Members Can Post Anonymously On This Site
NASA’s Webb Peers Deeper into Mysterious Flame Nebula
-
Similar Topics
-
By USH
EBANI stands for "Unidentified Anomalous Biological Entity," referring to a mysterious class of airborne phenomena that may be biological rather than mechanical in nature. These entities are often described as elongated, flexible, and tubular, moving through the sky in a serpentine or twisting manner.
They exhibit advanced flight capabilities, including high-speed travel, precise control, and even self-illumination. Some have been observed rendering themselves invisible, raising questions about their energy sources and possible technological origins.
Recent observations have revealed formations of translucent spheres in red, white, and blue, challenging conventional classifications of both biology and aerodynamics.
Some of these entities have a massive structure composed of thousands of clustered spheres. These entities appear to function as an aircraft carrier, releasing these smaller spheres into Earth's atmosphere for an unknown purpose.
While some researchers propose that EBANIs are natural organisms evolving in Earth's upper atmosphere under unfamiliar physical laws, others speculate they may be advanced artificial (eventually biological) constructs, potentially extraterrestrial probes or surveillance devices, given the presence of large structures expelling numerous smaller spheres.
Are they living UFOs, advanced biological organisms that function autonomously within the spheres, without the need for pilots?
View the full article
-
By European Space Agency
Image: Webb wows with incredible detail in star-forming system View the full article
-
By NASA
Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA Webb Wows With Incredible Detail in Actively Forming Star System
Shimmering ejections emitted by two actively forming stars make up Lynds 483 (L483). High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows incredible new detail and structure within these lobes. Credits:
NASA, ESA, CSA, STScI High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows extraordinary new detail and structure in Lynds 483 (L483). Two actively forming stars are responsible for the shimmering ejections of gas and dust that gleam in orange, blue, and purple in this representative color image.
Over tens of thousands of years, the central protostars have periodically ejected some of the gas and dust, spewing it out as tight, fast jets and slightly slower outflows that “trip” across space. When more recent ejections hit older ones, the material can crumple and twirl based on the densities of what is colliding. Over time, chemical reactions within these ejections and the surrounding cloud have produced a range of molecules, like carbon monoxide, methanol, and several other organic compounds.
Image A: Actively Forming Star System Lynds 483 (NIRCam Image)
Shimmering ejections emitted by two actively forming stars make up Lynds 483 (L483). High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows incredible new detail and structure within these lobes, including asymmetrical lines that appear to run into one another. L483 is 650 light-years away in the constellation Serpens. NASA, ESA, CSA, STScI Dust-Encased Stars
The two protostars responsible for this scene are at the center of the hourglass shape, in an opaque horizontal disk of cold gas and dust that fits within a single pixel. Much farther out, above and below the flattened disk where dust is thinner, the bright light from the stars shines through the gas and dust, forming large semi-transparent orange cones.
It’s equally important to notice where the stars’ light is blocked — look for the exceptionally dark, wide V-shapes offset by 90 degrees from the orange cones. These areas may look like there is no material, but it’s actually where the surrounding dust is the densest, and little starlight penetrates it. If you look carefully at these areas, Webb’s sensitive NIRCam (Near-Infrared Camera) has picked up distant stars as muted orange pinpoints behind this dust. Where the view is free of obscuring dust, stars shine brightly in white and blue.
Unraveling the Stars’ Ejections
Some of the stars’ jets and outflows have wound up twisted or warped. To find examples, look toward the top right edge where there’s a prominent orange arc. This is a shock front, where the stars’ ejections were slowed by existing, denser material.
Now, look a little lower, where orange meets pink. Here, material looks like a tangled mess. These are new, incredibly fine details Webb has revealed, and will require detailed study to explain.
Turn to the lower half. Here, the gas and dust appear thicker. Zoom in to find tiny light purple pillars. They point toward the central stars’ nonstop winds, and formed because the material within them is dense enough that it hasn’t yet been blown away. L483 is too large to fit in a single Webb snapshot, and this image was taken to fully capture the upper section and outflows, which is why the lower section is only partially shown. (See a larger view observed by NASA’s retired Spitzer Space Telescope.)
All the symmetries and asymmetries in these clouds may eventually be explained as researchers reconstruct the history of the stars’ ejections, in part by updating models to produce the same effects. Astronomers will also eventually calculate how much material the stars have expelled, which molecules were created when material smashed together, and how dense each area is.
Millions of years from now, when the stars are finished forming, they may each be about the mass of our Sun. Their outflows will have cleared the area — sweeping away these semi-transparent ejections. All that may remain is a tiny disk of gas and dust where planets may eventually form.
L483 is named for American astronomer Beverly T. Lynds, who published extensive catalogs of “dark” and “bright” nebulae in the early 1960s. She did this by carefully examining photographic plates (which preceded film) of the first Palomar Observatory Sky Survey, accurately recording each object’s coordinates and characteristics. These catalogs provided astronomers with detailed maps of dense dust clouds where stars form — critical resources for the astronomical community decades before the first digital files became available and access to the internet was widespread.
The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Claire Blome – cblome@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
View more: Webb images of similar protostar outflows – HH 211 and HH 46/47
Animation Video: “Exploring Star and Planet Formation”
Explore the jets emitted by young stars in multiple wavelengths: ViewSpace Interactive
Read more: Birth of Stars with Hubble observations
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Universe
Stars
Stars Stories
Share
Details
Last Updated Mar 07, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Protostars Science & Research Stars The Universe View the full article
-
By NASA
Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Exposes Complex Atmosphere of Starless Super-Jupiter
This artist’s concept shows what the isolated planetary-mass object SIMP 0136 could look like based on recent observations from NASA’s James Webb Space Telescope and previous observations from Hubble, Spitzer, and numerous ground-based telescopes. Credits:
NASA, ESA, CSA, and Joseph Olmsted (STScI) An international team of researchers has discovered that previously observed variations in brightness of a free-floating planetary-mass object known as SIMP 0136 must be the result of a complex combination of atmospheric factors, and cannot be explained by clouds alone.
Using NASA’s James Webb Space Telescope to monitor a broad spectrum of infrared light emitted over two full rotation periods by SIMP 0136, the team was able to detect variations in cloud layers, temperature, and carbon chemistry that were previously hidden from view.
The results provide crucial insight into the three-dimensional complexity of gas giant atmospheres within and beyond our solar system. Detailed characterization of objects like these is essential preparation for direct imaging of exoplanets, planets outside our solar system, with NASA’s Nancy Grace Roman Space Telescope, which is scheduled to begin operations in 2027.
Rapidly Rotating, Free-Floating
SIMP 0136 is a rapidly rotating, free-floating object roughly 13 times the mass of Jupiter, located in the Milky Way just 20 light-years from Earth. Although it is not classified as a gas giant exoplanet — it doesn’t orbit a star and may instead be a brown dwarf — SIMP 0136 is an ideal target for exo-meteorology: It is the brightest object of its kind in the northern sky. Because it is isolated, it can be observed with no fear of light contamination or variability caused by a host star. And its short rotation period of just 2.4 hours makes it possible to survey very efficiently.
Prior to the Webb observations, SIMP 0136 had been studied extensively using ground-based observatories and NASA’s Hubble and Spitzer space telescopes.
“We already knew that it varies in brightness, and we were confident that there are patchy cloud layers that rotate in and out of view and evolve over time,” explained Allison McCarthy, doctoral student at Boston University and lead author on a study published today in The Astrophysical Journal Letters. “We also thought there could be temperature variations, chemical reactions, and possibly some effects of auroral activity affecting the brightness, but we weren’t sure.”
To figure it out, the team needed Webb’s ability to measure very precise changes in brightness over a broad range of wavelengths.
Graphic A: Isolated Planetary-Mass Object SIMP 0136 (Artist’s Concept)
This artist’s concept shows what the isolated planetary-mass object SIMP 0136 could look like based on recent observations from NASA’s James Webb Space Telescope and previous observations from Hubble, Spitzer, and numerous ground-based telescopes. Researchers used Webb’s NIRSpec (Near-Infrared Spectrograph) and MIRI (Mid-Infrared Instrument) to measure subtle changes in the brightness of infrared light as the object completed two 2.4-hour rotations. By analyzing the change in brightness of different wavelengths over time, they were able to detect variability in cloud cover at different depths, temperature variations in the upper atmosphere, and changes in carbon chemistry as different sides of the object rotated in and out of view. This illustration is based on Webb’s spectroscopic observations. Webb has not captured a direct image of the object. NASA, ESA, CSA, and Joseph Olmsted (STScI) Charting Thousands of Infrared Rainbows
Using NIRSpec (Near-Infrared Spectrograph), Webb captured thousands of individual 0.6- to 5.3-micron spectra — one every 1.8 seconds over more than three hours as the object completed one full rotation. This was immediately followed by an observation with MIRI (Mid-Infrared Instrument), which collected hundreds of spectroscopic measurements of 5- to 14-micron light — one every 19.2 seconds, over another rotation.
The result was hundreds of detailed light curves, each showing the change in brightness of a very precise wavelength (color) as different sides of the object rotated into view.
“To see the full spectrum of this object change over the course of minutes was incredible,” said principal investigator Johanna Vos, from Trinity College Dublin. “Until now, we only had a little slice of the near-infrared spectrum from Hubble, and a few brightness measurements from Spitzer.”
The team noticed almost immediately that there were several distinct light-curve shapes. At any given time, some wavelengths were growing brighter, while others were becoming dimmer or not changing much at all. A number of different factors must be affecting the brightness variations.
“Imagine watching Earth from far away. If you were to look at each color separately, you would see different patterns that tell you something about its surface and atmosphere, even if you couldn’t make out the individual features,” explained co-author Philip Muirhead, also from Boston University. “Blue would increase as oceans rotate into view. Changes in brown and green would tell you something about soil and vegetation.”
Graphic B: Isolated Planetary-Mass Object SIMP 0136 (NIRSpec Light Curves)
These light curves show the change in brightness of three different sets of wavelengths (colors) of near-infrared light coming from the isolated planetary-mass object SIMP 0136 as it rotated. The light was captured by Webb’s NIRSpec (Near-Infrared Spectrograph), which collected a total of 5,726 spectra — one every 1.8 seconds — over the course of about 3 hours on July 23, 2023. The variations in brightness are thought to be related to different atmospheric features — deep clouds composed of iron particles, higher clouds made of tiny grains of silicate minerals, and high-altitude hot and cold spots — rotating in and out of view. The diagram at the right illustrates the possible structure of SIMP 0136’s atmosphere, with the colored arrows representing the same wavelengths of light shown in the light curves. Thick arrows represent more (brighter) light; thin arrows represent less (dimmer) light. NASA, ESA, CSA, and Joseph Olmsted (STScI) Patchy Clouds, Hot Spots, and Carbon Chemistry
To figure out what could be causing the variability on SIMP 0136, the team used atmospheric models to show where in the atmosphere each wavelength of light was originating.
“Different wavelengths provide information about different depths in the atmosphere,” explained McCarthy. “We started to realize that the wavelengths that had the most similar light-curve shapes also probed the same depths, which reinforced this idea that they must be caused by the same mechanism.”
One group of wavelengths, for example, originates deep in the atmosphere where there could be patchy clouds made of iron particles. A second group comes from higher clouds thought to be made of tiny grains of silicate minerals. The variations in both of these light curves are related to patchiness of the cloud layers.
A third group of wavelengths originates at very high altitude, far above the clouds, and seems to track temperature. Bright “hot spots” could be related to auroras that were previously detected at radio wavelengths, or to upwelling of hot gas from deeper in the atmosphere.
Some of the light curves cannot be explained by either clouds or temperature, but instead show variations related to atmospheric carbon chemistry. There could be pockets of carbon monoxide and carbon dioxide rotating in and out of view, or chemical reactions causing the atmosphere to change over time.
“We haven’t really figured out the chemistry part of the puzzle yet,” said Vos. “But these results are really exciting because they are showing us that the abundances of molecules like methane and carbon dioxide could change from place to place and over time. If we are looking at an exoplanet and can get only one measurement, we need to consider that it might not be representative of the entire planet.”
This research was conducted as part of Webb’s General Observer Program 3548.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from The Astrophysical Journal Letters.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Margaret W. Carruthers – mcarruthers@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Learn more about brown dwarf discoveries
Article: Spectroscopy 101
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Universe
Universe Stories
Exoplanets
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
Sols 4466-4468: Heading Into the Small Canyon
NASA’s Mars rover Curiosity produced this image from its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. This image is a combination of two MAHLI images, merged on the rover on Feb. 25, 2025 — sol 4464, or Martian day 4,464 of the Mars Science Laboratory mission — at 22:36:53 UTC. NASA/JPL-Caltech/MSSS Written by Susanne Schwenzer, Planetary Geologist at The Open University
Earth planning date: Wednesday, Feb. 26, 2025
The fine detail of the image above reminds us once again that geoscience — on Mars and on Earth — is an observational science. If you look at the image for a few moments, you will see that there are different areas made of different textures. You will also observe that some features appear to be more resistant to weathering than others, and as a consequence stand out from the surface or the rims of the block. Sedimentologists will study this and many other images in fine detail and compare them to similar images we have acquired along the most recent drive path. From that they put together a reconstruction of the environment billions of years in the past: Was it water or wind that laid down those rocks, and what happened next? Many of the knobbly textures might be from water-rock interaction that happened after the initial deposition of the material. We will see; the jury is out on what these details tell us, and we are looking closely at all those beautiful images and then will turn to the chemistry data to understand even more about those rocks.
In the caption of the image above it says “merged” images. This is an imaging process that happens aboard the rover — it takes two (or more) images of the same location on the same target, acquired at different focus positions, and merges them so a wider range of the rock is in focus. This is especially valuable on textures that have a high relief, such as the above shown example. The rover is quite clever, isn’t it?
In today’s plan MAHLI does not have such an elaborate task, but instead it is documenting the rock that the APXS instrument is measuring. The team decided that it is time for APXS to measure the regular bedrock again, because we are driving out of an area that is darker on the orbital image and into a lighter area. If you want, you can follow our progress on that orbital image. (But I am sure many of the regular readers of this blog know that!)
That bedrock target was named “Trippet Ranch.” ChemCam investigates the target “San Ysidro Trail,” which is a grayish-looking vein. As someone interested in water-rock interactions for my research, I always love plans that have the surrounding rock (the APXS target in this case) and the alteration features in the same location. This allows us to tease out which of the chemical components of the rock might have moved upon contact with water, and which ones have not.
As we are driving through very interesting terrain, with walls exposed on the mesas — especially Gould mesa — and lots of textures in the blocks around us, there are many Mastcam mosaics in today’s plan! The mosaics on “Lytle Creek,” “Round Valley,” “Heaton Flat,” “Los Liones,” and the single image on “Mount Pinos” all document this variety of structures, and another mosaic looks right at our workspace. It did not get a nice name as it is part of a series with a more descriptive name all called “trough.” We often do this to keep things together in logical order when it comes to imaging series. The long-distance RMIs in today’s plan are another example of this, as they are just called “Gould,” followed by the sol number they will be taken on — that’s 4466 — and a and b to distinguish the two from each other. Gould Mesa, the target of both of them, exposes many different structures and textures, and looking at such walls — geologists call them outcrops — lets us read the rock record like a history book! And it will get even better in the next few weeks as we are heading into a small canyon and will have walls on both sides. Lots of science to come in the next few downlinks, and lots of science on the ground already! I’d better get back to thinking about some of the data we have received recently, while the rover is busy exploring the ever-changing geology and mineralogy on the flanks of Mount Sharp.
Share
Details
Last Updated Feb 26, 2025 Related Terms
Blogs Explore More
2 min read Sols 4464-4465: Making Good Progress
Article
5 hours ago
3 min read Sols 4461-4463: Salty Salton Sea?
Article
1 day ago
2 min read Gardens on Mars? No, Just Rocks!
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.