Jump to content

What You Need to Know about NASA’s SpaceX Crew-10 Mission


Recommended Posts

  • Publishers
Posted
The official portrait of NASA's SpaceX Crew-10 members with (from left) Mission Specialist Kirill Peskov of Roscosmos; Pilot Nicole Ayers and Commander Anne McClain, both NASA astronauts; and Mission Specialist Takuya Onishi from JAXA (Japan Aerospace Exploration Agency).
The official portrait of NASA’s SpaceX Crew-10 members with (from left) Mission Specialist Kirill Peskov of Roscosmos; Pilot Nicole Ayers and Commander Anne McClain, both NASA astronauts; and Mission Specialist Takuya Onishi from JAXA (Japan Aerospace Exploration Agency).
NASA/Bill Stafford/Helen Arase Vargas

Four crew members are preparing to launch to the International Space Station as part of NASA’s SpaceX Crew-10 mission to perform research, technology demonstrations, and maintenance activities aboard the microgravity laboratory.

NASA astronauts Anne McClain, Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

The flight is the 10th crew rotation mission with SpaceX to the space station, and the 11th human spaceflight as part of NASA’s Commercial Crew Program.

As teams progress through Dragon spacecraft milestones for Crew-10, they also are preparing a second-flight Falcon 9 booster for the mission. Once all rocket and spacecraft system checkouts are complete and all components are certified for flight, teams will mate Dragon to the Falcon 9 rocket in SpaceX’s hangar at the launch site. The integrated spacecraft and rocket will then be rolled to the pad and raised to vertical for a dry dress rehearsal with the crew and an integrated static fire test prior to launch.

Crew

Crew-10 mission (from left) Mission Specialist Kirill Peskov of Roscosmos, NASA astronauts Nichole Ayers, pilot, and Anne McClain, commander, along with Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) are pictured training inside a Dragon mockup crew vehicle at SpaceX in Hawthorne, California.
The four members of NASA’s SpaceX Crew-10 mission (from left) Mission Specialist Kirill Peskov of Roscosmos, NASA Astronauts Nichole Ayers, pilot, and Anne McClain, commander, along with Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) are pictured training inside a Dragon training spacecraft at SpaceX in Hawthorne, California.
SpaceX

Selected by NASA as an astronaut in 2013, this will be McClain’s second spaceflight. A colonel in the U.S. Army, she earned her bachelor’s degree in Mechanical Engineering from the U.S. Military Academy at West Point, New York, and holds master’s degrees in Aerospace Engineering, International Security, and Strategic Studies. The Spokane, Washington, native was an instructor pilot in the OH-58D Kiowa Warrior helicopter and is a graduate of the U.S. Naval Test Pilot School in Patuxent River, Maryland. McClain has more than 2,300 flight hours in 24 rotary and fixed-wing aircraft, including more than 800 in combat, and was a member of the U.S. Women’s National Rugby Team. On her first spaceflight, McClain spent 204 days as a flight engineer during Expeditions 58 and 59 and completed two spacewalks, totaling 13 hours and 8 minutes. Since then, she has served in various roles, including branch chief and space station assistant to the chief of NASA’s Astronaut Office. Follow @astroannimal on X and @astro_annimal on Instagram.

This mission will be the first spaceflight for Ayers, who was selected as a NASA astronaut in 2021. Ayers is a major in the U.S. Air Force and the first member of NASA’s 2021 astronaut class named to a crew. The Colorado native graduated from the Air Force Academy in Colorado Springs with a bachelor’s degree in Mathematics and a minor in Russian, and was a member of the academy’s varsity volleyball team. She later earned a master’s in Computational and Applied Mathematics from Rice University in Houston. Ayers served as an instructor pilot and mission commander in the T-38 ADAIR and F-22 Raptor, leading multinational and multiservice missions worldwide. She has more than 1,400 total flight hours, including more than 200 in combat. Follow @astro_ayers on X and @astro_ayers on Instagram.

With 113 days in space, Crew-10 will mark Onishi’s second trip to the space station. After being selected as an astronaut by JAXA in 2009, he flew as a flight engineer for Expeditions 48 and 49, becoming the first Japanese astronaut to robotically capture the Cygnus spacecraft. He also constructed a new experimental environment aboard Kibo, the station’s Japanese experiment module. After his first spaceflight, Onishi became certified as a JAXA flight director, leading the team responsible for operating Kibo from JAXA Mission Control in Tsukuba, Japan. He holds a bachelor’s degree in Aeronautics and Astronautics from the University of Tokyo, and was a pilot for All Nippon Airways, flying more than 3,700 flight hours in the Boeing 767. Follow astro_onishi on X.

The Crew-10 mission also will be Peskov’s first spaceflight. Before his selection as a cosmonaut in 2018, he earned a degree in Engineering from the Ulyanovsk Civil Aviation School and was a co-pilot on the Boeing 757 and 767 aircraft for airlines Nordwind and Ikar. Assigned as a test cosmonaut in 2020, he has additional experience in skydiving, zero-gravity training, scuba diving, and wilderness survival.

Mission Overview

NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA's Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA Astronauts Commander Anne McClain and Pilot Nichole Ayers.
NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA’s Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA Astronauts Commander Anne McClain and Pilot Nichole Ayers.
SpaceX

Following liftoff, the Falcon 9 rocket will accelerate Dragon to approximately 17,500 mph. Once in orbit, the crew and SpaceX mission control in Hawthorne, California, will monitor a series of maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually, if necessary.

After docking, Crew-10 will be welcomed aboard the station by the seven-member crew of Expedition 72 and conduct a short handover period on science and maintenance activities with the departing Crew-9 crew members. Then, NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov will undock from the space station and return to Earth. Ahead of Crew-9 return, mission teams will review weather conditions at the splashdown sites off the coast of Florida prior to departure from station.

Crew-10 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. The crew is scheduled to conduct material flammability tests for future spacecraft designs, engage with students via ham radio and use its existing hardware to test a backup lunar navigation solution, and participate in an integrated study to better understand physiological and psychological changes to the human body to provide valuable insights for future deep space missions.

These are just a few of the more than 200 scientific experiments and technology demonstrations taking place during the mission.

While aboard the orbiting laboratory, Crew-10 will welcome a Soyuz spacecraft with three new crew members, including NASA astronaut Jonny Kim, and they will bid farewell to the Soyuz carrying NASA astronaut Don Pettit. The crew also is expected to see the arrival of the SpaceX Dragon, Roscosmos Progress, and Northrop Grumman’s Cygnus cargo spacecraft, as well as the short-duration private Axiom Mission 4 crew.

The cadre will fly aboard the SpaceX Dragon spacecraft, named Endurance, which previously flew NASA’s SpaceX Crew-3, Crew-5, and Crew-7 missions.

Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 24 years, testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station benefits people on Earth and paves the way for future long-duration missions to the Moon and beyond through NASA’s Artemis missions.

Learn more about the space station, its research, and crew, at: https://www.nasa.gov/station

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Official portrait of NASA astronaut Jonny Kim, who will serve as a flight engineer during Expedition 73. Credit: NASA NASA will provide interview opportunities with astronaut Jonny Kim beginning at 9 a.m. EDT, Tuesday, March 18, to highlight his upcoming mission to the International Space Station in April.
      The virtual interviews from Star City, Russia, will stream live on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 5 p.m., Monday, March 17, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online.
      Kim will launch on Tuesday, April 8, aboard the Roscosmos Soyuz MS-27 spacecraft, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky. The trio will spend approximately eight months aboard the orbital laboratory before returning to Earth in the fall 2025. During his time in orbit, Kim will conduct scientific investigations and technology demonstrations to help prepare the crew for future space missions and provide benefits to people on Earth.
      Kim is making his first spaceflight after selection as part of the 2017 NASA astronaut class. A native of Los Angeles, he is a U.S. Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston. He completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital. After completing initial astronaut candidate training, Kim supported mission and crew operations in various roles, including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer. Follow @jonnykimusa on X and @jonnykimusa on Instagram.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to focus more of its resources on deep space missions to the Moon and Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Raegan Scharfetter
      Johnson Space Center, Houston
      281-910-4989
      raegan.r.scharfetter@nasa.gov
      Share
      Details
      Last Updated Mar 11, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Humans in Space Astronauts Expedition 73 International Space Station (ISS) ISS Research Jonny Kim View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This was a magical revelation for the Greeks and the Egyptians, who were able to see from the motions of the stars and the way the Sun moved. They saw the way the Sun’s shadow worked in different places. And they figured, well, that’s only possible if the Earth is round. And they took that information and it extended into the time of the great mariners that explored our Earth by ships.

      They made the first orbit of Earth by sea, and they knew the Earth was round, allowing them to go across one ocean and come back home the other way. If the Earth were flat, they would have sailed off the end. And so we knew that.

      But then, at the dawn of the space age, in the late 50s and 60s, we were able to see for ourselves that our beautiful home is a gorgeous round object known as a sphere. And that was really special. It put ourselves into context of our solar system and our universe.

      We have a big round Sun and a beautiful round Earth and a round Mars.

      And today we use the roundness of Earth, the spherical Earth, to use methods in space geodesy to figure out where we are, where we’re going. I haven’t been lost in years. That’s pretty good.

      What’s happening to the Earth, what’s happening to our oceans as we take the pulse of our planet and consider other worlds beyond as we explore those.

      So as we get ready to go back to the Moon with women and men and explore other worlds, the roundness of our solar system and our universe is a special thing. And we should embrace that as we understand why our planet isn’t flat.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Mar 11, 2025 Related Terms
      Earth Science Mission Directorate The Solar System Explore More
      2 min read Hubble Unveils a Glittering View of Sh2-284
      A tiny fraction of the stellar nursery known as Sh2-284 is visible in this glittering,…
      Article 3 days ago 3 min read Hubble Jams With A Cosmic Guitar
      Arp 105 is a dazzling ongoing merger between an elliptical galaxy and a spiral galaxy…
      Article 3 days ago 2 min read Hubble Spies a Spectacular Starburst Galaxy
      Sweeping spiral arms extend from NGC 4536, littered with bright blue clusters of star formation…
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      How Do We Know the Earth Isn't Flat? We Asked a NASA Expert
    • By European Space Agency
      Video: 00:01:36 On  Wednesday 12 March 2025 ESA’s Hera spacecraft for planetary defence performs a flyby of Mars. The gravity of the red planet shifts the spacecraft’s trajectory towards its final destination of the Didymos binary asteroid system, shortening its trip by months and saving substantial fuel.
      Watch the livestream release of images from Hera’s flyby by the mission’s science team on Thursday 13 March, starting at 11:50 CET!
      Hera comes to around 5000 km from the surface of Mars during its flyby. It will also image Deimos, the smaller of Mars’s two moons, from a minimum 1000 km away (while venturing as close as 300 km). Hera will also image Mars’s larger moon Phobos as it begins to move away from Mars.
      Launched on 7 October 2024, Hera on its way to visit the first asteroid to have had its orbit altered by human action. By gathering close-up data about the Dimorphos asteroid, which was impacted by NASA’s DART spacecraft in 2022, Hera will help turn asteroid deflection into a well understood and potentially repeatable technique.
      Hera will reach the Didymos asteroid and its Dimorphos moonlet in December 2026. By gathering crucial missing data during its close-up crash scene investigation, Hera will turn the kinetic impact method of asteroid deflection into a well understood technique that could potentially be used for real when needed.
      View the full article
    • By NASA
      NASA’s SpaceX Crew-9 Scientific Mission Aboard the Space Station
  • Check out these Videos

×
×
  • Create New...