Jump to content

Recommended Posts

  • Publishers
Posted
The official portrait of NASA's SpaceX Crew-10 members with (from left) Mission Specialist Kirill Peskov of Roscosmos; Pilot Nicole Ayers and Commander Anne McClain, both NASA astronauts; and Mission Specialist Takuya Onishi from JAXA (Japan Aerospace Exploration Agency).
The official portrait of NASA’s SpaceX Crew-10 members with (from left) Mission Specialist Kirill Peskov of Roscosmos; Pilot Nicole Ayers and Commander Anne McClain, both NASA astronauts; and Mission Specialist Takuya Onishi from JAXA (Japan Aerospace Exploration Agency).
NASA/Bill Stafford/Helen Arase Vargas

Four crew members are preparing to launch to the International Space Station as part of NASA’s SpaceX Crew-10 mission to perform research, technology demonstrations, and maintenance activities aboard the microgravity laboratory.

NASA astronauts Anne McClain, Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

The flight is the 10th crew rotation mission with SpaceX to the space station, and the 11th human spaceflight as part of NASA’s Commercial Crew Program.

As teams progress through Dragon spacecraft milestones for Crew-10, they also are preparing a second-flight Falcon 9 booster for the mission. Once all rocket and spacecraft system checkouts are complete and all components are certified for flight, teams will mate Dragon to the Falcon 9 rocket in SpaceX’s hangar at the launch site. The integrated spacecraft and rocket will then be rolled to the pad and raised to vertical for a dry dress rehearsal with the crew and an integrated static fire test prior to launch.

Crew

Crew-10 mission (from left) Mission Specialist Kirill Peskov of Roscosmos, NASA astronauts Nichole Ayers, pilot, and Anne McClain, commander, along with Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) are pictured training inside a Dragon mockup crew vehicle at SpaceX in Hawthorne, California.
The four members of NASA’s SpaceX Crew-10 mission (from left) Mission Specialist Kirill Peskov of Roscosmos, NASA Astronauts Nichole Ayers, pilot, and Anne McClain, commander, along with Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) are pictured training inside a Dragon training spacecraft at SpaceX in Hawthorne, California.
SpaceX

Selected by NASA as an astronaut in 2013, this will be McClain’s second spaceflight. A colonel in the U.S. Army, she earned her bachelor’s degree in Mechanical Engineering from the U.S. Military Academy at West Point, New York, and holds master’s degrees in Aerospace Engineering, International Security, and Strategic Studies. The Spokane, Washington, native was an instructor pilot in the OH-58D Kiowa Warrior helicopter and is a graduate of the U.S. Naval Test Pilot School in Patuxent River, Maryland. McClain has more than 2,300 flight hours in 24 rotary and fixed-wing aircraft, including more than 800 in combat, and was a member of the U.S. Women’s National Rugby Team. On her first spaceflight, McClain spent 204 days as a flight engineer during Expeditions 58 and 59 and completed two spacewalks, totaling 13 hours and 8 minutes. Since then, she has served in various roles, including branch chief and space station assistant to the chief of NASA’s Astronaut Office. Follow @astroannimal on X and @astro_annimal on Instagram.

This mission will be the first spaceflight for Ayers, who was selected as a NASA astronaut in 2021. Ayers is a major in the U.S. Air Force and the first member of NASA’s 2021 astronaut class named to a crew. The Colorado native graduated from the Air Force Academy in Colorado Springs with a bachelor’s degree in Mathematics and a minor in Russian, and was a member of the academy’s varsity volleyball team. She later earned a master’s in Computational and Applied Mathematics from Rice University in Houston. Ayers served as an instructor pilot and mission commander in the T-38 ADAIR and F-22 Raptor, leading multinational and multiservice missions worldwide. She has more than 1,400 total flight hours, including more than 200 in combat. Follow @astro_ayers on X and @astro_ayers on Instagram.

With 113 days in space, Crew-10 will mark Onishi’s second trip to the space station. After being selected as an astronaut by JAXA in 2009, he flew as a flight engineer for Expeditions 48 and 49, becoming the first Japanese astronaut to robotically capture the Cygnus spacecraft. He also constructed a new experimental environment aboard Kibo, the station’s Japanese experiment module. After his first spaceflight, Onishi became certified as a JAXA flight director, leading the team responsible for operating Kibo from JAXA Mission Control in Tsukuba, Japan. He holds a bachelor’s degree in Aeronautics and Astronautics from the University of Tokyo, and was a pilot for All Nippon Airways, flying more than 3,700 flight hours in the Boeing 767. Follow astro_onishi on X.

The Crew-10 mission also will be Peskov’s first spaceflight. Before his selection as a cosmonaut in 2018, he earned a degree in Engineering from the Ulyanovsk Civil Aviation School and was a co-pilot on the Boeing 757 and 767 aircraft for airlines Nordwind and Ikar. Assigned as a test cosmonaut in 2020, he has additional experience in skydiving, zero-gravity training, scuba diving, and wilderness survival.

Mission Overview

NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA's Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA Astronauts Commander Anne McClain and Pilot Nichole Ayers.
NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA’s Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA Astronauts Commander Anne McClain and Pilot Nichole Ayers.
SpaceX

Following liftoff, the Falcon 9 rocket will accelerate Dragon to approximately 17,500 mph. Once in orbit, the crew and SpaceX mission control in Hawthorne, California, will monitor a series of maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually, if necessary.

After docking, Crew-10 will be welcomed aboard the station by the seven-member crew of Expedition 72 and conduct a short handover period on science and maintenance activities with the departing Crew-9 crew members. Then, NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov will undock from the space station and return to Earth. Ahead of Crew-9 return, mission teams will review weather conditions at the splashdown sites off the coast of Florida prior to departure from station.

Crew-10 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. The crew is scheduled to conduct material flammability tests for future spacecraft designs, engage with students via ham radio and use its existing hardware to test a backup lunar navigation solution, and participate in an integrated study to better understand physiological and psychological changes to the human body to provide valuable insights for future deep space missions.

These are just a few of the more than 200 scientific experiments and technology demonstrations taking place during the mission.

While aboard the orbiting laboratory, Crew-10 will welcome a Soyuz spacecraft with three new crew members, including NASA astronaut Jonny Kim, and they will bid farewell to the Soyuz carrying NASA astronaut Don Pettit. The crew also is expected to see the arrival of the SpaceX Dragon, Roscosmos Progress, and Northrop Grumman’s Cygnus cargo spacecraft, as well as the short-duration private Axiom Mission 4 crew.

The cadre will fly aboard the SpaceX Dragon spacecraft, named Endurance, which previously flew NASA’s SpaceX Crew-3, Crew-5, and Crew-7 missions.

Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 24 years, testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station benefits people on Earth and paves the way for future long-duration missions to the Moon and beyond through NASA’s Artemis missions.

Learn more about the space station, its research, and crew, at: https://www.nasa.gov/station

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE SPACEX Starship Test Flight 8
    • By NASA
      NASA’s SpaceX Crew-9 mission with agency astronauts Nick Hague, Butch Wilmore, and Suni Williams, and Roscosmos cosmonaut Aleksandr Gorbunov is preparing to return to Earth following their science mission aboard the International Space Station. Hague, Williams, and Wilmore completed more than 900 hours of research between over 150 unique scientific experiments and technology demonstrations during their stay aboard the orbiting laboratory.
      Here’s a look at some scientific milestones accomplished during their journey:
      Mighty microalgae
      NASA astronaut Nick Hague processes samples for Arthrospira C, an investigation from ESA (European Space Agency) that transplants and grows Arthrospiramicro-algae eboard the International Space Station. These organisms conduct photosynthesis and could be used to convert carbon dioxide exhaled by crew members into oxygen, helping maintain a safe atmosphere inside spacecraft. Arthrospira also could provide fresh food on long-duration space missions.
      NASA Improving astronaut exercise
      Researchers are testing the European Enhanced Exploration Exercise Device (E4D), a modular device that combines cycling, rowing, and resistance exercises to help keep crews healthy on long-duration missions. A single, small device effective at countering bone and muscle loss and improving cardiovascular health is needed for use on future spacecraft such as the Gateway lunar space station. NASA astronaut Butch Wilmore works on installing the device aboard the International Space Station ahead of its evaluation.
      NASA Watering the garden
      This red romaine lettuce growing in the International Space Station’s Advanced Plant Habitat is part of Plant Habitat-07, a study of how different moisture levels affect the microbial communities in plants and water. Results could show how less-than-ideal conditions affect plant growth and help scientists design systems to produce safe and nutritious food for crew members on future space journeys.
      NASA Packing it in
      Packed bed reactors are systems that “pack” materials such as pellets or beads inside a structure to increase contact between any liquids and gasses flowing through it. NASA astronaut Suni Williams installs hardware for the Packed Bed Reactor Experiment: Water Recovery Series (PBRE-WRS) investigation, which examines how gravity affects these systems aboard the International Space Station. Results could help scientists design better reactors for water recovery, thermal management, fuel cells, and other applications.
      NASA Fueling the flames
      During the Residence Time Driven Flame Spread (SOFIE-RTDFS) investigation at the International Space Station, this sheet of clear acrylic plastic burns at higher oxygen levels and half the standard pressure of Earth’s atmosphere. From left to right, the image sequence shows a side and top view of the fuel and the oxygen slowly diffusing into the flame. Studying the spread of flames in microgravity could help improve safety on future missions.
      NASA Monitoring microbes in space
      During a recent spacewalk, NASA astronaut Butch Wilmore swabbed the exterior of the International Space Station for ISS External Microorganisms, an investigation exploring whether microorganisms leave the spacecraft through its vents and, if so, which ones survive. Humans carry microorganisms along with them wherever they go, and this investigation could help scientists take steps to limit microbial spread to places like the Moon and Mars.
      NASA A hearty workout
      NASA astronaut Nick Hague exercises on the International Space Station’s Advanced Resistive Exercise Device while wearing the Bio-Monitor vest and headband. This set of garments contains sensors that unobtrusively collect data such as heart rate, breathing rate, blood pressure, and temperature. The data supports studies on human health, including Vascular Aging, a CSA (Canadian Space Agency) investigation that monitors cardiovascular function in space.
      NASA On-demand medical devices
      NASA astronaut Butch Wilmore works with hardware for InSPA Auxilium Bioprinter, a study that tests 3D printing of an implantable medical device that could facilitate recovery from peripheral nerve damage, a type of injury that can cause sensory and motor issues. In microgravity, this manufacturing technique produces higher-quality devices that may perform better, benefitting crew members on future long-duration missions and patients back home.
      NASA Could wood be better
      A deployer attached to the International Space Station’s Kibo laboratory module launches LignoSat into space. JAXA (Japan Aerospace Exploration Agency) developed the satellite to test using wood as a more sustainable alternative to conventional satellite materials. Researchers previously exposed different woods to space and chose magnolia as the best option for the study, including sensors to evaluate the wood’s strain and its response to temperature and radiation. Researchers also are monitoring whether Earth’s geomagnetic field interferes with the satellite’s data transmission.
      NASA Making microbes in space
      NASA astronaut Suni Williams poses with bacteria and yeast samples for Rhodium Biomanufacturing 03, part of an ongoing examination of microgravity’s effects on biomanufacturing engineered bacteria and yeast aboard the International Space Station. Microgravity causes changes in microbial cell growth, cell structure, and metabolic activity that can affect biomanufacturing processes. This investigation could clarify the extent of these effects and advance the use of microbes to make food, pharmaceuticals, and other products in space, reducing the cost of launching equipment and consumables from Earth.
      NASA A NICER spacewalk
      The International Space Station’s Neutron star Interior Composition Explorer, or NICER, studies neutron stars, the glowing cinders left behind when massive stars explode as supernovas. NASA astronaut Nick Hague installs patches during a spacewalk to repair damage to thermal shields that block out sunlight while allowing X-rays to pass through the instrument. NICER continues to generate trailblazing astrophysics discoveries reported in hundreds of scientific papers.
      NASA Earth from every angle
      From inside the International Space Station’s cupola, NASA astronaut Butch Wilmore photographs landmarks on Earth approximately 260 miles (418 kilometers) below. Crew members have taken millions of images of Earth from the space station for Crew Earth Observations, creating one of the longest-running records of how our planet changes over time. These images support a variety of research, including studies of phenomena such as flooding and fires, atmospheric processes affected by volcanic eruptions, urban growth, and land use.
      NASA An out-of-this-world sunrise
      This photograph captures an orbital sunrise above the lights of Rio de Janeiro and Sao Paulo as the International Space Station orbits above Brazil. This image is one of the millions of photographs taken by crew members for Crew Earth Observations. These images teach us more about our home planet, and studies show that taking them improves the mental well-being of crew members. Many spend much of their free time pursuing shots that, like this one, are only possible from space.
      NASA Vital vitamins
      The BioNutrients investigation demonstrates technology to produce nutrients during long-duration space missions using engineered microbes like yeast. Food stored for long periods can lose vitamins and other nutrients, and this technology could provide a way to make supplements on demand. NASA astronaut Suni Williams prepares specially designed growth packets for the investigation aboard the International Space Station.
      NASA Blowing in the solar wind
      The International Space Station’s robotic hand, Dextre, attached to the Canadarm2 robotic arm, moves hardware into position for the COronal Diagnostic EXperiment, or CODEX. This investigation examines solar wind and how it forms using a solar coronagraph, which blocks out bright light from the Sun to reveal details in its outer atmosphere or corona. Results could help scientists understand the heating and acceleration of the solar wind and provide insight into the source of the energy that generates it.
      NASA Can you hear me now?
      Roscosmos cosmonaut Aleksandr Gorbunov conducts a hearing test in the relative quiet of the International Space Station’s Quest airlock. Crew members often serve as test subjects for research on how spaceflight affects hearing and vision, the immune and cardiovascular systems, and other bodily functions. This research supports the development of ways to prevent or mitigate these effects.
      NASA Exposing materials to space
      Euro Material Ageing, an ESA (European Space Agency) investigation, studies how certain materials age when exposed to the harsh space environment. Findings could advance design for spacecraft and satellites, including improved thermal control, as well as the development of sensors for research and industrial applications. NASA astronaut Suni Williams installs the experiment into the Nanoracks Bishop airlock for transport to the outside of the International Space Station.
      NASA Sending satellites into space
      NASA astronauts Don Pettit and Butch Wilmore remove a small satellite deployer from an airlock on the International Space Station. The deployer had released several CubeSats into Earth orbit including CySat-1, a remote sensor that measures soil moisture, and DORA, a receiver that could provide affordable and accurate communications among small spacecraft.
      NASA Robotic relocation
      The Responsive Engaging Arms for Captive Care and Handling demonstration (Astrobee REACCH) uses the International Space Station’s Astrobee robots to test technology for capturing objects of any geometry or material orbiting in space. This ability could enable satellite servicing and movement to maximize the lifespan of these tools and removal of space debris that could damage satellites providing services to the people of Earth. NASA astronaut Suni Williams checks out an Astrobee fitted with tentacle-like arms and adhesive pads for the investigation.
      NASA Arms to hold
      As part of a program called High school students United with NASA to Create Hardware, or HUNCH, NASA astronaut Nick Hague demonstrates the HUNCH Utility Bracket, a student-designed tool to hold and position cameras, tablets, and other equipment that astronauts use daily. Currently, crew members on the International Space Station use devices called Bogen Arms, which have experienced wear and tear and need to be replaced.
      NASA A Dragon in flight
      The SpaceX Dragon spacecraft fires its thrusters after undocking from the International Space Station as it flies 260 miles (418 kilometers) above the Pacific Ocean west of Hawaii. NASA’s commercial resupply services deliver critical scientific studies, hardware, and supplies to the station.
      NASA Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Humans In Space
      Station Benefits for Humanity
      International Space Station News
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft is launched on NASA’s SpaceX Crew-9 mission to the International Space Station with NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov onboard, Saturday, Sept. 28, 2024, from Cape Canaveral Space Force Station in Florida. NASA/Keegan Barber NASA invites the public to take part in virtual activities for the launch of the agency’s SpaceX Crew-10 mission to the International Space Station.
      NASA astronauts Anne McClain, commander, and Nichole Ayers, pilot, along with mission specialists JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi and Roscosmos cosmonaut Kirill Peskov, will embark on a flight aboard a SpaceX Dragon spacecraft to the orbiting laboratory. The launch, aboard a SpaceX Falcon 9 rocket, is targeted for 7:48 p.m. EDT Wednesday, March 12, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      The public can register to be a virtual launch guest and receive curated resources, interactive opportunities, timely launch updates, and a mission-specific collectible stamp for their virtual guest passport after liftoff – all sent straight to their inbox.
      A new way to collect and share stamps has arrived. Print one for your virtual guest passport and receive another, made special for sharing on social media. Don’t have a passport yet? Print one here and be ready to add a stamp!
      Want to learn more about the mission and NASA’s Commercial Crew Program? Follow along with the Crew-10 mission blog, Commercial Crew blog, @commercial_crew on X, or check out Commercial Crew on Facebook.
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Airspace Operations Safety Program (AOSP) Resource Analyst Group
      * Denotes Team Lead
      NASA Ames Research Center
      Warcquel D. Frieson
      Mary Nguyen
      Sandra E. Ramirez
      Tiana (Thuy) D. Vo
      NASA Glenn Research Center
      Julie A. Blackett
      NASA Headquarters
      Michele D. Dodson*
      Jeffrey S. Farlin*
      NASA Langley Research Center
      Yolanda Keiller
      2024 AA Award Honorees
      2024 AA Award Honorees PDF
      ARMD Associate Administrator Awards
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Associate Administrator Awards View the full article
    • By Space Force
      Mission Delta commanders took the stage in two separate panels at the 2025 Air and Space Forces Association Warfare Symposium discussing the future of missile warning systems and GPS modernization, both critical components of space superiority.

      View the full article
  • Check out these Videos

×
×
  • Create New...