Members Can Post Anonymously On This Site
40 Years Ago: Space Shuttle Atlantis Makes its Public Debut
-
Similar Topics
-
By NASA
3 Min Read NASA, Partners to Conduct Space Station Research During Expedition 73
NASA NASA astronauts are gearing up for a scientific mission aboard the International Space Station. Expedition 73 NASA astronauts Nichole Ayers and Anne McClain, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov will launch in March as part of the agency’s SpaceX Crew-10 mission. NASA astronaut Jonny Kim will join the crew when he launches aboard the Roscosmos Soyuz MS-27 spacecraft in April alongside Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky.
Read more about some of the microgravity research planned by NASA and its partners:
Subjects for human research
NASA Astronauts often serve as test subjects, submitting blood and other samples for research. NASA astronaut Anne McClain is pictured submitting a sample on a previous mission with assistance from CSA (Canadian Space Agency) astronaut David Saint-Jacques. McClain will participate in NASA’s Complement of Integrated Protocols for Human Exploration Research investigation, or CIPHER, a suite of integrated studies on physiological and psychological changes seen in space. Results could provide valuable insights for future deep space missions.
Testing lunar navigation
NASA When Expedition 73 astronauts engage with students worldwide via the ISS Ham Radio program, researchers will use the ham radio hardware to test software for the Navigation and Communication Testbed (NAVCOM) that could help shape future lunar navigation. Researchers from the investigation recently launched a related study to the Moon aboard Firefly’s Blue Ghost to help bridge existing Earth navigation with emerging lunar-specific solutions.
Advancing fire safety
NASA Expedition 73 is scheduled to conduct a Material Ignition and Suppression Test (SoFIE-MIST), testing material flammability in microgravity. This research could improve fire safety on future missions, contributing to models used to select materials for space facilities and helping to determine the best ways to extinguish fires in space.
Keeping blood flowing
Angelo Taibi/ASI Expedition 73 crew members will participate in Drain Brain 2.0, which examines how blood flows from the brain to the heart in microgravity using this plethysmograph, a device that can record the volume of blood drainage from the skull. Results could identify which processes in the body compensate for the lack of gravity, helping to ensure proper blood flow for astronauts on future missions and people with cardiovascular issues on Earth.
The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
Learn more about the International Space Station, its research, and its crew, at:
https://www.nasa.gov/station
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
Humans In Space
Space Station Research Results
Human Research Program
Share
Details
Last Updated Mar 10, 2025 Related Terms
ISS Research International Space Station (ISS) View the full article
-
By Space Force
Air Force and Space Force senior leaders took to the stage at the recent Air and Space Forces Association Warfare Symposium March 3-5, outlining their vision for the future of warfare.
View the full article
-
By European Space Agency
Image: A solar array of the Orion spacecraft for Artemis II with the ESA and NASA logos View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Ahead of launch, NASA’s SPHEREx is enclosed in a payload fairing at Vandenberg Space Force Base on March 2. The observatory is stacked atop the four small satellites that make up the agency’s PUNCH mission.NASA/BAE Systems/Benjamin Fry NASA’s latest space observatory is targeting a March 8 liftoff, and the agency’s PUNCH heliophysics mission is sharing a ride. Here’s what to expect during launch and beyond.
In a little over a day, NASA’s SPHEREx space telescope is slated to launch from Vandenberg Space Force Base in California aboard a SpaceX Falcon 9 rocket. The observatory will map the entire celestial sky four times in two years, creating a 3D map of over 450 million galaxies. In doing so, the mission will provide insight into what happened a fraction of a second after the big bang, in addition to searching interstellar dust for the ingredients of life, and measuring the collective glow from all galaxies, including ones that other telescopes cannot easily detect.
The launch window opens at 7:09:56 p.m. PST on Saturday, March 8, with a target launch time of 7:10:12 p.m. PST. Additional opportunities occur in the following days.
Launching together into low Earth orbit, NASA’s SPHEREx and PUNCH missions will study a range of topics from the early universe to our nearest star. NASA/JPL-Caltech Sharing a ride with SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) is NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere), a constellation of four small satellites that will map the region where the Sun’s outer atmosphere, the corona, transitions to the solar wind, the constant outflow of material from the Sun.
For the latest on PUNCH, visit the blog:
https://blogs.nasa.gov/punch
What SPHEREx Will Do
The SPHEREx observatory detects infrared light — wavelengths slightly longer than what the human eye can see that are emitted by warm objects including stars and galaxies. Using a technique called spectroscopy, SPHEREx will separate the infrared light emitted by hundreds of millions of stars and galaxies into 102 individual colors — the same way a prism splits sunlight into a rainbow. Observing those colors separately can reveal various properties of objects, including their composition and, in the case of galaxies, their distance from Earth. No other all-sky survey has performed spectroscopy in so many wavelengths and on so many sources.
The mission’s all-sky spectroscopic map can be used for a wide variety of science investigations. In particular, SPHEREx has its sights set on a phenomenon called inflation, which caused the universe to expand a trillion-trillionfold in a fraction of a second after the big bang. This nearly instantaneous event left an impression on the large-scale distribution of matter in the universe. The mission will map the distribution of more than 450 million galaxies to improve scientists’ understanding of the physics behind this extreme cosmic event.
SPHEREx Fact Sheet Additionally, the space telescope will measure the total glow from all galaxies, including ones that other telescopes cannot easily detect. When combined with studies of individual galaxies by other telescopes, the measurement of this overall glow will provide a more complete picture of how the light output from galaxies has changed over the universe’s history.
At the same time, spectroscopy will allow SPHEREx to seek out frozen water, carbon dioxide, and other key ingredients for life. The mission will provide an unprecedented survey of the location and abundance of these icy compounds in our galaxy, giving researchers better insight into the interstellar chemistry that set the stage for life.
Launch Sequence
But, first, SPHEREx has to get into space. Prelaunch testing is complete on the spacecraft’s various systems, and it’s been encapsulated in the protective nose cone, or payload fairing, atop the SpaceX Falcon 9 rocket that will get it there from Vandenberg’s Space Launch Complex-4 East.
NASA’s SPHEREx mission will lift off from Space Launch Complex-4 East at Vanden-berg Space Force Base in California aboard a SpaceX Falcon 9 rocket, just as the Sur-face Water and Ocean Topography mission, shown here, did in December 2022. NASA/Keegan Barber A little more than two minutes after the Falcon 9 lifts off, the main engine will cut off. Shortly after, the rocket’s first and second stages will separate, followed by second-stage engine start. The reusable first stage will then begin its automated boost-back burn to the launch site for a propulsive landing.
Once the rocket is out of Earth’s atmosphere, about three minutes after launch, the payload fairing that surrounds the spacecraft will separate into two halves and fall back to Earth, landing in the ocean. Roughly 41 minutes after launch, SPHEREx will separate from the rocket and start its internal systems so that it can point its solar panel to the Sun. After this happens, the spacecraft can establish communications with ground controllers at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. This milestone, called acquisition of signal, should happen about three minutes after separation.
About 52 minutes after liftoff, PUNCH should separate as well from the Falcon 9.
Both spacecraft will be in a Sun-synchronous low Earth orbit, where their position relative to the Sun remains the same throughout the year. Each approximately 98-minute orbit allows the SPHEREx telescope to view a 360-degree strip of the celestial sky. As Earth’s orbit around the Sun progresses, that strip slowly advances, enabling SPHEREx to image almost the entire sky in six months. For PUNCH, the orbit provides a clear view in all directions around the Sun.
About four days after launch, SPHEREx should eject the protective cover over its telescope lens. The observatory will begin science operations a little over a month after launch, once the telescope has cooled down to its operating temperature and the mission team has completed a series of checks.
NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, is providing the launch service for SPHEREx and PUNCH.
For more information about the SPHEREx mission, visit:
https://www.jpl.nasa.gov/missions/spherex
More About SPHEREx
SPHEREx is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive.
Get the SPHEREx Press Kit How to Watch March 8 SPHEREx Launch 6 Things to Know About SPHEREx Why NASA’s SPHEREx Will Make ‘Most Colorful’ Cosmic Map Ever NASA’s SPHEREX Space Telescope Will Seek Life’s Ingredients News Media Contacts
Karen Fox / Alise Fisher
NASA Headquarters, Washington
202-358-1600 / 202-358-2546
karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
Calla Cofield, SPHEREx
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
Sarah Frazier, PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
2025-033
Share
Details
Last Updated Mar 07, 2025 Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Heliophysics Jet Propulsion Laboratory Polarimeter to Unify the Corona and Heliosphere (PUNCH) The Big Bang The Milky Way The Search for Life The Sun The Universe Explore More
5 min read NASA Webb Wows With Incredible Detail in Actively Forming Star System
High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows extraordinary new detail and…
Article 6 hours ago 2 min read Hubble Spies a Spiral in the Water Snake
This NASA/ESA Hubble Space Telescope image of a vibrant spiral galaxy called NGC 5042 resides…
Article 8 hours ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
On March 2, 1995, space shuttle Endeavour launched from NASA’s Kennedy Space Center in Florida on its eighth trip into space, on the STS-67 Astro-2 mission. The crew included Commander Stephen Oswald, Pilot William Gregory, Mission Specialists John Grunsfeld, Wendy Lawrence, and Tamara Jernigan – who served as payload commander on the mission – and Payload Specialists Samuel Durrance and Ronald Parise. During their then record setting 17-day mission, the astronauts used the three ultraviolet telescopes of the Astro-2 payload to observe hundreds of celestial objects. The mission ended with a landing at Edwards Air Force Base in California.
Official photo of the STS-67 crew of Stephen Oswald, seated at left, Tamara Jernigan, and William Gregory; Ronald Parise, standing at left, Wendy Lawrence, John Grunsfeld, and Samuel Durrance. NASA The STS-67 crew patch. NASA The Astro-2 payload patch.NASA In August 1993, NASA assigned Jernigan as the payload commander for Astro-2, for a weeklong flight aboard Columbia then targeted for late 1994. Jernigan, selected by NASA in 1985, had previously flown aboard STS-40 and STS-52. Two months later, NASA assigned Grunsfeld, a space rookie from the class of 1992, as a mission specialist. In January 1994, NASA rounded out the crew by assigning Oswald, Gregory, Lawrence, Durrance, and Parise. Oswald, from the class of 1985, had flown previously as pilot on STS-42 and STS-56, while STS-67 represented the first spaceflight for Gregory, selected in 1990, and Lawrence, chosen in 1992. Durrance and Parise, selected as payload specialists in 1984, had flown on STS-35, the Astro-1 mission.
Space shuttle Endeavour rolls out to Launch Pad 39A at NASA’s Kennedy Space Center in Florida.NASA The STS-67 crew during a countdown demonstration test. NASA The STS-67 astronauts walk out for their ride to the launch pad. NASA The Astro-2 science payload consisted of three ultraviolet telescopes mounted on a Spacelab instrument pointing system in the shuttle’s cargo bay. The trio of telescopes flew previously on STS-35, the Astro-1 mission, in December 1990. That mission, originally planned to fly on STS-61E in March 1986, remained grounded following the Challenger accident. Due to equipment malfunctions, the Astro-1 mission only achieved 80% of its objectives, leading to the reflight of the instruments on Astro-2, originally planned as a seven-day mission aboard Discovery. A switch to Columbia enabled a mission twice as long, with significantly more observation time. A scheduled maintenance period for Columbia resulted in Astro-2 switching to Endeavour, with a new flight duration of more than 15 days, but a launch delay to February 1995. The three telescopes supported 23 different studies, observing more than 250 celestial objects including joint observations with the Hubble Space Telescope of the planet Jupiter.
The launch of space shuttle Endeavour on STS-67 to begin the Astro-2 mission.NASA The Astro-2 telescopes deployed in Endeavour’s payload bay. NASA Endeavour returned to Kennedy following its previous flight, STS-68, in October 1994. After servicing the orbiter, workers rolled it to the vehicle assembly building on Feb. 3, 1995, for mating with its external tank and solid rocket boosters, and then out to Launch Pad 39A on Feb. 8. At 1:38 a.m. EST on March 2, Endeavour thundered into the night sky to begin the STS-67 mission. Eight and a half minutes later, the shuttle and its crew had reached space.
Shortly after reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Jernigan and Durrance activated the Spacelab pallet and its pointing system and the telescopes. The crew split into two shifts to enable data collection around the clock during the mission. Oswald, Gregory, Grunsfeld, and Parise made up the red shift while Lawrence, Jernigan, and Durrance comprised the blue shift.
Stephen Oswald conducts a session with the Middeck Active Control Experiment. NASA Wendy Lawrence monitors a protein crystal growth apparatus. NASA John Grunsfeld, left, and Samuel Durrance at the controls of the telescopes on the shuttle’s aft flight deck. NASA William Gregory conducts a biotechnology experiment in Endeavour’s middeck. NASA Samuel Durrance and Tamara Jernigan assemble the day’s teleprinter message. NASA Ronald Parise floats near the shuttle’s overhead window.NASA For the remainder of the mission, the astronauts operated the telescopes, conducting 385 maneuvers of Endeavour to point the instruments at the celestial targets. The results met or exceeded preflight expectations. The crew also conducted a series of middeck investigations in technology demonstration and biotechnology. The Middeck Active Control Experiment studied the active control of flexible structures in space. Five years later, a newer version flew as one of the first experiments on the International Space Station.
A selection of the STS-67 crew Earth observation photographs. Gulf of Batabano, Cuba.NASA Antofagasta, Chile. NASA Volcanic eruption on Barren Island, Andaman Islands.NASA Disappointment Reach, Western Australia. NASA Like all space crews, the STS-67 astronauts also spent time taking photographs of the Earth using handheld cameras. The mission’s long duration enabled them to image many targets.
The seven-person STS-67 crew poses for an in-flight photo. NASA Endeavour touches down at Edwards Air Force Base in California. NASA On March 14, an eighth American joined the STS-67 crew in space when NASA astronaut Norman Thagard blasted off with two cosmonauts, headed for space station Mir. With three other cosmonauts already aboard Mir, the total number of humans in orbit grew to a then-record of 13. Two days later, Oswald and Thagard, who had flown together on STS-42, talked to each other via ship-to-ship radio.
Inclement weather at Kennedy thwarted the planned reentry on March 17, and the astronauts spent an extra day in space. On March 18, they again waved off a Kennedy landing and one orbit later, Oswald and Gregory piloted Endeavour to a smooth landing at Edwards Air Force Base in California. The crew had flown 262 orbits around the Earth in 16 days, 15 hours, and 9 minutes, at the time the longest space shuttle mission. A few hours later, a large crowd greeted the astronauts upon their return to Houston’s Ellington Field. Endeavour began its ferry flight back to Kennedy on March 26, arriving there the next day. Workers towed Endeavour to the processing facility to prepare it for its next flight, STS-73, then planned for September 1995.
Watch the crew narrate a video about the STS-67 mission.
Explore More
8 min read NASA’s Hubble Celebrates Decade of Tracking Outer Planets
Encountering Neptune in 1989, NASA’s Voyager mission completed humankind’s first close-up exploration of the four…
Article 3 months ago 11 min read 30 Years Ago: Hubble Launched to Unlock the Secrets of the Universe
30 Years Ago: Hubble Launched to Unlock the Secrets of the Universe
Article 5 years ago 22 min read 35 Years Ago: NASA Selects its 13th Group of Astronauts
Article 2 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.