Jump to content

Recommended Posts

  • Publishers
Posted
Astronaut Tracy Dyson points to the Expedition 71 patch on her right sleeve. The round patch has an orange border with a large, stylized "71" on the right side. She is wearing a blue flight suit with multiple patches.
NASA/Joel Kowsky

NASA Astronaut Tracy Dyson points to the Expedition 71 patch on her flight suit on Wednesday, March 5, 2025. Dyson and her fellow Expedition 71 crewmates Matthew Dominick, Michael Barratt, and Jeanette Epps answered questions from students at Elsie Whitlow Stokes Community Freedom Public Charter School in Washington.

While aboard the International Space Station, Dyson conducted dozens of scientific and technology activities to benefit future exploration in space and life back on Earth. She remotely controlled a robot on Earth’s surface from a computer aboard the station and evaluated orbit-to-ground operations. She operated a 3D bioprinter to print cardiac tissue samples, which could advance technology for creating replacement organs and tissues for transplants on Earth. Dyson also participated in the crystallization of model proteins to evaluate the performance of hardware that could be used for pharmaceutical production and ran a program that uses student-designed software to control the station’s free-flying robots, inspiring the next generation of innovators.

Image credit: NASA/Joel Kowsky

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gateway’s HALO module at Northrop Grumman’s facility in Gilbert, Arizona, on April 4, 2025, shortly after its arrival from Thales Alenia Space in Turin, Italy. NASA/Josh Valcarcel NASA continues to mark progress on plans to work with commercial and international partners as part of the Gateway program. The primary structure of HALO (Habitation and Logistics Outpost) arrived at Northrop Grumman’s facility in Gilbert, Arizona, where it will undergo final outfitting and verification testing.
      HALO will provide Artemis astronauts with space to live, work, and conduct scientific research. The habitation module will be equipped with essential systems including command and control, data handling, energy storage, power distribution, and thermal regulation.
      Following HALO’s arrival on April 1 from Thales Alenia Space in Turin, Italy, where it was assembled, NASA and Northrop Grumman hosted an April 24 event to acknowledge the milestone, and the module’s significance to lunar exploration. The event opened with remarks by representatives from Northrop Grumman and NASA, including NASA’s Acting Associate Administrator for Exploration Systems Development Lori Glaze, Gateway Program Manager Jon Olansen, and NASA astronaut Randy Bresnik. Event attendees, including Senior Advisor to the NASA Administrator Todd Ericson, elected officials, and local industry and academic leaders, viewed HALO and virtual reality demonstrations during a tour of the facilities.
      Dr. Lori Glaze, acting associate administrator for NASA’s Exploration Systems Development Mission Directorate, and Dr. Jon B. Olansen, Gateway Program manager, on stage during an April 24, 2025, event at Northrop Grumman’s facility in Gilbert, Arizona, commemorating HALO’s arrival in the United States. Northrop Grumman While the module is in Arizona, HALO engineers and technicians will install propellant lines for fluid transfer and electrical lines for power and data transfer. Radiators will be attached for the thermal control system, as well as racks to house life support hardware, power equipment, flight computers, and avionics systems. Several mechanisms will be mounted to enable docking of the Orion spacecraft, lunar landers, and visiting spacecraft.
      Launching on top of HALO is the ESA (European Space Agency)-provided Lunar Link system which will enable communication between crewed and robotic systems on the Moon and to mission control on Earth. Once these systems are installed, the components will be tested as an integrated spacecraft and subjected to thermal vacuum, acoustics, vibration, and shock testing to ensure the spacecraft is ready to perform in the harsh conditions of deep space.
      In tandem with HALO’s outfitting at Northrop Grumman, the Power and Propulsion Element – a powerful solar electric propulsion system – is being assembled at Maxar Space Systems in Palo Alto, California. Solar electric propulsion uses energy collected from solar panels converted to electricity to create xenon ions, then accelerates them to more than 50,000 miles per hour to create thrust that propels the spacecraft.
      The element’s central cylinder, which resembles a large barrel, is being attached to the propulsion tanks, and avionics shelves are being installed. The first of three 12-kilowatt thrusters has been delivered to NASA’s Glenn Research Center in Cleveland for acceptance testing before delivery to Maxar and integration with the Power and Propulsion Element later this year.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Linkedin logo @NASA Share
      Details
      Last Updated Apr 25, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station General Humans in Space Explore More
      2 min read NASA Welcomes Gateway Lunar Space Station’s HALO Module to US
      From Italy to Arizona: Gateway’s first habitation module takes a major step on its path…
      Article 3 weeks ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 2 months ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 3 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Students take a tour of the Glenn International Space Station Payload Operations Center at NASA’s Glenn Research Center in Cleveland, where researchers operate International Space Station experiments, during 4-H Day on June 14, 2024.Credit: NASA/Jef Janis Ohio middle school students will step into the shoes of real-world NASA professionals for a day of career exploration and hands-on activities at NASA’s Glenn Research Center in Cleveland. Nearly 200 students are slated to participate in TECH Day at NASA Glenn on May 1, from 10 a.m. to 1 p.m. Media are invited to attend.
      TECH Day is designed to inspire and inform the next generation of innovators by introducing them to clear and attainable career pathways into the aerospace industry. Students will tour NASA Glenn facilities, participate in an interactive engineering challenge, and engage with professionals to learn about the wide range of careers in STEM fields.
      Student tours will include the following Glenn facilities:
      Graphics and Visualization Lab, where researchers create engaging projects using virtual and augmented reality Glenn International Space Station Payload Operations Center, where researchers remotely operate experiments aboard the International Space Station Simulated Lunar Operations Laboratory, a unique indoor space designed to mimic the surface of the Moon and Mars 10×10 Supersonic Wind Tunnel, NASA Glenn’s largest and fastest wind tunnel facility Creating Clear Pathways
      Developing early and accessible entry points into STEM careers is essential to meeting the growing demand for a skilled technical workforce. NASA STEM engagement events help students visualize their future and better understand the technical experience needed for a career in the aerospace sector. Opportunities like this equip students with the skills to further technological advancement and become the STEM professionals of tomorrow.
      Media interested in attending should contact Jacqueline Minerd at jacqueline.minerd@nasa.gov no later than 5 p.m. Wednesday, April 30. Interviews with experts will take place from 9 to 10 a.m.
      For more information on NASA Glenn, visit: 
      https://www.nasa.gov/glenn
      -end- 
      Jacqueline Minerd
      Glenn Research Center, Cleveland 
      216-433- 6036  
      jacqueline.minerd@nasa.gov

      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An astronaut glove designed for International Space Station spacewalks is prepped for testing in a chamber called CITADEL at NASA JPL. Conducted at temperatures as frigid as those Artemis III astronauts will see on the lunar South Pole, the testing supports next-generation spacesuit development.NASA/JPL-Caltech Engineers with NASA Johnson and the NASA Engineering and Safety Center ready an astronaut glove for insertion into the main CITADEL chamber at JPL. The team tested the glove in vacuum at minus 352 degrees Fahrenheit (minus 213 degrees Celsius).NASA/JPL-Caltech A JPL facility built to support potential robotic spacecraft missions to frozen ocean worlds helps engineers develop safety tests for next-generation spacesuits.
      When NASA astronauts return to the Moon under the Artemis campaign and eventually venture farther into the solar system, they will encounter conditions harsher than any humans have experienced before. Ensuring next-generation spacesuits protect astronauts requires new varieties of tests, and a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California is helping.
      Built to prepare potential robotic explorers for the frosty, low-pressure conditions on ocean worlds like Jupiter’s frozen moon Europa, CITADEL also can evaluate how spacesuit gloves and boots hold up in extraordinary cold. Spearheaded by the NASA Engineering and Safety Center, a glove testing campaign in CITADEL ran from October 2023 to March 2024. Boot testing, initiated by the Extravehicular Activity and Human Surface Mobility Program at NASA’s Johnson Space Center in Houston, took place from October 2024 to January 2025.

      An astronaut boot — part of a NASA lunar spacesuit prototype, the xEMU — is readied for testing in JPL’s CITADEL. A thick aluminum plate stands in for the cold surface of the lunar South Pole, where Artemis III astronauts will confront conditions more extreme than any humans have yet experienced.NASA/JPL-Caltech In coming months, the team will adapt CITADEL to test spacesuit elbow joints to evaluate suit fabrics for longevity on the Moon. They’ll incorporate abrasion testing and introduce a simulant for lunar regolith, the loose material that makes up the Moon’s surface, into the chamber for the first time.
      “We’ve built space robots at JPL that have gone across the solar system and beyond,” said Danny Green, a mechanical engineer who led the boot testing for JPL. “It’s pretty special to also use our facilities in support of returning astronauts to the Moon.”
      Astronauts on the Artemis III mission will explore the Moon’s South Pole, a region of much greater extremes than the equatorial landing sites visited by Apollo-era missions. They’ll spend up to two hours at a time inside craters that may contain ice deposits potentially important to sustaining long-term human presence on the Moon. Called permanently shadowed regions, these intriguing features rank among the coldest locations in the solar system, reaching as low as minus 414 degrees Fahrenheit (minus 248 degrees Celsius). The CITADEL chamber gets close to those temperatures.
      Engineers from JPL and NASA Johnson set up a test of the xEMU boot inside CITADEL. Built to prepare potential robotic explorers for conditions on ocean worlds like Jupiter’s moon Europa, the chamber offers unique capabilities that have made it useful for testing spacesuit parts.NASA/JPL-Caltech “We want to understand what the risk is to astronauts going into permanently shadowed regions, and gloves and boots are key because they make prolonged contact with cold surfaces and tools,” said Zach Fester, an engineer with the Advanced Suit Team at NASA Johnson and the technical lead for the boot testing.
      Keeping Cool
      Housed in the same building as JPL’s historic 10-Foot Space Simulator, the CITADEL chamber uses compressed helium to get as low as minus 370 F (minus 223 C) — lower than most cryogenic facilities, which largely rely on liquid nitrogen. At 4 feet (1.2 meters) tall and 5 feet (1.5 meters) in diameter, the chamber is big enough for a person to climb inside.
      An engineer collects simulated lunar samples while wearing the Axiom Extravehicular Mobility Unit spacesuit during testing at NASA Johnson in late 2023. Recent testing of existing NASA spacesuit designs in JPL’s CITADEL chamber will ultimately support de-velopment of next-generation suits being built by Axiom Space.Axiom Space More important, it features four load locks, drawer-like chambers through which test materials are inserted into the main chamber while maintaining a chilled vacuum state. The chamber can take several days to reach test conditions, and opening it to insert new test materials starts the process all over again. The load locks allowed engineers to make quick adjustments during boot and glove tests.
      Cryocoolers chill the chamber, and aluminum blocks inside can simulate tools astronauts might grab or the cold lunar surface on which they’d walk. The chamber also features a robotic arm to interact with test materials, plus multiple visible-light and infrared cameras to record operations.
      Testing Extremities
      The gloves tested in the chamber are the sixth version of a glove NASA began using in the 1980s, part of a spacesuit design called the Extravehicular Mobility Unit. Optimized for spacewalks at the International Space Station, the suit is so intricate it’s essentially a personal spacecraft. Testing in CITADEL at minus 352 F (minus 213 C) showed the legacy glove would not meet thermal requirements in the more challenging environment of the lunar South Pole. Results haven’t yet been fully analyzed from boot testing, which used a lunar surface suit prototype called the Exploration Extravehicular Mobility Unit. NASA’s reference design of an advanced suit architecture, this spacesuit features enhanced fit, mobility, and safety.
      In addition to spotting vulnerabilities with existing suits, the CITADEL experiments will help NASA prepare criteria for standardized, repeatable, and inexpensive test methods for the next-generation lunar suit being built by Axiom Space — the Axiom Extravehicular Mobility Unit, which NASA astronauts will wear during the Artemis III mission.
      “This test is looking to identify what the limits are: How long can that glove or boot be in that lunar environment?” said Shane McFarland, technology development lead for the Advanced Suit Team at NASA Johnson. “We want to quantify what our capability gap is for the current hardware so we can give that information to the Artemis suit vendor, and we also want to develop this unique test capability to assess future hardware designs.”
      In the past, astronauts themselves have been part of thermal testing. For gloves, an astronaut inserted a gloved hand into a chilled “glove box,” grabbed a frigid object, and held it until their skin temperature dropped as low as 50 F (10 C). McFarland stressed that such human-in-the-loop testing remains essential to ensuring future spacesuit safety but doesn’t produce the consistent data the team is looking for with the CITADEL testing.
      To obtain objective feedback, the CITADEL testing team used a custom-built manikin hand and foot. A system of fluid loops mimicked the flow of warm blood through the appendages, while dozens of temperature and heat flux sensors provided data from inside gloves and boots.
      “By using CITADEL and modern manikin technology, we can test design iterations faster and at much lower cost than traditional human-in-the-loop testing,” said Morgan Abney, NASA technical fellow for Environmental Control and Life Support, who conceived the glove testing effort. “Now we can really push the envelope on next-generation suit designs and have confidence we understand the risks. We’re one step closer to landing astronauts back on the Moon.”
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      Houston, We Have a Podcast: next-generation spacesuits Why NASA’s Perseverance rover carries spacesuit materials News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-060
      Share
      Details
      Last Updated Apr 24, 2025 Related Terms
      Artemis 3 Earth's Moon Exploration Systems Development Mission Directorate Jet Propulsion Laboratory NASA Engineering & Safety Center Academy Spacesuits xEVA & Human Surface Mobility Explore More
      3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 7 days ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
      Article 1 week ago 3 min read Michael Ciancone Builds a Lasting Legacy in Human Spaceflight 
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA astronaut and Expedition 73 Flight Engineer Jonny KimCredit: Gagarin Cosmonaut Training Center Students from Santa Monica, California, will connect with NASA astronaut Jonny Kim as he answers prerecorded science, technology, engineering, and mathematics-related questions aboard the International Space Station.
      Watch the 20-minute space-to-Earth call at 12:10 p.m. EDT on Tuesday, April 29, on the NASA STEM YouTube Channel.
      Media interested in covering the event must RSVP by 5 p.m., Friday, April 25, to Esmi Careaga at: ecareaga@smmusd.org or 805-651-3204 x71582.
      The event is hosted by Santa Monica High School, Kim’s alma mater, and includes students from Roosevelt Elementary School and Lincoln Middle School in Santa Monica. The schools hope to inspire students to follow their dreams and explore their passions through curiosity, service, and interest in learning.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 23, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters Humans in Space International Space Station (ISS) Johnson Space Center View the full article
    • By NASA
      NASA Astronaut Don Pettit Post-Flight News Conference
  • Check out these Videos

×
×
  • Create New...