Members Can Post Anonymously On This Site
NASA Webb Wows With Incredible Detail in Actively Forming Star System
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
One of several NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation sits in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.NASA/Genaro Vavuris NASA engineers began using a network of ground sensors in March to collect data from an experimental air taxi to evaluate how to safely integrate such vehicles into airspace above cities – in all kinds of weather.
Researchers will use the campaign to help improve tools to assist with collision avoidance and landing operations and ensure safe and efficient air taxi operations in various weather conditions.
For years, NASA has looked at how wind shaped by terrain, including buildings in urban areas, can affect new types of aircraft. The latest test, which is gathering data from a Joby Aviation demonstrator aircraft, looks at another kind of wind – that which is generated by the aircraft themselves.
Joby flew its air taxi demonstrator over NASA’s ground sensor array near the agency’s Armstrong Flight Research Center in Edwards, California producing air flow data. The Joby aircraft has six rotors that allow for vertical takeoffs and landings, and tilt to provide lift in flight. Researchers focused on the air pushed by the propellers, which rolls into turbulent, circular patterns of wind.
NASA aeronautical meteorologist Luke Bard adjusts one of several wind lidar (light detection and ranging) sensors near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025, in preparation to collect data from Joby Aviation’s experimental air taxi aircraft. NASA is collecting information during this study to help advance weather-tolerant air taxi operations for the entire industryNASA/Genaro Vavuris This rolling wind can affect the aircraft’s performance, especially when it’s close to the ground, as well as others flying in the vicinity and people on the ground. Such wind turbulence is difficult to measure, so NASA enhanced its sensors with a new type of lidar – a system that uses lasers to measure precise distances – and that can map out the shapes of wind features.
“The design of this new type of aircraft, paired with the NASA lidar technology during this study, warrants a better understanding of possible wind and turbulence effects that can influence safe and efficient flights,” said Grady Koch, lead for this research effort, from NASA’s Langley Research Center in Hampton, Virginia.
Data to Improve Aircraft Tracking
NASA also set up a second array of ground nodes including radar, cameras, and microphones in the same location as the sensors to provide additional data on the aircraft. These nodes will collect tracking data during routine flights for several months.
The agency will use the data gathered from these ground nodes to demonstrate the tracking capabilities and functions of its “distributed sensing” technology, which involves embedding multiple sensors in an area where aircraft are operating.
One of multiple NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation hovers in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.NASA/Genaro Vavuris This technology will be important for future air taxi flights, especially those occurring in cities by tracking aircraft moving through traffic corridors and around landing zones. Distributed sensing has the potential to enhance collision avoidance systems, air traffic management, ground-based landing sensors, and more.
“Our early work on a distributed network of sensors, and through this study, gives us the opportunity to test new technologies that can someday assist in airspace monitoring and collision avoidance above cities,” said George Gorospe, lead for this effort from NASA’s Ames Research Center in California’s Silicon Valley.
Using this data from an experimental air taxi aircraft, NASA will further develop the technology needed to help create safer air taxi flights in high-traffic areas. Both of these efforts will benefit the companies working to bring air taxis and drones safely into the airspace.
The work is led by NASA’s Transformational Tools and Technologies and Convergent Aeronautics Solutions projects under the Transformative Aeronautics Concepts program in support of NASA’s Advanced Air Mobility mission. NASA’s Advanced Air Mobility mission seeks to deliver data to guide the industry’s development of electric air taxis and drones.
Share
Details
Last Updated Apr 17, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Mobility Ames Research Center Convergent Aeronautics Solutions Drones & You Flight Innovation Glenn Research Center Langley Research Center Transformational Tools Technologies Transformative Aeronautics Concepts Program Explore More
3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
Article 3 hours ago 1 min read Recognizing Employee Excellence
Article 8 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
Article 23 hours ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore This Section Science Science Activation Building for a Better World:… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 6 min read
Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership
At Norfolk Technical Center in Norfolk, Virginia, carpentry students in Jordan Crawford’s first-year class aren’t just learning how to measure and cut wood—they’re discovering how their skills can serve a greater purpose.
When the NASA Science Activation program’s NASA eClips project—led by the National Institute of Aerospace’s Center for Integrative Science, Technology, Engineering, and Mathematics (STEM) Education (NIA-CISE)—needed help building weather instrument shelters for local schools, Norfolk Public Schools’ Career and Technical Education (CTE) team saw an opportunity to connect students to something bigger than the classroom. The shelters are used to house scientific equipment that K–12 students rely on to collect data using GLOBE (Global Learning and Observations to Benefit the Environment) protocols—a set of standardized, internationally recognized methods for gathering environmental data such as temperature, soil moisture, and cloud cover. These observations contribute to a global citizen science database, giving young learners a meaningful role in real-world environmental research.
Originally, shelters were being ordered from a national supplier to support GLOBE training sessions for teachers in GO (Growth & Opportunity) Virginia Region 5, an economic development region. These training sessions were funded through a generous grant from the Coastal Virginia STEM Hub (COVA STEM Hub), which supports regional collaboration in STEM education. But when the supplier couldn’t keep up with demand, Norfolk Public Schools CTE Specialist Dr. Deborah Marshall offered a bold solution: why not have local students build them?
That’s when the project truly took off. Under the guidance of Jordan Crawford, students took on the challenge of building 20 high-quality shelters in spring 2024, following precise construction plans provided through the GLOBE Program. Materials were funded by the COVA STEM grant, and the students rolled up their sleeves to turn lumber into lasting educational tools for their community.
“As an instructor, you look for opportunities that challenge your students, allow them to do things bigger than themselves, and let them see a project through from start to finish,” Crawford said. “This project allowed my students to hone existing skills and build new ones, and I saw incredible growth not just in craftsmanship but in teamwork. The most rewarding part was seeing the impact of their work in real schools.”
And the students rose to the occasion—taking pride in their work, learning advanced techniques, and developing new confidence. One of the most challenging parts of the build involved crafting the louvers—angled slats on the sides of the shelters needed for proper air circulation. Student Zymere Watts took the lead in designing and building a jig to make sure the louvers could be cut uniformly and precisely for every unit.
“Building the weather shelters was a fun and challenging task that pushed me to strive for perfection with each one,” said student Amir Moore. “After completion, I was delighted to see the faces of the people who were proud and happy with what we built.”
“It was an extreme pleasure working on this project. I would love to work with NIA again,” added LaValle Howard. “I am proud to be a part of this vocational school and team.”
Jaymyson Burden agreed: “It was fun and great to be exposed to the carpentry realm and install them in the real world. It was gratifying to know what we have done has an impact.”
After completing the shelters, the students volunteered to install them at seven Hampton City Schools. Their work completed the full circle—from building the shelters in their carpentry classroom to setting them up where younger students would use them to collect real environmental data.
Their dedication did not go unnoticed. The team was invited to NASA’s Langley Research Center for a behind-the-scenes tour of the NASA Model Shop, where they met Sam James, a Mechanical Engineering Technician and Fabrication Specialist. James showed the students how the same kind of craftsmanship they’d used is essential in the creation of tools and components for NASA missions. They also learned about NASA summer internships and discovered that their hands-on skills could open doors to exciting careers in STEM fields.
“It was an honor to help where we were needed,” said student Josh Hunsucker. “Assembling these gave us a new perspective on the importance of duplication and how each step impacts the result. We’re happy to help wherever or whenever we’re needed—it provides a learning experience for us.”
Kyra Pope summed it up: “It’s been a great amount of work over the past few months, but it pays off—especially when you’re giving back to the community.”
According to Dr. Sharon Bowers, Associate Director and Senior STEM Education Specialist for NIA-CISE, the project demonstrates what’s possible when regional partners come together to empower students and educators alike. “The financial support from COVA STEM Hub supported sustained educator professional learning within our STEM learning ecosystem. Work with the Norfolk Technical Center truly made this a real-world, problem-solving experience. This is just the beginning for more collaborative work that will bring the region together to engage educators and learners in authentic STEM learning experiences.”
This collaboration wasn’t just about building boxes to house thermometers. It was about building bridges—between technical education and science, between high school students and their futures, and between local classrooms and global research. With each shelter they crafted, the students created something that will outlast them, reminding others—and themselves—of what’s possible when learning is hands-on, meaningful, and connected to the world beyond school walls.
Thanks to Betsy McAllister, NIA’s Educator-in-Residence from Hampton City Schools, for her impactful contributions and for sharing this story. The NASA eClips project provides educators with standards-based videos, activities, and lessons to increase STEM literacy through the lens of NASA. It is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Carpentry students from the Norfolk Technical Center install a digital, multi-day, minimum/maximum thermometer in the GLOBE instrument shelter. Share
Details
Last Updated Apr 17, 2025 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms
Science Activation Opportunities For Students to Get Involved Partner with NASA STEM Explore More
3 min read Exploring the Universe Through Sight, Touch, and Sound
Article
3 days ago
4 min read GLOBE Mission Earth Supports Career Technical Education
Article
6 days ago
4 min read New York Math Teacher Measures Trees & Grows Scientists with GLOBE
Article
1 week ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
Credit: NASA NASA is marking progress in strengthening the agency’s small business partnerships, supply chain resiliency, and domestic space manufacturing capabilities.
Under the agency’s enhanced Mentor-Protégé Program, NASA has announced the first Mentor-Protégé Agreement between L3Harris Technologies, a NASA large prime contractor, and Parametric Machining, Inc., a veteran-owned small business.
This agreement will help advance NASA’s mission by fostering innovation and reinforcing the agency’s supply chain. As NASA continues to advance the Artemis campaign, deep space exploration, and aeronautics research, partnerships like this are essential in securing a resilient and efficient supplier base.
“We are excited to facilitate the first agreement under the newly enhanced NASA Mentor-Protégé Program,” said Dwight Deneal, assistant administrator for NASA’s Office of Small Business Programs. “This agreement, and the many that will follow, promote domestic ingenuity and manufacturing and provide opportunities for small businesses to grow and thrive within NASA’s industrial base.”
Through Mentor-Protégé Agreements, large prime contractors serve as mentors, offering technical and business development assistance to small business protégés. This collaboration not only enhances protégés’ capabilities but also provides mentors with a stronger, more reliable subcontracting base, enabling them to fill their supply chain gaps. Additionally, protégés gain potential prime and subcontract opportunities, enhanced technical capabilities, technical training, and long-term business growth.
Relaunched in November 2024, the merit-based NASA Mentor-Protégé Program is designed to bolster small business development while strengthening NASA’s supply chain and industry base. By focusing on a targeted set of North American Industry Classification System codes, including research and development and aerospace manufacturing, NASA ensures that participating small businesses are well-positioned to contribute to long-term mission objectives.
The agreement between L3Harris Technologies and Parametric Machining, Inc. demonstrates the value of NASA’s revamped Mentor-Protégé Program. NASA is actively accepting new Mentor-Protégé Agreements and encourages large prime contractors and small businesses to explore the benefits of forming partnerships under the program. Participating in the Mentor-Protégé Program provides:
Enhanced manufacturing capabilities and subcontracting opportunities. Mentorship from experienced NASA prime contractors. Opportunities to advance competitiveness in government contracts. Access to technical assistance and business development support. A pathway for small businesses to integrate into NASA’s supply chain. L3Harris Technologies is a prime contractor at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, supporting the Geostationary Extended Observations Imager Instrument Implementation contract. NASA Goddard also will serve as the administering center for this agreement.
For more information on NASA’s Mentor-Protégé Program and how to participate, visit:
https://www.nasa.gov/osbp/mentor-protege-program
-end-
Share
Details
Last Updated Apr 17, 2025 ContactTiernan P. Doyletiernan.doyle@nasa.govLocationNASA Headquarters Related Terms
Office of Small Business Programs (OSBP) View the full article
-
By NASA
4 Min Read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
NASA astronaut Don Pettit is scheduled to return home in mid-April after a seven-month mission aboard the International Space Station as part of Expedition 72. Throughout his stay, Pettit contributed to research that benefits humanity and future space missions.
Pettit also shared what he calls “science of opportunity” to demonstrate how experimenting with our surroundings can help gain a better understanding of how things work. This understanding is perhaps enhanced when art, science, and microgravity come together.
Electrostatic Displays
NASA astronaut Don Pettit demonstrates electrostatic forces using charged water droplets and a knitting needle made of Teflon. This series of overlapping frames displays the unique attraction-repulsion properties of Teflon and charged droplets, similar to how charged particles from the Sun behave when they come in contact with Earth’s magnetic field. Highly energetic particles from space that collide with atoms and molecules in the atmosphere create the aurora borealis.
Specialized Equipment for Superb Science
NASA astronaut Don Pettit snaps an image of the hands of NASA astronauts Nick Hague, left, and Suni Williams inside the Life Science Glovebox, a facility at the International Space Station that separates the science from the scientists, thus protecting both from contamination.
The freezers on the International Space Station are as crucial as its experiment modules, preserving samples for further analysis on Earth. The Minus Eighty-Degree Laboratory Freezer for International Space Station stores samples at ultra-cold temperatures. NASA astronaut Don Pettit used it to freeze thin ice wafers, which he photographed with a polarizing filter to reveal unique crystal structures.
New Tech Roll-Out
NASA astronaut Don Pettit films a time-lapse sequence of Canadarm2 retrieving Materials International Space Station Experiment (MISSE-20-Commercial) samples at the International Space Station. This investigation exposed various experiments to the harsh space environment, such as vacuum, radiation, and extreme temperatures. Findings could help in many areas, from designing more durable materials to advancing quantum communications.
A surge in International Space Station research supports NASA’s exploration efforts at the Moon and beyond, requiring more energy to operate the orbiting laboratory. NASA astronaut Don Pettit photographs new and old solar arrays side by side. The technology used by the International Space Station Roll-Out Solar Arrays (IROSA) on the right was first tested aboard the station in 2017. By 2023, six IROSAs were deployed aboard station, providing a 20-30% increase in power for research and operations. Roll-Out Solar Arrays were also used on NASA’s DART asteroid mission and now are slated for the Gateway lunar outpost, a vital component of Artemis.
Squire for Spacewalks
I am the nameless boy who stays in the confines of the tent helping the Knights suit up for battle. I remain in the airlock, preparing these knights for a walk outside.
Don Pettit
"Space Squire" posted to X
NASA astronaut Don Pettit helped his colleagues suit up for two spacewalks in January. The first spacewalk involved patching the Neutron Star Interior Composition Explorer (NICER), a telescope that measures X-rays from neutron stars and other cosmic objects. Sunlight interference affected data collection, and the patches reduced this issue. On the second spacewalk, astronauts collected samples from the exterior of the International Space Station for ISS External Microorganisms. This investigation examines whether the orbiting laboratory releases microbes, how many, and how far these may travel. Findings could inform the design of future spacecraft, including spacesuits, to limit biocontamination during future space missions.
Photography with a Spin
NASA astronaut Don Pettit photographs “cosmic colors at sunrise.” From 250 miles above, the International Space Station’s orbital path covers most of Earth’s population, offering valuable data and a great opportunity for shooting breathtaking photography.
NASA astronaut Don Pettit leveraged his stay aboard the International Space Station to photograph our planet with an artistic twist.
NASA astronaut Don Pettit wrote on social media about his snapshot of the Mediterranean Sea from the International Space Station, “Sun glint off the Mediterranean Sea (infrared and converted to black and white). When the Sun reflects off the ocean, watery details unseen with normal lighting appear. Small centimeter differences in ocean height become visible, revealing hidden currents.”
NASA astronaut Don Pettit’s photography could contribute to the study of transient luminous events, colorful electrical discharges that occur above thunderstorms. His imagery can be paired with data from the Atmosphere-Space Interactions Monitor (ASIM) and Thor-Davis, a high-speed thunderstorm camera. The combined efforts of crew photography and instruments aboard the International Space Station help scientists better understand thunderstorms and their impacts on Earth’s upper atmosphere.
More of Pettit’s photography can be found on his X profile, @astro_Pettit.
Share
Details
Last Updated Apr 17, 2025 Related Terms
ISS Research Donald R. Pettit Expedition 72 Humans in Space International Space Station (ISS) Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 Min Read NASA’s Chandra Releases New 3D Models of Cosmic Objects
New three-dimensional (3D) models of objects in space have been released by NASA’s Chandra X-ray Observatory. These 3D models allow people to explore — and print — examples of stars in the early and end stages of their lives. They also provide scientists with new avenues to investigate scientific questions and find insights about the objects they represent.
These 3D models are based on state-of-the-art theoretical models, computational algorithms, and observations from space-based telescopes like Chandra that give us accurate pictures of these cosmic objects and how they evolve over time.
However, looking at images and animations is not the only way to experience this data. The four new 3D printable models of Cassiopeia A (Cas A), G292.0+1.8 (G292), Cygnus Loop supernova remnants, and the star known as BP Tau let us experience the celestial objects in the form of physical structures that will allow anyone to hold replicas of these stars and their surroundings and examine them from all angles.
Cassiopeia A (Cas A)
Using NASA’s James Webb Space Telescope, astronomers uncovered a mysterious feature within the remnant, nicknamed the “Green Monster,” alongside a puzzling network of ejecta filaments forming a web of oxygen-rich material. When combined with X-rays from Chandra, the data helped astronomers shed light on the origin of the Green Monster and revealed new insights into the explosion that created Cas A about 340 years ago, from Earth’s perspective.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of Cassiopeia A "Green Monster" INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of Cassiopeia AINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando BP Tau
X-ray: NASA/CXC/SAO; Optical: PanSTARRS; Image Processing: NASA/CXC/SAO/N. Wolk This 3D model shows a star less than 10 million years old that is surrounded by a disk of material. This class of objects is known as T Tauri stars, named after a young star in the Taurus star-forming region. The model describes the effects of multiple flares, or outbursts that are detected in X-rays by Chandra from one T Tauri star known as BP Tau. These flares interact with the disk of material and lead to the formation of an extended outer atmosphere composed by hot loops, connecting the disk to the developing star.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of BP TauINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando Cygnus Loop
X-ray: NASA/SAO/CXC; Optical: John Stone (Astrobin); Image Processing: NASA/SAO/CXC/L. Frattre, N. Wolk The Cygnus Loop (also known as the Veil Nebula) is a supernova remnant, the remains of the explosive death of a massive star. This 3D model is the result of a simulation describing the interaction of a blast wave from the explosion with an isolated cloud of the interstellar medium (that is, dust and gas in between the stars). Chandra sees the blast wave and other material that has been heated to millions of degrees. The Cygnus Loop is a highly extended, but faint, structure on the sky: At three degrees across, it has the diameter of six full moons.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of Cygnus LoopINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando G292.0+1.8
X-ray: NASA/CXC/SAO; Optical:NSF/NASA/DSS; Image Processing This is a rare type of supernova remnant observed to contain large amounts of oxygen. The X-ray image of G292.0+1.8 from Chandra shows a rapidly expanding, intricately structured field left behind by the shattered star. By creating a 3D model of the system, astronomers have been able to examine the asymmetrical shape of the remnant that can be explained by a “reverse” shock wave moving back toward the original explosion.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of G292.0+1.8INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando The 3D models here are the subject of several scholarly papers by Salvatore Orlando of INAF in Palermo, Italy, and colleagues published in The Astrophysical Journal, Astronomy & Astrophysics, and Monthly Notices of the Royal Astronomical Society. Much of this work is also publicly available work on SketchFab.
NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features visualizations of three supernova remnants and one star. Each is rendered as a composite image, and as a digital 3-dimensional model, presented in separate short video clips. The composite images are two dimensional and static, but the digital models rotate, showcasing their three-dimensionality.
The first featured supernova is Cassiopeia A. In the X-ray, optical, and infrared composite image, the debris from an exploded star resembles a round purple gas cloud, marbled with streaks of golden light. In the rotating, 3D model, the purple gas cloud is depicted as a flat disk, like a record or CD. Bursting out the front and back of the disk is an orange and white shape similar to a ball of coral, or a head of cauliflower lined with stubby tendrils. Most of the ball, and the majority of the tendrils, appear on one side of the disk. On the opposite side, the shape resembles dollops of thick whipped cream.
Next in the release is a star known as BP Tau. BP Tau is a developing star, less than 10 million years old, and prone to outbursts or flares. These flares interact with a disk of material that surrounds the young star, forming hot loops of extended atmosphere. In the composite image, BP Tau resembles a distant, glowing white dot surrounded by a band of pink light. The rotating, 3D model is far more dynamic and intriguing! Here, the disk of material resembles a large blue puck with round, ringed, concave surfaces. At the heart of the puck is a small, glowing red orb: the developing star. Shooting out of the orb are long, thin, green strands: the flares. Also emerging from the orb are orange and pink petal-shaped blobs: the loops of extended atmosphere. Together, the orb, strands, and petals resemble an exotic flowering orchid.
The third celestial object in this release is the supernova remnant called Cygnus Loop. In the composite image, the remnant resembles a wispy cloud in oranges, blues, purples, and whites, shaped like a backwards letter C. The 3D model examines this cloud of interstellar material interacting with the superheated, supernova blast wave. In the 3D model, the Cygnus Loop resembles a bowl with a thick base, and a wedge cut from the side like a slice of pie. The sides of the bowl are rendered in swirled blues and greens. However, inside the thick base, revealed by the wedge-shaped cut, are streaks of red and orange. Surrounding the shape are roughly parallel thin red strands, which extend beyond the top and bottom of the digital model.
The final supernova featured in this release is G292.0+1.8. The composite image depicts the remnant as a bright and intricate ball of red, blue, and white X-ray gas and debris set against a backdrop of gleaming stars. In the 3D model, the remnant is rendered in translucent icy blue and shades of orange. Here, the rotating shape is revealed to be somewhat like a bulbous arrowhead, or perhaps an iceberg on its side.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
About the Author
Lee Mohon
Share
Details
Last Updated Apr 16, 2025 Related Terms
Chandra X-Ray Observatory Astrophysics General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants The Universe Explore More
4 min read Hubble Provides New View of Galactic Favorite
As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
Article 5 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
Article 6 hours ago 1 min read Why Do We Grow Plants in Space?
Article 1 day ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.