it’s become pretty apparent that there’s no ‘replacing’ the DC-8. It’s carved out its own place in history. It’s just done so much.”
      Nowicki looks forward to working with workshop participants to identify useful lessons of the past for future operators. He concluded that the Boeing 777 will carry the legacy of the DC-8 and continue with capturing the amazing science of ASP.
      Acknowledgments
      The authors wish to thank Jack Kaye [NASA HQ—Associate Director of Research for the Earth Science Division] for his helpful reviews of the article draft.  The first author also wishes to thank Lisa Frazier [NASA Headquarters—Strategic Events and Engagement Lead] for providing support and assistance throughout for the in-person workshop participants. and to the Earth Science Project Office team from NASA’s Ames Research Center, who performed essential conference tasks, such as website construction, audio-visual support, and food service management. This article is an enhanced version of the first author’s summary, which appeared in the Spring 2025 issue of News & Notes – The NASA History Office’s newsletter.
      Bradley L. Coleman
      NASA’s Marshall Space Flight Center, NASA History Office
      bradley.l.coleman@nasa.gov
      Alan B. Ward
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
      alan.b.ward@nasa.gov
      Share








      Details
      Last Updated Mar 11, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      This video sparkles with synthetic supernovae from the OpenUniverse project, which simulates observations from NASA’s upcoming Nancy Grace Roman Space Telescope. More than a million exploding stars flare into visibility and then slowly fade away. The true brightness of each transient event has been magnified by a factor of 10,000 for visibility, and no background light has been added to the simulated images. The pattern of squares shows Roman’s full field of view.Credit: NASA’s Goddard Space Flight Center and M. Troxel The universe is ballooning outward at an ever-faster clip under the power of an unknown force dubbed dark energy. One of the major goals for NASA’s upcoming Nancy Grace Roman Space Telescope is to help astronomers gather clues to the mystery. One team is setting the stage now to help astronomers prepare for this exciting science.
      “Roman will scan the cosmos a thousand times faster than NASA’s Hubble Space Telescope can while offering Hubble-like image quality,” said Rebekah Hounsell, an assistant research scientist at the University of Maryland-Baltimore county working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a co-principal investigator of the Supernova Cosmology Project Infrastructure Team preparing for the mission’s High-Latitude Time-Domain Survey. “We’re going to have an overwhelming amount of data, and we want to make it so scientists can use it from day one.”
      Roman will repeatedly look at wide, deep regions of the sky in near-infrared light, opening up a whole new view of the universe and revealing all sorts of things going bump in the night. That includes stars being shredded as they pass too close to a black hole, intense emissions from galaxy centers, and a variety of stellar explosions called supernovae.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This data sonification transforms a vast simulation of a cosmic survey from NASA’s upcoming Nancy Grace Roman Space Telescope into a symphony of stellar explosions. Each supernova’s brightness controls its volume, while its color sets its pitch –– redder, more distant supernovae correspond to deep, low tones while bluer, nearer ones correspond to higher frequencies. The sound in stereo mirrors their locations in the sky. The result sounds like celestial wind chimes, offering a way to “listen” to cosmic fireworks. Credit: NASA’s Goddard Space Flight Center, M. Troxel, SYSTEM Sounds (M. Russo, A. Santaguida) Cosmic Radar Guns
      Scientists estimate around half a dozen stars explode somewhere in the observable universe every minute. On average, one of them will be a special variety called type Ia that can help astronomers measure the universe.
      These explosions peak at a similar intrinsic brightness, allowing scientists to find their distances simply by measuring how bright they appear.
      Scientists can also study the light of these supernovae to find out how quickly they are moving away from us. By comparing how fast they’re receding at different distances, scientists will trace cosmic expansion over time.
      Using dozens of type Ia supernovae, scientists discovered that the universe’s expansion is accelerating. Roman will find tens of thousands, including very distant ones, offering more clues about the nature of dark energy and how it may have changed throughout the history of the universe.
      “Roman’s near-infrared view will help us peer farther because more distant light is stretched, or reddened, as it travels across expanding space,” said Benjamin Rose, an assistant professor at Baylor University in Waco, Texas, and a co-principal investigator of the infrastructure team. “And opening a bigger window, so to speak, will help us get a better understanding of these objects as a whole,” which would allow scientists to learn more about dark energy. That could include discovering new physics, or figuring out the universe’s fate.
      The People’s Telescope
      Members of the planning team have been part of the community process to seek input from scientists worldwide on how the survey should be designed and how the analysis pipeline should work. Gathering public input in this way is unusual for a space telescope, but it’s essential for Roman because each large, deep observation will enable a wealth of science in addition to fulfilling the survey’s main goal of probing dark energy.
      Rather than requiring that many individual scientists submit proposals to reserve their own slice of space telescope time, Roman’s major surveys will be coordinated openly, and all the data will become public right away.
      “Instead of a single team pursuing one science goal, everyone will be able to comb through Roman’s data for a wide variety of purposes,” Rose said. “Everyone will get to play right away.”
      This animation shows a possible tiling pattern of part of NASA’s Nancy Grace Roman Space Telescope’s High Latitude Time-Domain Survey. The observing program, which is being designed by a community process, is expected to have two components: wide (covering 18 square degrees, a region of sky as large as about 90 full moons) and deep (covering about 5.5 square degrees, about as large as 25 full moons). This animation shows the deeper portion, which would peer back to when the universe was about 500 million years old, less than 4 percent of its current age of 13.8 billion years.Credit: NASA’s Goddard Space Flight Center This Is a Drill
      NASA plans to announce the survey design for Roman’s three core surveys, including the High-Latitude Time-Domain Survey, this spring. Then the planning team will simulate it in its entirety.
      “It’s kind of like a recipe,” Hounsell said. “You put in your observing strategy — how many days, which filters — and add in ‘spices’ like uncertainties, calibration effects, and the things we don’t know so well about the instrument or supernovae themselves that would affect our results. We can inject supernovae into the synthetic images and develop the tools we’ll need to analyze and evaluate the data.”
      Scientists will continue using the synthetic data even after Roman begins observing, tweaking all aspects of the simulation and correcting unknowns to see which resulting images best match real observations. Scientists can then fine-tune our understanding of the universe’s underlying physics.
      “We assume that all supernovae are the same regardless of when they occurred in the history of the universe, but that might not be the case,” Hounsell said. “We’re going to look further back in time than we’ve ever done with type Ia supernovae, and we’re not completely sure if the physics we understand now will hold up.”
      There are reasons to suspect they may not. The very first stars were made almost exclusively of hydrogen and helium, compared to stars today which contain several dozen elements. Those ancient stars also lived in very different environments than stars today. Galaxies were growing and merging, and stars were forming at a furious pace before things began calming down between about 8 and 10 billion years ago.
      “Roman will very dramatically add to our understanding of this cosmic era,” Rose said. “We’ll learn more about cosmic evolution and dark energy, and thanks to Roman’s large deep view, we’ll get to do much more science too with the same data. Our work will help everyone hit the ground running after Roman launches.”
      For more information about the Roman Space Telescope visit www.nasa.gov/roman.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Explore More
      7 min read NASA’s Roman and ESA’s Euclid Will Team Up To Investigate Dark Energy
      Article 2 years ago 7 min read NASA’s Roman Mission to Probe Cosmic Secrets Using Exploding Stars
      Article 4 years ago 4 min read NASA Successfully Joins Sunshade to Roman Observatory’s ‘Exoskeleton’
      Article 4 weeks ago Share
      Details
      Last Updated Mar 11, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Dark Energy Goddard Space Flight Center Stars The Universe View the full article
    • By NASA
      SPHEREx and PUNCH Launch (Official NASA Broadcast)
    • By NASA
      3 Min Read NASA, Partners to Conduct Space Station Research During Expedition 73
      NASA NASA astronauts are gearing up for a scientific mission aboard the International Space Station. Expedition 73 NASA astronauts Nichole Ayers and Anne McClain, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov will launch in March as part of the agency’s SpaceX Crew-10 mission. NASA astronaut Jonny Kim will join the crew when he launches aboard the Roscosmos Soyuz MS-27 spacecraft in April alongside Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky.
      Read more about some of the microgravity research planned by NASA and its partners:
      Subjects for human research
      NASA Astronauts often serve as test subjects, submitting blood and other samples for research. NASA astronaut Anne McClain is pictured submitting a sample on a previous mission with assistance from CSA (Canadian Space Agency) astronaut David Saint-Jacques. McClain will participate in NASA’s Complement of Integrated Protocols for Human Exploration Research investigation, or CIPHER, a suite of integrated studies on physiological and psychological changes seen in space. Results could provide valuable insights for future deep space missions.
      Testing lunar navigation
      NASA When Expedition 73 astronauts engage with students worldwide via the ISS Ham Radio program, researchers will use the ham radio hardware to test software for the Navigation and Communication Testbed (NAVCOM) that could help shape future lunar navigation. Researchers from the investigation recently launched a related study to the Moon aboard Firefly’s Blue Ghost to help bridge existing Earth navigation with emerging lunar-specific solutions.
      Advancing fire safety 
      NASA Expedition 73 is scheduled to conduct a Material Ignition and Suppression Test (SoFIE-MIST), testing material flammability in microgravity. This research could improve fire safety on future missions, contributing to models used to select materials for space facilities and helping to determine the best ways to extinguish fires in space.
      Keeping blood flowing
      Angelo Taibi/ASI Expedition 73 crew members will participate in Drain Brain 2.0, which examines how blood flows from the brain to the heart in microgravity using this plethysmograph, a device that can record the volume of blood drainage from the skull. Results could identify which processes in the body compensate for the lack of gravity, helping to ensure proper blood flow for astronauts on future missions and people with cardiovascular issues on Earth.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars. 
      Learn more about the International Space Station, its research, and its crew, at: 
      https://www.nasa.gov/station
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Humans In Space
      Space Station Research Results
      Human Research Program
      Share
      Details
      Last Updated Mar 10, 2025 Related Terms
      ISS Research International Space Station (ISS) View the full article
  • Check out these Videos

×
×
  • Create New...