Members Can Post Anonymously On This Site
SPHEREx and PUNCH Launch (Official NASA Broadcast)
-
Similar Topics
-
By NASA
Ohio State graduate research assistant Alec Schnabel, left, University of Wisconsin doctoral candidate James Swanke, center, and Ohio State graduate research engineer Robert Borjas conduct tests on aircraft hardware at NASA’s Electric Aircraft Testbed (NEAT). Credit: NASA/Jef Janis Each year, Aviation Week (AW) Network recognizes a limited number of innovators who achieve extraordinary accomplishments in the global aerospace arena with AW’s prestigious Laureate Award. These innovators represent the values and vision of the global aerospace community and change the way people work and move through the world.
On March 6, NASA’s Glenn Research Center accepted an AW Laureate Award in commercial aviation for NASA’s Electric Aircraft Testbed (NEAT) located at NASA Glenn’s Neil Armstrong Test Facility in Sandusky, Ohio. NEAT allows government, industry, and academia to collaborate and conduct testing of high-powered electric powertrains, which generate power and propel aircraft forward. The goal is to transform commercial flight by creating more sustainable, fuel-efficient commercial aircraft.
NASA’s Electric Aircraft Testbed (NEAT) is located at NASA’s Glenn Research Center at Neil Armstrong Test Facility in Sandusky, Ohio.Credit: NASA/Bridget Caswell NEAT enables ground testing of cutting-edge systems prior to experimental flight testing. As a result, researchers can troubleshoot issues that only occur at altitude and improve them earlier in the design cycle, which both accelerates the path to flight and makes it safer.
A number of “firsts” have been accomplished in the electric aircraft testbed.
NASA and GE Aerospace completed the first successful ground tests of a high-power hybrid electric aircraft propulsion system at simulated altitude in 2022. A megawatt-class electric machine was tested at NEAT by a university team led by The Ohio State University and the University of Wisconsin, under NASA’s University Leadership Initiative. Under the Electrified Powertrain Flight Demonstration project, magniX tested its high-power megawatt-class powertrain with a goal to achieve approximately 5% reduced fuel use. Systems tested at NEAT from General Electric and magniX will be flown on modified passenger aircraft currently being reconfigured for flight testing. Return to Newsletter Explore More
1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight
Article 33 mins ago 2 min read NASA Releases its Spinoff 2025 Publication
Article 34 mins ago 1 min read NASA Glenn Welcomes Spring 2025 Interns
Article 34 mins ago View the full article
-
By NASA
Center Director Dr. Jimmy Kenyon gives an overview of NASA Glenn Research Center’s areas of expertise and how it supports the agency’s missions and programs. Credit: NASA/Susan Valerian NASA Glenn Research Center’s Director Dr. Jimmy Kenyon and Chief Counsel Callista Puchmeyer participated in a local symposium that addressed the operational and legal challenges of human spaceflight. The one-day conference was held at the Cleveland State University (CSU) College of Law on Feb.13.
Kenyon gave a keynote that provided an overview of NASA Glenn’s areas of expertise and how the center supports the agency’s missions and programs. He also talked about the role of growing commercial partnerships at NASA.
Panelists, left to right: Col. (Ret.) Joseph Zeis, senior advisor for Aerospace and Defense, Office of the Governor of Ohio; Callista Puchmeyer, chief counsel, NASA’s Glenn Research Center; and Jon. P. Yormick, international business and trade attorney, Yormick Law, answer questions on operational and legal challenges of human spaceflight at a Cleveland State University College of Law symposium. Credit: NASA/Susan Valerian Puchmeyer, a graduate of CSU’s College of Law and recent inductee into its Hall of Fame, participated in a panel about Northeast Ohio’s aerospace industry and the legal aspects of commercial partnerships.
Additionally, human spaceflight experts from academia, law, and science spoke throughout the day on topics ranging from the health and training of astronauts to the special law of space stations. Romanian astronaut Dumitru-Dorin Prunariu joined remotely to provide a personal perspective.
Return to Newsletter Explore More
2 min read NASA Releases its Spinoff 2025 Publication
Article 4 mins ago 1 min read NASA Glenn Welcomes Spring 2025 Interns
Article 4 mins ago 5 min read NASA’s Chevron Technology Quiets the Skies
Article 22 hours ago View the full article
-
By NASA
The 2025 Spinoff publication features more than 40 commercial infusions of NASA technologies. Credit: NASA The work NASA conducts in space leads to ongoing innovations benefiting people on Earth. Some of these latest technologies, which have been successfully transferred from NASA to the commercial sector, are featured in the latest edition of NASA’s Spinoff 2025 publication now available online.
The publication features more than 40 commercial infusions of NASA technologies, including research originated at NASA’s Glenn Research Center in Cleveland.
Parallel Flight Technologies’ Firefly aircraft is designed to run for 100 minutes while fully loaded, allowing the aircraft to perform agricultural surveys as well as assist in the aftermath of natural disasters. Credit: Parallel Flight Technologies Inc. Bringing Hybrid Power to the Rescue
A NASA-funded hybrid power system makes drones more capable in disasters.
With Small Business Innovation Research funding from NASA Glenn, Parallel Flight Technologies of La Selva Beach, California, was able to test its hybrid propulsion technology, enabling longer-running, remotely piloted aircraft for use in agricultural and rescue applications. See the full Spinoff article for more information.
EnerVenue Inc. brought down the cost of nickel-hydrogen technology and encased it in safe, robust vessels, like the battery pictured here. These batteries store renewable energy in a wide range of terrestrial situations. Credit: EnerVenue Inc. Hubble Battery Tech Holds Power on Earth
Nickel-hydrogen technology is safe, durable, and long-lasting – and now it’s affordable, too.
Nickel-hydrogen batteries store renewable energy for power plants, businesses, and homes, thanks to innovations from Fremont, California-based EnerVenue, informed by papers published by NASA Glenn about the technology’s performance on the Hubble Space Telescope, International Space Station, and more. See the full Spinoff article for more information.
Spinoff 2025 also features 20 technologies available for licensing with the potential for commercialization. Check out the Spinoffs of Tomorrow section to learn more.
Return to Newsletter Explore More
1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight
Article 3 mins ago 1 min read NASA Glenn Welcomes Spring 2025 Interns
Article 4 mins ago 5 min read NASA’s Chevron Technology Quiets the Skies
Article 22 hours ago View the full article
-
By NASA
Students from colleges and universities across the country gather to start their adventure as spring interns at NASA’s Glenn Research Center in Cleveland. Credit: NASA/Jef Janis NASA’s Glenn Research Center is hosting 45 spring interns at its Cleveland and Sandusky, Ohio, campuses through May 16. This group represents 43 universities across the country, spanning from Arizona to Ohio to Texas.
Through NASA’s internship programs, students gain practical experience while working side-by-side with scientists, engineers, and individuals from many other professions. The interns are contributing to a broad range of innovative projects, such as AI-driven aerospace design, electrified aircraft visualization, spaceflight material flammability, superconducting coil testing, fission surface power for sustained lunar and Martian exploration, and more.
Their research supports NASA’s mission in advancing aeronautics, space technology, and scientific discovery. Several students are returning for repeat internships, reinforcing NASA Glenn’s role as a leader in STEM workforce development.
Return to Newsletter Explore More
1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight
Article 3 mins ago 2 min read NASA Releases its Spinoff 2025 Publication
Article 4 mins ago 5 min read NASA’s Chevron Technology Quiets the Skies
Article 22 hours ago View the full article
-
By NASA
NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) observatory and PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites lift off on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California on March 11, 2025.Credit: SpaceX NASA’s newest astrophysics observatory, SPHEREx, is on its way to study the origins of our universe and the history of galaxies, and to search for the ingredients of life in our galaxy. Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx lifted off at 8:10 p.m. PDT on March 11 aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
Riding with SPHEREx aboard the Falcon 9 were four small satellites that make up the agency’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will study how the Sun’s outer atmosphere becomes the solar wind.
“Everything in NASA science is interconnected, and sending both SPHEREx and PUNCH up on a single rocket doubles the opportunities to do incredible science in space,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Congratulations to both mission teams as they explore the cosmos from far-out galaxies to our neighborhood star. I am excited to see the data returned in the years to come.”
Ground controllers at NASA’s Jet Propulsion Laboratory in Southern California, which manages SPHEREx, established communications with the space observatory at 9:31 p.m. PDT. The observatory will begin its two-year prime mission after a roughly one-month checkout period, during which engineers and scientists will make sure the spacecraft is working properly.
“The fact our amazing SPHEREx team kept this mission on track even as the Southern California wildfires swept through our community is a testament to their remarkable commitment to deepening humanity’s understanding of our universe,” said Laurie Leshin, director, NASA JPL. “We now eagerly await the scientific breakthroughs from SPHEREx’s all-sky survey — including insights into how the universe began and where the ingredients of life reside.”
The PUNCH satellites successfully separated about 53 minutes after launch, and ground controllers have established communication with all four PUNCH spacecraft. Now, PUNCH begins a 90-day commissioning period where the four satellites will enter the correct orbital formation, and the instruments will be calibrated as a single “virtual instrument” before the scientists start to analyze images of the solar wind.
The two missions are designed to operate in a low Earth, Sun-synchronous orbit over the day-night line (also known as the terminator) so the Sun always remains in the same position relative to the spacecraft. This is essential for SPHEREx to keep its telescope shielded from the Sun’s light and heat (both would inhibit its observations) and for PUNCH to have a clear view in all directions around the Sun.
To achieve its wide-ranging science goals, SPHEREx will create a 3D map of the entire celestial sky every six months, providing a wide perspective to complement the work of space telescopes that observe smaller sections of the sky in more detail, such as NASA’s James Webb Space Telescope and Hubble Space Telescope.
The mission will use a technique called spectroscopy to measure the distance to 450 million galaxies in the nearby universe. Their large-scale distribution was subtly influenced by an event that took place almost 14 billion years ago known as inflation, which caused the universe to expand in size a trillion-trillionfold in a fraction of a second after the big bang. The mission also will measure the total collective glow of all the galaxies in the universe, providing new insights about how galaxies have formed and evolved over cosmic time.
Spectroscopy also can reveal the composition of cosmic objects, and SPHEREx will survey our home galaxy for hidden reservoirs of frozen water ice and other molecules, like carbon dioxide, that are essential to life as we know it.
“Questions like ‘How did we get here?’ and ‘Are we alone?’ have been asked by humans for all of history,” said James Fanson, SPHEREx project manager at JPL. “I think it’s incredible that we are alive at a time when we have the scientific tools to actually start to answer them.”
NASA’s PUNCH will make global, 3D observations of the inner solar system and the Sun’s outer atmosphere, the corona, to learn how its mass and energy become the solar wind, a stream of charged particles blowing outward from the Sun in all directions. The mission will explore the formation and evolution of space weather events such as coronal mass ejections, which can create storms of energetic particle radiation that can endanger spacecraft and astronauts.
“The space between planets is not an empty void. It’s full of turbulent solar wind that washes over Earth,” said Craig DeForest, the mission’s principal investigator, at the Southwest Research Institute. “The PUNCH mission is designed to answer basic questions about how stars like our Sun produce stellar winds, and how they give rise to dangerous space weather events right here on Earth.”
More About SPHEREx, PUNCH
The SPHEREx mission is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive.
Southwest Research Institute (SwRI) leads the PUNCH mission and built the four spacecraft and Wide Field Imager instruments at its headquarters in San Antonio, Texas. The Narrow Field Imager instrument was built by the Naval Research Laboratory in Washington. The mission is operated from SwRI’s offices in Boulder, Colorado, and is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington.
NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, provided the launch service for SPHEREx and PUNCH.
For more about NASA’s science missions, visit:
http://science.nasa.gov
-end-
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Calla Cofield – SPHEREx
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
Sarah Frazier – PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
Share
Details
Last Updated Mar 12, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Heliophysics Launch Services Program Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.