Jump to content

Novel Recuperator Design for Cryogenic Fluid Management System


Recommended Posts

  • Publishers
Posted
recuperator.png?w=220

Cryocoolers are essential systems in many space exploration missions to maintain propellants at cryogenic temperatures. Cryogenic recuperators are a key component of these cryocoolers and dictate the performance of the system. NASA is seeking to reduce the cost and increase the performance of cryogenic recuperators (also called Heat Exchangers) by utilizing Additive Manufacturing (AM) technologies.

Award: $7,000 in total prizes

Open Date: March 5, 2025

Close Date: May 2, 2025

For more information, visit: https://grabcad.com/challenges/novel-recuperator-design-for-cryogenic-fluid-management-system

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Visiting Mars on the Way to the Outer Solar System
      Written by Roger Wiens, Principal Investigator, SuperCam instrument / Co-Investigator, SHERLOC instrument at Purdue University
      A portion of the “Sally’s Cove” outcrop where the Perseverance rover has been exploring. The radiating lines in the rock on the left of the image may indicate that it is a shatter cone, showing the effects of the shock wave from a nearby large impact. The image was taken by Mastcam-Z’s left camera on March 21, 2025 (Sol 1452, or Martian day 1,452 of the Mars 2020 mission) at the local mean solar time of 12:13:44. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was voted by the public as “Image of the week.” NASA/JPL-Caltech/ASU Recently Mars has had a few Earthly visitors. On March 1, NASA’s Europa Clipper flew within 550 miles (884 kilometers) of the Red Planet’s surface on its way out to Jupiter. On March 12, the European Space Agency’s Hera spacecraft flew within about 3,100 miles (5,000 kilometers) of Mars, and only 300 kilometers from its moon, Deimos. Hera is on its way to study the binary asteroid Didymos and its moon Dimorphos. Next year, in May 2026, NASA’s Psyche mission is scheduled to buzz the Red Planet on its way to the metal-rich asteroid 16 Psyche, coming within a few thousand kilometers.
      Why all these visits to Mars? You might at first think that they’re using Mars as an object of opportunity for their cameras, and you would be partially right. But Mars has more to give these missions than that. The main reason for these flybys is the extra speed that Mars’ velocity around the Sun can give them. The idea that visiting a planet can speed up a spacecraft is not all that obvious, because the same gravity that attracts the spacecraft on its way towards the planet will exert a backwards force as the spacecraft leaves the planet.
      The key is in the direction that it approaches and leaves the planet. If the spacecraft leaves Mars heading in the direction that Mars is traveling around the Sun, it will gain speed in that direction, slingshotting it farther into the outer solar system. A spacecraft can typically gain several percent of its speed by performing such a slingshot flyby. The closer it gets to the planet, the bigger the effect. However, no mission wants to be slowed by the upper atmosphere, so several hundred kilometers is the closest that a mission should go. And the proximity to the planet is also affected by the exact direction the spacecraft needs to go when it leaves Mars.
      Clipper’s Mars flyby was a slight exception, slowing down the craft — by about 1.2 miles per second (2 kilometers per second) — to steer it toward Earth for a second gravity assist in December 2026. That will push the spacecraft the rest of the way to Jupiter, for its 2030 arrival.
      While observing Mars is not the main reason for their visits, many of the visiting spacecraft take the opportunity to use their cameras either to perform calibrations or to study the Red Planet and its moons.
      During Clipper’s flyby over sols 1431-1432, Mastcam-Z was directed to watch the skies for signs of the interplanetary visitor. Clipper’s relatively large solar panels could have reflected enough sunlight for it to be seen in the Mars night sky, much as we can see satellites overhead from Earth. Unfortunately, the spacecraft entered the shadow of Mars just before it came into potential view above the horizon from Perseverance’s vantage point, so the sighting did not happen. But it was worth a try.
      Meanwhile, back on the ground, Perseverance is performing something of a cliff-hanger. “Sally’s Cove” is a relatively steep rock outcrop in the outer portion of Jezero crater’s rim just north of “Broom Hill.” Perseverance made an approach during March 19-23, and has been exploring some dark-colored rocks along this outcrop, leaving the spherules behind for the moment. Who knows what Perseverance will find next?
      Share








      Details
      Last Updated Mar 28, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4493-4494: Just Looking Around


      Article


      4 hours ago
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      2 days ago
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Advanced Capabilities for Emergency Response Operations (ACERO) researchers Lynne Martin, left, and Connie Brasil use the Portable Airspace Management System (PAMS) to view a simulated fire zone and set a drone flight plan during a flight test the week of March 17, 2025.NASA/Brandon Torres-Navarrete NASA researchers conducted initial validation of a new airspace management system designed to enable crews to use aircraft fight and monitor wildland fires 24 hours a day, even during low-visibility conditions.  
      From March 17-28, NASA’s Advanced Capabilities for Emergency Response Operations (ACERO) project stationed researchers at multiple strategic locations across the foothills of the Sierra de Salinas mountains in Monterey County, California. Their mission: to test and validate a new, portable system that can provide reliable airspace management under poor visual conditions, one of the biggest barriers for aerial wildland firefighting support. 
      The mission was a success. 
      “At NASA, we have decades of experience leveraging our aviation expertise in ways that improve everyday life for Americans,” said Carol Carroll, deputy associate administrator for NASA’s Aeronautics Research Mission Directorate at agency headquarters in Washington. “We need every advantage possible when it comes to saving lives and property when wildfires affect our communities, and ACERO technology will give responders critical new tools to monitor and fight fires.” 
      NASA ACERO researchers Samuel Zuniga,left, and Jonathan La Plain prepare for a drone flight test using the PAMS in Salinas on March 19, 2025.NASA/Brandon Torres-Navarrete One of the barriers for continued monitoring, suppression, and logistics support in wildland fire situations is a lack of tools for managing airspace and air traffic that can support operations under all visibility conditions. Current aerial firefighting operations are limited to times with clear visibility when a Tactical Air Group Supervisor or “air boss” in a piloted aircraft can provide direction. Otherwise, pilots may risk collisions. 
      The ACERO technology will provide that air boss capability for remotely piloted aircraft operations – and users will be able to do it from the ground. The project’s Portable Airspace Management System (PAMS) is a suitcase-sized solution that builds on decades of NASA air traffic and airspace management research. The PAMS units will allow pilots to view the locations and operational intents of other aircraft, even in thick smoke or at night. 
      During the testing in Salinas, researchers evaluated the PAMS’ core airspace management functions, including strategic coordination and the ability to automatically alert pilots once their aircrafts exit their preapproved paths or the simulated preapproved fire operation zone.  
      Using the PAMS prototype, researchers were able to safely conduct  flight operations of a vertical takeoff and landing aircraft operated by Overwatch Aero, LLC, of Solvang, California, and two small NASA drones. 
      Flying as if responding to a wildfire scenario, the Overwatch aircraft connected with two PAMS units in different locations. Though the systems were separated by mountains and valleys with weak cellular service, the PAMS units were able to successfully share and display a simulated fire zone, aircraft location, flight plans, and flight intent, thanks to a radio communications relay established by the Overwatch aircraft.  
      Operating in a rural mountain range validated that PAMS could work successfully in an actual wildland fire environment.   
      “Testing in real mountainous environments presents numerous challenges, but it offers significantly more value than lab-based testing,” said Dr. Min Xue, ACERO project manager at NASA’s Ames Research Center in California’s Silicon Valley. “The tests were successful, providing valuable insights and highlighting areas for future improvement.”
      NASA ACERO researchers fly a drone to test the PAMS during a flight test on March 19, 2025.NASA/Brandon Torres-Navarrete Pilots on the ground used PAMS to coordinate the drones, which performed flights simulating aerial ignition – the practice of setting controlled, intentional fires to manage vegetation, helping to control fires and reduce wildland fire risk. 
      As a part of the testing, Joby Aviation of Santa Cruz, California, flew its remotely piloted aircraft, similar in size to a Cessna Grand Caravan, over the testing site. The PAMS system successfully exchanged aircraft location and flight intent with Joby’s mission management system. The test marked the first successful interaction between PAMS and an optionally piloted aircraft. 
      Fire chiefs from the California Department of Forestry and Fire Protection (CAL FIRE) attended the testing and provided feedback on the system’s functionality, features that could improve wildland fire air traffic coordination, and potential for integration into operations. 
      “We appreciate the work being done by the NASA ACERO program in relation to portable airspace management capabilities,” said Marcus Hernandez, deputy chief for CAL FIRE’s Office of Wildfire Technology. “It’s great to see federal, state, and local agencies, as it is important to address safety and regulatory challenges alongside technological advancements.” 
      ACERO chief engineer Joey Mercer, right, shows the Portable Airspace Management System (PAMS) to Cal Fire representatives Scott Eckman, center, and Pete York, left, in preparation for the launch of the Overwatch Aero FVR90 Vertical Take Off and Landing (VTOL) test “fire” information sharing, airspace management, communication relay, and aircraft deconfliction capabilities during the Advanced Capabilities for Emergency Response Operations (ACERO) test in Salinas, California.NASA/Brandon Torres-Navarrete These latest flights build on successful PAMS testing in Watsonville, California, in November 2024. ACERO will use flight test data and feedback from wildland fire agencies to continue building out PAMS capabilities and will showcase more robust information-sharing capabilities in the coming years.  
      NASA’s goal for ACERO is to validate this technology, so it can be developed for wildland fire crews to use in the field, saving lives and property. The project is managed by NASA’s Airspace Operations and Safety Program and supports the agency’s  Advanced Air Mobility mission. 
      ACERO’s PAMS unit shown during a flight test on March 19, 2025NASA/Brandon Torres-Navarrette Share
      Details
      Last Updated Mar 25, 2025 Related Terms
      General Aeronautics Air Traffic Solutions Drones & You Natural Disasters Wildfires Wildland Fire Management Explore More
      3 min read New Aircraft Wing Undergoes Crucial NASA Icing Testing
      Article 3 hours ago 3 min read Engineering Reality: Lee Bingham Leads Lunar Surface Simulation Support for Artemis Campaign
      Article 21 hours ago 3 min read Career Transition Assistance Plan (CTAP) Services
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Risks Concept Risk is inherent in human spaceflight. However, specific risks can and should be understood, managed, and mitigated to reduce threats posed to astronauts. Risk management in the context of human spaceflight can be viewed as a trade-based system. The relevant evidence in life sciences, medicine, and engineering is tracked and evaluated to identify ways to minimize overall risk to the astronauts and to ensure mission success. The Human System Risk Board (HSRB) manages the process by which scientific evidence is utilized to establish and reassess the postures of the various risks to the Human System during all of the various types of existing or anticipated crewed missions. The HSRB operates as part of the Health and Medical Technical Authority of the Office of the Chief Health and Medical Officer of NASA via the JSC Chief Medical Officer.
      The HSRB approaches to human system risks is analogous to the approach the engineering profession takes with its Failure Mode and Effects Analysis in that a process is utilized to identify and address potential problems, or failures to reduce their likelihood and severity. In the context of risks to the human system, the HSRB considers eight missions which different in their destinations and durations (known as Design Reference Missions [DRM]) to further refine the context of the risks. With each DRM a likelihood and consequence are assigned to each risk which is adjusted scientific evidence is accumulated and understanding of the risk is enhanced, and mitigations become available or are advanced.
      Human System Risks This framework enables the principles of Continuous Risk Management and Risk Informed Decision Making (RIDM) to be applied in an ongoing fashion to the challenges posed by Human System Risks. Using this framework consistently across the 29 risks allows management to see where risks need additional research or technology development to be mitigated or monitored and for the identification of new risks and concerns. Further information on the implementation of the risk management process can be found in the following documents:
      Human System Risk Management Plan – JSC-66705 NASA Health and Medical Technical Authority (HMTA) Implementation – NPR 7120.11A NASA Space Flight Program and Project Management Requirements – NPR 7120.5 Human System Risk Board Management Office
      The HSRB Risk Management Office governs the execution of the Human System Risk management process in support of the HSRB. It is led by the HSRB Chair, who is also referred to as the Risk Manager.
      Risk Custodian Teams
      Along with the Human System Risk Manager, a team of risk custodians (a researcher, an operational researcher or physician, and an epidemiologist, who each have specific expertise) works together to understand and synthesize scientific and operational evidence in the context of spaceflight, identify and evaluate metrics for each risk in order to communicate the risk posture to the agency.
      Directed Acyclic Graphs 
      Summary
      The HSRB uses Directed Acyclic Graphs (DAG), a type of causal diagramming, as visual tools to create a shared understanding of the risks, improve communication among those stakeholders, and enable the creation of a composite risk network that is vetted by members of the NASA community and configuration managed (Antonsen et al., NASA/TM– 20220006812). The knowledge captured is the Human Health and Performance community’s knowledge about the causal flow of a human system risk, and the relationships that exist between the contributing factors to that risk.
      DAGs are:
      Intended to improve communication between: Managers and subject matter experts who need to discuss human system risks Subject matter experts in different disciplines where human system risks interact with one another in a potentially cumulative fashion Visual representations of known or suspected relationships Directed – the relationship flows in one direction between any two nodes Acyclic – cycles in the graph are not allowed Example of a Directed Acyclic Graph. This is a simplified illustration of how and the individual, the crew, and the system contribute to the likelihood of successful task performance in a mission. Individual readiness is affected by many of the health and performance-oriented risks followed by the HSRB, but the readiness of any individual crew is complemented by the team and the system that the crew works within. Failures of task performance may lead to loss of mission objectives if severe.NASA View Larger (Example of a Directed Acyclic Graph) Image
      Details
      At NASA, the Human System Risks have historically been conceptualized as deriving from five Hazards present in the spaceflight environment. These are: altered gravity, isolation and confinement, radiation, a hostile closed environment, and distance from Earth. These Hazards are aspects of the spaceflight environment that are encountered when someone is launched into space and therefore are the starting point for causal diagramming of spaceflight-related risk issues for the HSRB.
      These Hazards are often interpreted in relation to physiologic changes that occur in humans as a result of the exposure; however, interaction between human crew (behavioral health and performance), which may be degraded due to the spaceflight environment – and the vehicle and mission systems that the crew must operate – can also be influenced by these Hazards.
      Each Human System Risk DAG is intended to show the causal flow of risk from Hazards to Mission Level Outcomes. As such, the structure of each DAG starts with at least one Hazard and ends with at least one of the pre-defined Mission Level Outcomes. In between are the nodes and edges of the causal flow diagrams that are relevant to the Risk under consideration. These are called ‘contributing factors’ in the HSRB terminology, and include countermeasures, medical conditions, and other Human System Risks. A graph data structure is composed of a set of vertices (nodes), and a set of edges (links). Each edge represents a relationship between two nodes. There can be two types of relationships between nodes: directed and undirected. For example, if an edge exists between two nodes A and B and the edge is undirected, it is represented as A–B, (no arrow). If the edge were directed, for example from A to B, then this is represented with an arrow (A->B). Each directed arrow connecting one node to another on a DAG indicates a claim of causality. A directed graph can potentially contain a cycle, meaning that, from a specific node, there exists a path that would eventually return to that node. A directed graph that has no cycles is known as acyclic. Thus, a graph with directed links and no cycles is a DAG.  DAGs are a type of network diagram that represent causality in a visual format.
      DAGs are updated with the regular Human System Risk updates generally every 1-2 years. Approved DAGs can be found in the NASA/TP 20220015709 below or broken down under each Human System Risk.
      Documents
      Directed Acyclic Graph Guidance Documentation – NASA/TM 20220006812 Directed Acyclic Graphs: A Tool for Understanding the NASA Human Spaceflight System Risks – NASA/TP 20220015709 Publications
      npj Microgravity – Causal diagramming for assessing human
      system risk in spaceflight
      Apr 22, 2024
      PDF (3.09 MB)
      npj Microgravity –
      Levels of evidence for human system risk
      evaluation
      Apr 22, 2024
      PDF (2.47 MB)
      npj Microgravity –
      Updates to the NASA human system risk management process
      for space exploration
      Apr 22, 2024
      PDF (2.24 MB)
      Points of Contact
      Mary Van Baalen
      Dan Buckland
      Bob Scully
      Kim Lowe
      Human System Risks Share
      Details
      Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Human System Risks Explore More
      1 min read Concern of Venous Thromboembolism
      Article 31 mins ago 1 min read Risk of Acute and Chronic Carbon Dioxide Exposure
      Article 30 mins ago 1 min read Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders
      Article 30 mins ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Missions
      International Space Station
      Solar System
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 13 min read
      The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science
      Introduction
      Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a workhorse in NASA’s Airborne Science Program (ASP)—see Photo 1. The aircraft, located at NASA’s Armstrong Flight Research Center (AFRC) in California, flew countless missions as a science laboratory, producing science data that supports projects serving the world’s scientific community, particularly the NASA Earth science community. NASA recently decided to retire the venerable DC-8 aircraft, which made its last science flight in April 2024. The DC-8 is being replaced with a similarly refurbished Boeing 777 aircraft, which will be even more capable than the DC-8.
      Photo 1. NASA’s DC-8 flying laboratory flew Earth science missions for NASA’s. Airborne Science Program (ASP) from 1987–2024. The versatile aircraft was used to conduct a variety of research experiments that spanned all seven continents. Photo credit: Lori Losey [NASA’s Armstrong Flight Research Center (AFRC)] More information is available about the full history of ASP, its primary objectives, and its many achievements in an archived article: see “Flying in the ‘Gap’ Between Earth and Space: NASA’s Airborne Science Program” [The Earth Observer, September–October 2020, 32:5, 4–14].
      Workshop Overview
      The NASA History Office and NASA Earth Science Division cohosted a workshop, titled “Contributions of the DC-8 to Earth System Science at NASA,” on October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC – see Photo 2.
      The agenda included not just the DC-8’s contributions to Earth Science at NASA, but also its role supporting the Aeronautics Research Mission Directorate and work in space science. Many DC-8 veterans – including several who are now retired – attended the event in person or online. The program consisted of six panels and roundtables, each calling attention to a unique aspect of the DC-8 story.
      Photo 2. Group photo of the in person and remote participants of the workshop on “Contributions of the DC-8 to Earth System Science at NASA,” which took place October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC. Photo credit: Rafael Luis Méndez Peña [NASA’s Ames Research Center, Earth Science Program Office] The event featured 38 individuals (speakers, panelists, and moderators) from NASA HQ, five NASA centers, eight universities, the Search for Extraterrestrial Intelligence Institute, and the National Oceanic and Atmospheric Administration. In addition, Spanish filmmaker Rafael Luis Méndez Peña debuted a trailer for his documentary film, NASA-817, on October 24 and took photographs during the workshop. The ??? agenda a workshop recording ???, and other related materials are available through the NASA History Office.
      The Tale of the NASA DC-8
      The article follows the outline of the workshop that places the DC-8 in the context of the overall history of NASA aircraft observations, science campaigns, community, and international collaboration, education and outreach activities.
      A History in Context: the DC-8 and NASA’s Airborne Science Program
      NASA’s involvement in airborne science extends to the agency’s inception. The National Aeronautics and Space Act of 1958 states that NASA’s first objective shall be “the expansion of human knowledge of phenomena in the atmosphere and space.” Subsequent legislation expanded NASA’s role in atmospheric and Earth system science. To fulfill this objective, NASA maintains a fleet of airborne platforms through ASP – see Figure –to study the environment, develop new technologies, verify satellite data, and monitor space vehicle activity.
      Figure. The DC-8 was but one aircraft is NASA’s sizeable Airborne Science Fleet – which is maintained and operated by ASP. Note that in addition to a variety of piloted aircraft operating at different altitudes shown in this drawing, NASA also operates uncrewed aircraft systems and even uses kites to conduct Earth observations. Figure credit: NASA Science Suborbital Platforms, NASA’s Goddard Space Flight Center, Science Support Office NASA operated two large flying laboratories prior to the DC-8 Airborne Science Laboratory. Both aircraft were converted Convair (CV) 990s. Regrettably, both aircraft succumbed to catastrophic accidents. The first, known as Galileo, collided with a U.S. Navy P-3 Orion near Moffett Field, CA, in April 1973, killing 11 NASA personnel. Its replacement, Galileo II, crashed on takeoff at March Air Force Base in July 1985. While there were no fatalities in the second accident, the ensuing fire consumed the aircraft and its instruments. The loss of Galileo II left a gaping hole in NASA’s ability to conduct essential scientific and engineering research.
      In January 1986, after months of bureaucratic scrambling, NASA finalized the purchase of former commercial airliner (DC-8-72) for $24 million, which included costs to modify the aircraft to carry a science payload and crew. The modified DC-8 Airborne Science Laboratory—shown in Photo 2— arrived at NASA Ames Research Center during the Summer of 1987.
      Overview Presentations on Airborne Science
      Jack Kaye [NASA Headquarters—Associate Director for Research of the Earth Science Division] gave the meeting’s opening remarks, where he placed the DC-8’s activities in a larger perspective. He noted that one of the features that makes airborne science so unique at NASA is the combination of platforms, sensors, systems, people, and opportunities. The DC-8 was able to carry a large number of people as well as instruments to carry out long-range operations under diverse conditions.
      “[The DC-8 offered] a really versatile, flexible platform that’s allowed for lots of science,” said Kaye.
      Later in the meeting, Karen St. Germain [NASA Headquarters—Director of the Earth Science Division] built upon Kaye’s comments. She noted that while NASA’s satellite missions receive most of the public’s attention, airborne science is an essential part of the NASA mission.
      “This is the grassroots of science,” she stressed. “It’s where a lot of the great ideas are born. It’s where a lot of the fledgling sensor technologies are demonstrated.”
      First Flight for the DC-8
      NASA routinely conducts field campaigns – where ground observations are timed and coordinated with aircraft flights (often at more than one altitude) and with satellite overpasses to gain a comprehensive (multilayered, multiscale) picture of the atmosphere over a certain area. A more detailed account of two NASA field campaigns from the 1980s and 1990s, and their follow-up missions, is available in an archived article: see “Reflections on FIFE and BOREAS: Historical Perspective and Meeting Summary” [The Earth Observer, January–February 2017, 29:1, 6–23]. The article illustrates scaled observations as they were conducted during FIFE and BOREAS.
      Researchers first used the DC-8 Airborne Science Laboratory on a high-profile interagency field campaign – Antarctic Airborne Ozone Expedition (AAOE), the first airborne experiment to study the chemistry and dynamics of the Antarctic ozone hole. The scientific data collected during AAOE produced unequivocable evidence that human-made chemicals were involved in the destruction of ozone over the Antarctic. This data served as a major impetus toward the enactment of amendments to the Montreal Protocol, which banned the manufacture of chlorofluorocarbons.
      Estelle Condon [NASA’s Ames Research Center (ARC), emeritus] was a program manager for AAOE. During the meeting, she shared her memories of the hectic days leading up to the DC-8’s first mission.
      “There was an enormous task in front of [the aircraft team] – just a huge task – to get all the relay racks, all the wiring, all the ports for the windows designed and built so that when the scientists finally came, all that instrumentation could actually be put on the aircraft,” said Condon. She added that the ARC staff worked day and night and every weekend to make the plane ready.
      “It’s a miracle that they were able to put everything together and get it to the tip of South America in time for the mission,” she said.
      Other Noteworthy Field Campaigns Involving the DC-8
      The DC-8 would go on to be used in many other field campaigns throughout its 37-year history
      and was central to several of NASA’s research disciplines. For example, Michael Kurylo [NASA Headquarters—Atmospheric Composition Program Scientist] was the manager of NASA’s Upper Atmosphere Research Program, where he developed, promoted, and implemented an extramural research program in stratospheric and upper tropospheric composition and directed its advanced planning at a national and international level. Kurylo summarized the DC-8’s many flights to study stratospheric chemistry beyond the AAOE missions.
      Kurylo also discussed the DC-8’s role in tropospheric chemistry investigations, especially through the many field campaigns that were conducted as part of the Global Troposphere Experiment (GTE). He also touched on the culture of NASA airborne science and the dynamic that existed between scientists and those who operated and maintained the aircraft.  “The scientists were always referred to [by NASA pilots and groundcrew] as ‘coneheads’…. Too much college, not enough high school,” Kurylo explained. But he and his colleagues have such fond memories of their time spent working together onboard the DC-8. 
      James Crawford [NASA’s Langley Research Center], a project scientist for many of the GTE campaigns, explained that from 1983–2001 16 GTE aircraft-based missions, each with its own name and location, took place. Each mission collected a rich set of data records of atmospheric observations and on many occasions the data were used as baselines for subsequent campaigns. The DC-8 was one of several NASA aircraft involved, the others being the Corvair-990, Electra, and P-3B.
      Joshua Schwarz [NOAA’s Chemical Sciencc Laboratory] discussed the airplane’s role in global atmospheric monitoring.  He recall thinking, after his first experience with the DC-8 that this flying airborne laboratory, “…was going to make things possible that wouldn’t otherwise be possible,” Schwarz concluded after his first encounter with the DC-8.
      Other workshop participants went on to describe how – for nearly four decades – investigators used data collected by instruments on the DC-8 to conduct research and write papers on important scientific and engineering topics.
      The People Behind the Aircraft: The DC-8 Community
      The DC-8 was a large and durable aircraft capable of long-range flights, which made it ideal for conducting scientific research. Around these research efforts a strong community emerged. Over three decades, the DC-8 accommodated many investigators from NASA, interagency offices, U.S. universities, and international organizations on extended global missions. Agency officials also moved the DC-8 base of operations several times between 1986 and 2024, thereby demanding tremendous cross-center cooperation.
      “Looking around the room, it’s clear that what brought us together [for the workshop] is more than just an aircraft,” said Nickelle Reid [NASA’s Armstrong Flight Research Center]. “It’s been a shared commitment, decades of passion and dedication from scientists, yes, but also mechanics, technicians, integration engineers, project managers, mission planners, operations engineers, flight engineers, mission directors, mission managers, logistics technicians and, of course, pilots. This village of people has been the beating heart of the DC-8 program.”
      This DC-8 community was well represented at this workshop and played a key role in its success.
      The DC-8 as a Means of International Engagement
      The DC-8 community expanded beyond the U.S., opening unique opportunities for international engagement. The campaigns of the DC-8 Airborne Science Laboratory routinely involved foreign students, institutions, and governments. For example, the Korea–U.S. Air Quality (KORUS-AQ) campaign, an international cooperative air quality field study in Korea, took place in 2016. For more information about this campaign, see the archived Earth Observer article, “Flying in the ‘Gap’ Between Earth and Space: NASA’s Airborne Science Program” [The Earth Observer, September–October 2022, 32:5, 4–14].
      Yunling Lou [NASA/Jet Propulsion Laboratory] spoke to the workshop audience about the value of international collaboration.
      “I think [international collaboration] really helped – not just doing the collaboration [to accomplish a specific mission] but doing the training, the capacity building in these countries to build the community of global scientists and engineers,” said Lou.
      Trina Dryal [LaRC—Deputy Director] continued that the DC-8 and NASA’s other airborne assets are more than just science laboratories.
      “[They] are opportunities for science, diplomacy, international collaboration, cross learning, educational inspiration, and goodwill,” said Dryal—see Photo 3.
      Photo 3. International collaborations included educational endeavors.  Here, Walter Klein [AFRC—DC-8 Mission Manager] poses with a group of Chilean students onboard the DC-8 Airborne Science Laboratory in Punta Arenas, Chile, March 2004. Photo credit: Jim Closs [NASA’s Langley Research Center] Student Investigations on the DC-8
      Closer to home, the flying scientific laboratory affected the lives of many U.S. students and early career professionals. NASA’s Student Airborne Research Program (SARP), is an eight-week summer internship for rising-senior undergraduates that takes place annually on the East and West coasts of the U.S – see Photo 4. During the program, students gain hands-on experience conducting all aspects of a scientific campaign. They conduct field research, analyze the data, and gain access to one or more of NASA’s ASP flying science laboratories.  Since 2009, this program alone has provided hands on experience in conducting NASA Earth science research to XXXX students.
      Berry Lefer [NASA Headquarters—Tropospheric Composition Program Manager] pointed out that SARP helped to integrate American students into DC-8 scientific missions.
      “I want to make sure the NASA historians understand that the DC-8 is the premier flying laboratory on the planet, bar none,” said Lefer. “You’ve seen over the whole three-decade life of the DC-8 that education and outreach, student involvement has been a hallmark of the DC-8 [program].”
      Yaitza Luna-Cruz [NASA Headquarters—Program Executive] was one among several SARP alumni who delivered testimony on the impact of the SARP program at the workshop.
      “SARP unleashed my potential in ways that I cannot even describe,” said Luna-Cruz. “You never know what a single opportunity could do to shape the career of a student or early career researcher.
      Luna-Cruz hopes these efforts continue with the coming of NASA’s new Boeing 777 airborne laboratory.
      Photo 4. One of the most popular student investigations flown on the DC-8 (and other ASP aircraft) was (is) the Student Airborne Research Program (SARP), in which upper-level undergraduate students can gain valuable hands-on experience conducting field research.  Students taking part in SARP and their mentors posed with the DC-8 at AFRC in 2019 [top] and in 2022 [bottom]. The 2022 SARP group flew flights over California’s Central Valley to study air quality. Photo credit: [Top] NASA; [bottom] Lauren Hughes [ARC] Final Flight and Retirement of the DC-8
      The DC-8 Airborne Science Laboratory flew its last science flight during the international Airborne and Satellite Investigation of Asian Air Quality mission (ASIA-AQ) in April 2024. Since its final flight, the aircraft has been retired to Idaho State University (ISU). Today, students in ISU’s aircraft maintenance program work on the airplane to develop real-world technical skills – continuing the DC-8’s mission as an educational platform. According to Gerald Anhorn [ISU—Dean of College of Technology], ISU students have a unique opportuning to gain experience working on a legendary research aircraft.
      “Our students have that opportunity because of [NASA’s] donation” to the school, said Auborn.
      Conclusion: Flying Toward the Future – From DC-8 to Boeing 777
      While the DC-8 is retiring from active service, airborne observations continue to be a vital part of NASA’s mission. The agency recently acquired a Boeing 777and will modify it to support its ongoing airborne scientific research efforts. This new addition expands beyond the capacity of the DC-8 by allowing for even longer flights with larger payloads and more researchers to gather data. Several members of the Boeing 777 team from NASA’s Langley Research Center (LaRC) attended the workshop.
       “I mentioned I was in charge of the ‘replacement’ for the DC-8,” said Martin Nowicki [LaRC—Boeing 777 Lead]. “Over the last two days, here, it’s become pretty apparent that there’s no ‘replacing’ the DC-8. It’s carved out its own place in history. It’s just done so much.”
      Nowicki looks forward to working with workshop participants to identify useful lessons of the past for future operators. He concluded that the Boeing 777 will carry the legacy of the DC-8 and continue with capturing the amazing science of ASP.
      Acknowledgments
      The authors wish to thank Jack Kaye [NASA HQ—Associate Director of Research for the Earth Science Division] for his helpful reviews of the article draft.  The first author also wishes to thank Lisa Frazier [NASA Headquarters—Strategic Events and Engagement Lead] for providing support and assistance throughout for the in-person workshop participants. and to the Earth Science Project Office team from NASA’s Ames Research Center, who performed essential conference tasks, such as website construction, audio-visual support, and food service management. This article is an enhanced version of the first author’s summary, which appeared in the Spring 2025 issue of News & Notes – The NASA History Office’s newsletter.
      Bradley L. Coleman
      NASA’s Marshall Space Flight Center, NASA History Office
      bradley.l.coleman@nasa.gov
      Alan B. Ward
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
      alan.b.ward@nasa.gov
      Share








      Details
      Last Updated Mar 11, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Will you design the zero gravity indicator (ZGI) that accompanies the Artemis II mission around the Moon? If your design is one of the most compelling and resonates with the global community and the Artemis II astronauts, your design might fly into space aboard the Orion spacecraft and you could win US$1225. Zero gravity indicators are small items carried aboard spacecraft that provide a visual indicator for when a spacecraft has reached the weightlessness of microgravity. A plush Snoopy doll was the ZGI for the Artemis I mission. For that uncrewed mission, Snoopy floated around, tethered inside the vehicle to indicate when the Orion spacecraft had reached space. For this Challenge, we’re asking creatives from all over the world to design a new ZGI to be fabricated by NASA’s Thermal Blanket Lab and launched into space aboard the Artemis II mission. 
      Award: $23,275 in total prizes
      Open Date: March 7, 2025
      Close Date: May 27, 2025
      For more information, visit: https://www.freelancer.com/contest/Moon-Mascot-NASA-Artemis-II-ZGI-Design-Challenge-2527909/details
      View the full article
  • Check out these Videos

×
×
  • Create New...