Jump to content

NASA Seeks Commercial Partner for Robots Aboard Space Station


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

As NASA continues to enable a sustainable, cost-effective commercial space economy, the agency is seeking partnership proposals for the operations, sustaining engineering, and utilization of Astrobee, a free-flying robotic system aboard the International Space Station.

The Announcement for Partnership Proposal contains instructions and criteria for transferring responsibility of the Astrobee system to a commercial provider. Submissions are due to NASA by Friday, March 21.

Astrobee has operated aboard the space station since 2019, working autonomously or managed by flight controllers or researchers on the ground. Technology like the Astrobee system can help astronauts with routine duties, like inventory or documentation, freeing up time for complex work and additional experiments.

The Astrobee system includes three cube-shaped robots aboard the space station, software, and a docking station for recharging. On the ground, three robots function as flight spares and are used for software and maintenance testing. The system is an important technology demonstration and science, technology, engineering, and mathematics outreach platform.

The robots can fly freely through the station’s microgravity environment, with cameras and sensors to help guide them. Their perching arms can grasp station handrails or grab and hold items. Past experiments involving the Astrobee robots include testing mechanical adhesive technology, mapping the station, and identifying potential life support system issues.

“Astrobee has been a beacon for robotic and autonomous research in space for many years, working with academia and industry partners across our country and internationally,” said Eugene Tu, center director at NASA’s Ames Research Center in California’s Silicon Valley, which led the Astrobee project. “We’re excited about the opportunity to continue this mission with a commercial partner.”

As part of the agreement, the commercial partner will provide ground-based testing, equipment, and lab space as needed. The partner will be responsible for the Astrobee system through the end of the space station’s operational life. The commercial partner also will provide milestone objectives and ensure the continued development of Astrobee technology to support the future of commercial space.

The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth orbit economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars. 

Learn more about the International Space Station, its research, and its crew, at: 

https://www.nasa.gov/station

Learn more about NASA Ames’ world-class research and development in aeronautics, science, and exploration technology at: 

https://www.nasa.gov/ames

-end-

Tara Friesen
Ames Research Center, Silicon Valley
650-604-4789
tara.l.friesen@nasa.gov

Request for Proposals

https://sam.gov/opp/ad273ca16c3a4068902797f07df543be/view

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 Min Read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF  
      On March 18, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for thermal vacuum testing at the X-ray and Cryogenic Facility, which simulates the harsh conditions of space.
      The IMAP mission is a modern-day celestial cartographer that will map the solar system by studying the heliosphere, a giant bubble created by the Sun’s solar wind that surrounds our solar system and protects it from harmful interstellar radiation. 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s IMAP mission being loaded into the thermal vacuum chamber of NASA Marshall Space Flight Center’s X-Ray and Cryogenic Facility (XRCF) in Huntsville, Alabama. IMAP arrived at Marshall March 18 and was loaded into the chamber March 19.Credit: NASA/Johns Hopkins APL/Princeton/Ed Whitman Testing performed in the X-ray and Cryogenic Facility will help to assess the spacecraft before its journey toward the Sun. The IMAP mission will orbit the Sun at a location called Lagrange Point 1 (L1), which is about one million miles from Earth towards the Sun. From this location, IMAP can measure the local solar wind and scan the distant heliosphere without background from planets and their magnetic fields. The mission will use its suite of ten instruments to map the boundary of the heliosphere, analyze the composition of interstellar particles that make it through, and investigate how particles change as they move through the solar system. 
      Furthermore, IMAP will maintain a continuous broadcast of near real-time space weather data from five instruments aboard IMAP that will be used to test new space weather prediction models and improve our understanding of effects impacting our human exploration of space. 
      Team members from Marshall Space Flight Center in Huntsville, Alabama, install IMAP into the XRCF’s chamber dome before the start of the thermal vacuum test. NASA/Johns Hopkins APL/Princeton/Ed Whitman While inside the Marshall facility, the spacecraft will undergo dramatic temperature changes to simulate the environment during launch, on the journey toward the Sun, and at its final orbiting point. The testing facility has multiple capabilities including a large thermal vacuum chamber which simulates the harsh conditions of space such as extreme temperatures and the near-total absence of an atmosphere. Simulating these conditions before launch allow scientists and engineers to identify successes and potential failures in the design of the spacecraft. 
      Team members from Marshall Space Flight Center in Huntsville, Alabama work to close the chamber door of the XRCF for IMAP testing. The chamber is 20 feet in diameter and 60 feet long making it one of the largest across NASA. NASA/Johns Hopkins APL/Princeton/Ed Whitman “The X-ray and Cryogenic Facility was an ideal testing location for IMAP given the chamber’s size, availability, and ability to meet or exceed the required test parameters including strict contamination control, shroud temperature, and vacuum level,” said Jeff Kegley, chief of Marshall’s Science Test Branch. 
      The facility’s main chamber is 20 feet in diameter and 60 feet long, making it the 5th largest thermal vacuum chamber at NASA. It’s the only chamber that is adjoined to an ISO 6 cleanroom — a controlled environment that limits the number and size of airborne particles to minimize contamination. 
      The IMAP mission will launch on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, no earlier than September. 
      NASA’s IMAP mission was loaded into NASA Marshall’s XRCF thermal vacuum chamber where the spacecraft will undergo testing such as dramatic temperature changes to simulate the harsh environment of space. NASA/Johns Hopkins APL/Princeton/Ed Whitman Learn More about IMAP Media Contact:
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Alabama
      256.544.0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Apr 11, 2025 Related Terms
      Marshall Space Flight Center Goddard Space Flight Center Heliophysics Marshall Heliophysics & Planetary Science Marshall Science Research & Projects Marshall X-Ray & Cryogenic Facility The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Captures a Star’s Swan Song
      The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal,…
      Article 4 hours ago 6 min read NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
      Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative…
      Article 1 day ago 3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:09:17 Meet Aleš Svoboda— A skilled pilot with over 1500 flight hours, Aleš holds a PhD in aircraft and rocket technology and has commanded Quick Reaction Alerts. From flying high to training underwater, he’s always ready to take on new challenges—now including astronaut reserve training with ESA.
      In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training.
      ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
      This interview was recorded in November 2024.
      You can listen to this episode on all major podcast platforms.
      Keep exploring with ESA Explores!
      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image shows part of one of the world’s natural wonders – the Great Barrier Reef in the Coral Sea off the east coast of Queensland, Australia.
      Zoom in to explore this image at its full resolution or click on the circles to learn more. 
      The Great Barrier Reef extends for nearly 2300 km and covers an area of more than 344 000 sq km, approximately the size of Italy. It is the largest living organism on Earth and the only living thing the naked eye can see from space.
      Despite its name, the Great Barrier Reef is not a single reef, but an interlinked system of about 3000 reefs and 900 coral islands, divided by narrow passages. An area of biodiversity equal in importance to tropical rainforests, the reef hosts more than 1500 species of tropical fish, 400 types of coral, hundreds of species of bird and seaweed and thousands of marine animals, including sharks, barracuda and turtles.
      In recognition of its significance the reef was made a UNESCO World Heritage Site in 1981.
      The section of reef seen here is the southern part off the coast of the Shire of Livingstone in Central Queensland. Part of the mainland and the islands surrounding the coast are visible in the bottom left corner. The tan-coloured sea along the coasts is due to sediment in the water.
      A chain of small coral islands can be seen scattered across the centre of the image. The blue hues of the coral contrast with the dark waters of the Coral Sea.
      Part of the reef is covered by clouds dominating the upper part of the image. The clouds form a surprisingly straight line, also visible as a distinct shadow cast over the islands below.
      Coral reefs worldwide suffer regular damage due to climate change, pollution, ocean acidification and fishing. Furthermore, they are increasingly under threat from coral bleaching, which occurs when the algae that makes up the coral die, causing it to turn white. This phenomenon is associated with increased water temperatures, low salinity and high sunlight levels.
      While these coral reefs are ecologically important, they are difficult to map from survey vessels or aircraft because of their remote and shallow location. From their vantage point in space, Earth-observing satellites such as Copernicus Sentinel-2, offer the means to monitor the health of reefs across the globe.
      View the full article
    • By Space Force
      Chief of Space Operations Gen. Chance Saltzman gave insights into a new, soon-to-be-released International Partnership Strategy at the 40th Space Symposium.

      View the full article
    • By NASA
      Science Launching on SpaceX's 32nd Cargo Resupply Mission to the Space Station
  • Check out these Videos

×
×
  • Create New...