Jump to content

Novel Recuperator Design for Cryogenic Fluid Management System


Recommended Posts

  • Publishers
Posted
recuperator.png?w=220

Cryocoolers are essential systems in many space exploration missions to maintain propellants at cryogenic temperatures. Cryogenic recuperators are a key component of these cryocoolers and dictate the performance of the system. NASA is seeking to reduce the cost and increase the performance of cryogenic recuperators (also called Heat Exchangers) by utilizing Additive Manufacturing (AM) technologies.

Award: $7,000 in total prizes

Open Date: March 5, 2025

Close Date: May 2, 2025

For more information, visit: https://grabcad.com/challenges/novel-recuperator-design-for-cryogenic-fluid-management-system

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      It’s been 30 years since the discovery of the first planet around another star like our Sun. With every new discovery, scientists move closer to answering whether there are other planets like Earth that could host life as we know it. NASA/JPL-Caltech The milestone highlights the accelerating rate of discoveries, just over three decades since the first exoplanets were found.
      The official number of exoplanets — planets outside our solar system — tracked by NASA has reached 6,000. Confirmed planets are added to the count on a rolling basis by scientists from around the world, so no single planet is considered the 6,000th entry. The number is monitored by NASA’s Exoplanet Science Institute (NExScI), based at Caltech’s IPAC in Pasadena, California. There are more than 8,000 additional candidate planets awaiting confirmation, with NASA leading the world in searching for life in the universe.
      See NASA's Exoplanet Discoveries Dashboard “This milestone represents decades of cosmic exploration driven by NASA space telescopes — exploration that has completely changed the way humanity views the night sky,” said Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters in Washington. “Step by step, from discovery to characterization, NASA missions have built the foundation to answering a fundamental question: Are we alone? Now, with our upcoming Nancy Grace Roman Space Telescope and Habitable Worlds Observatory, America will lead the next giant leap — studying worlds like our own around stars like our Sun. This is American ingenuity, and a promise of discovery that unites us all.”
      Scientists have found thousands of exoplanets (planets outside our solar system) throughout the galaxy. Most can be studied only indirectly, but scientists know they vary widely, as depicted in this artist’s concept, from small, rocky worlds and gas giants to water-rich planets and those as hot as stars. NASA’s Goddard Space Flight Center The milestone comes 30 years after the first exoplanet was discovered around a star similar to our Sun, in 1995. (Prior to that, a few planets had been identified around stars that had burned all their fuel and collapsed.) Although researchers think there are billions of planets in the Milky Way galaxy, finding them remains a challenge. In addition to discovering many individual planets with fascinating characteristics as the total number of known exoplanets climbs, scientists are able to see how the general planet population compares to the planets of our own solar system.
      For example, while our solar system hosts an equal number of rocky and giant planets, rocky planets appear to be more common in the universe. Researchers have also found a range of planets entirely different from those in our solar system. There are Jupiter-size planets that orbit closer to their parent star than Mercury orbits the Sun; planets that orbit two stars, no stars, and dead stars; planets covered in lava; some with the density of Styrofoam; and others with clouds made of gemstones.
      “Each of the different types of planets we discover gives us information about the conditions under which planets can form and, ultimately, how common planets like Earth might be, and where we should be looking for them,” said Dawn Gelino, head of NASA’s Exoplanet Exploration Program (ExEP), located at the agency’s Jet Propulsion Laboratory in Southern California. “If we want to find out if we’re alone in the universe, all of this knowledge is essential.” 
      Searching for other worlds
      Fewer than 100 exoplanets have been directly imaged, because most planets are so faint they get lost in the light from their parent star. The other four methods of planet detection are indirect. With the transit method, for instance, astronomers look for a star to dim for a short period as an orbiting planet passes in front of it.
      To account for the possibility that something other than an exoplanet is responsible for a particular signal, most exoplanet candidates must be confirmed by follow-up observations, often using an additional telescope, and that takes time. That’s why there is a long list of candidates in the NASA Exoplanet Archive (hosted by NExScI) waiting to be confirmed.
      “We really need the whole community working together if we want to maximize our investments in these missions that are churning out exoplanets candidates,” said Aurora Kesseli, the deputy science lead for the NASA Exoplanet Archive at IPAC. “A big part of what we do at NExScI is build tools that help the community go out and turn candidate planets into confirmed planets.”
      The rate of exoplanet discoveries has accelerated in recent years (the database reached 5,000 confirmed exoplanets just three years ago), and this trend seems likely to continue. Kesseli and her colleagues anticipate receiving thousands of additional exoplanet candidates from the ESA (European Space Agency) Gaia mission, which finds planets through a technique called astrometry, and NASA’s upcoming Nancy Grace Roman Space Telescope, which will discover thousands of new exoplanets primarily through a technique called gravitational microlensing.
      Many telescopes contribute to the search for and study of exoplanets, including some in space (artists concepts shown here) and on the ground. Doing the work are organizations around the world, including ESA (European Space Agency), CSA (Canadian Space Agency), and NSF (National Science Foundation). NASA/JPL-Caltech Future exoplanets
      At NASA, the future of exoplanet science will emphasize finding rocky planets similar to Earth and studying their atmospheres for biosignatures — any characteristic, element, molecule, substance, or feature that can be used as evidence of past or present life. NASA’s James Webb Space Telescope has already analyzed the chemistry of over 100 exoplanet atmospheres.
      But studying the atmospheres of planets the size and temperature of Earth will require new technology. Specifically, scientists need better tools to block the glare of the star a planet orbits. And in the case of an Earth-like planet, the glare would be significant: The Sun is about 10 billion times brighter than Earth — which would be more than enough to drown out our home planet’s light if viewed by a distant observer.
      NASA has two main initiatives to try overcoming this hurdle. The Roman telescope will carry a technology demonstration instrument called the Roman Coronagraph that will test new technologies for blocking starlight and making faint planets visible. At its peak performance, the coronagraph should be able to directly image a planet the size and temperature of Jupiter orbiting a star like our Sun, and at a similar distance from that star. With its microlensing survey and coronagraphic observations, Roman will reveal new details about the diversity of planetary systems, showing how common solar systems like our own may be across the galaxy.
      Additional advances in coronagraph technology will be needed to build a coronagraph that can detect a planet like Earth. NASA is working on a concept for such a mission, currently named the Habitable Worlds Observatory.
      More about ExEP, NExScI 
      NASA’s Exoplanet Exploration Program is responsible for implementing the agency’s plans for the discovery and understanding of planetary systems around nearby stars. It acts as a focal point for exoplanet science and technology and integrates cohesive strategies for future discoveries. The science operations and analysis center for ExEP is NExScI, based at IPAC, a science and data center for astrophysics and planetary science at Caltech. JPL is managed by Caltech for NASA.
      /
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-119
      Share
      Details
      Last Updated Sep 17, 2025 Related Terms
      Exoplanets Exoplanet Discoveries Gas Giant Exoplanets Jet Propulsion Laboratory Kepler / K2 Nancy Grace Roman Space Telescope Neptune-Like Exoplanets Super-Earth Exoplanets Terrestrial Exoplanets TESS (Transiting Exoplanet Survey Satellite) The Search for Life Explore More
      7 min read How NASA’s Roman Mission Will Unveil Our Home Galaxy Using Cosmic Dust
      Article 1 day ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 4 min read NASA Analysis Shows Sun’s Activity Ramping Up
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 Min Read NASA Shares Final Contenders for Artemis II Moon Mascot Design Contest
      NASA is down to 25 finalists for the Artemis II zero gravity indicator set to fly with the mission’s crew around the Moon and back next year.

      Astronauts Reid Wiseman, Victor Glover, and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will soon select one of the finalist designs to join them inside the Orion spacecraft as their Moon mascot.

      “The Artemis II zero gravity indicator will be special for the crew,” said Reid Wiseman, Artemis II commander. “In a spacecraft filled with complex hardware to keep the crew alive in deep space, the indicator is a friendly and useful way to highlight the human element that is so critical to our exploration of the universe. Our crew is excited about these designs from across the world and we are looking forward to bringing the winner along for the ride.”

      A zero gravity indicator is a small plush item that typically rides with a crew to visually indicate when they are in space. For the first eight minutes after liftoff, the crew and their indicator nearby will still be pushed into their seats by gravity, and the force of the climb into space. When the main engines of the SLS (Space Launch System) rocket’s core stage cut off, gravity’s restraints are lifted, but the crew will still be strapped safely into their seats – their zero gravity indicator’s ability to float will provide proof that they’ve made it into space.

      Artemis II will mark the first time that the public has had a hand in creating the crew’s mascot.

      These designs – ideas spanning from Moon-related twists on Earthly creatures to creative visions of exploration and discovery – were selected from more than 2,600 submissions from over 50 countries, including from K-12 students. The finalists represent 10 countries including the United States, Canada, Colombia, Finland, France, Germany, Japan, Peru, Singapore, and Wales.

      View the finalist designs:

      Lucas Ye | Mountain View, California“Rise” Kenan Ziyan | Canyon, Texas“Zappy Zebra” Royal School, SKIES Space Club | Winnipeg, Manitoba, Canada“Luna the Space Polar Bear” Garden County Schools | Oshkosh, Nebraska“Team GarCo” Richellea Quinn Wijaya | Singapore“Parsec – The Bird That Flew to the Moon” Anzhelika Iudakova | Finland“Big Steps of Little Octopus” Congressional School | Falls Church, Virginia“Astra-Jelly” Congressional School | Falls Church, Virginia“Harper, Chloe, and Mateo’s ZGI” Alexa Pacholyk | Madison, Connecticut“Artemis” Leila Fleury | Rancho Palos Verdes, California“Beeatrice” Oakville Trafalgar School | Oakville, Ontario, Canada“Lepus the Moon Rabbit” Avon High School | Avon, Connecticut“Sal the Salmon” Daniela Colina | Lima, Peru“Corey the Explorer” Caroline Goyer-Desrosiers | St. Eustache, Quebec, Canada“Flying Squirrel Ready for Its Take Off to Space!” Giulia Bona | Berlin, Germany“Art & the Giant” Tabitha Ramsey | Frederick, Maryland“Lunar Crust-acean” Gabriela Hadas | Plano, Texas“Celestial Griffin” Savon Blanchard | Pearland, Texas“Soluna Flier” Ayako Moriyama | Kyoto, Japan“MORU: A Cloud Aglow with Moonlight and Hope” Johanna Beck | McPherson, Kansas“Creation Mythos” Guillaume Truong | Toulouse, France“Space Mola-mola (aka Moon Fish) Plushie” Arianna Robins | Rockledge, Florida“Terra the Titanosaurus” Sandy Moya | Madrid, Colombia“MISI: Guardian of the Journey” Bekah Crowmer | Mooresville, Indiana“Mona the Moon Moth” Courtney John | Llanelli, Wales“Past, Present, Future” In March, NASA announced it was seeking design ideas from global creators for a zero gravity indicator to fly aboard Artemis II, the first crewed mission under NASA’s Artemis campaign. Creators were asked to submit ideas representing the significance of Artemis, the mission, or exploration and discovery, and to meet specific size and materials requirements. Crowdsourcing company Freelancer facilitated the contest on NASA’s behalf though the NASA Tournament Lab, managed by the agency’s Space Technology Mission Directorate.

      Once the crew has selected a final design, NASA’s Thermal Blanket Lab will fabricate it for flight. The indicator will be tethered inside Orion before launch.

      The approximately 10-day mission is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.

      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars.
      View the full article
    • By NASA
      If you asked someone what they expected to see during a visit to NASA’s Johnson Space Center, they would probably list things like astronauts, engineers, and maybe a spacecraft or two. It might be a surprise to learn you can also spy hundreds of species of animals – from geckos and snakes to white-tailed deer and red-tailed hawks.

      Ensuring those species and Johnson’s workforce can safely coexist is the main job of Matt Strausser, Johnson’s senior biologist for wildlife management. Strausser works to reduce the negative impacts animals can have on Johnson’s operations as well as the negative impact humans might have on native wildlife and their habitats.

      NASA’s Johnson Space Center Senior Biologist Matt Strausser leads a nature hike to Johnson staff that detailed the native plant species and wildlife onsite, invasive species, and mitigation efforts.NASA/Lauren Harnett Strausser joined NASA in 2012, fresh out of graduate school, when he was hired on a six-month contract to write Johnson’s first Wildlife Management Plan. “My contract was extended a couple of times until I became a regular part of the facilities service contract, which is where I still am today,” he said.

      Strausser remembers being interested in natural resources from a young age. “I spent a lot of my childhood poring through copies of National Geographic, hiking, and camping,” he said. When it was time for college, Strausser decided to study biology and natural resource management. He spent his summers in jobs or internships that mostly involved endangered wildlife species, including Attwater’s prairie chickens, which are bred at Johnson through a partnership with the Houston Zoo. Strausser noted that he conducted research across the country while he was a student, and even studied fish for a short time in the South Pacific.

      “After all of those adventures in faraway places, I find it ironic that I ended up about 20 miles from where I grew up,” he said. “Once I got onsite, it did not take me long to find that this property has great remnant native plant communities, a fascinating land use history, and some unique natural resource challenges that come from the work done here. Those factors really drew me in and helped motivate me to build a career at Johnson.”

      Matthew Strausser received a Silver Snoopy Award through NASA’s Space Flight Awareness Program in 2018, in recognition of his efforts to prevent and mitigate ant-inflicted damage to critical infrastructure electrical systems. From left: NASA astronaut Reid Weissman, Strausser, Strausser’s wife Kayla, NASA Acting Associate Administrator Vanessa Wyche. NASA Strausser’s work involves a variety of activities. First, he gathers data about Johnson’s wildlife populations and their habitats. “I use population counts, conflict records, satellite and aerial imagery, nest surveys, outside reports, and even historical data to get an understanding of what’s on the landscape and what problems we have to tackle,” he said.

      With that information, Strausser works to engage project and facility managers and provide recommendations on how to prevent or reduce the impact of wildlife problems onsite. Strausser works with Johnson’s facilities maintenance group to modify buildings to keep animals on the outside, and he gets support from the Johnson veterinarian on animal health issues. He also works closely with Johnson’s pest control and groundskeeping contracts, as their work is often adjacent to wildlife management.

      He supports the safety team, as well. “Our security contractors are a great resource for reporting wildlife issues as well as helping address them,” Strausser said, adding that some of Johnson’s safety groups “have been really helpful at getting the word out about how to stay safe around our wildlife” in coordination with the center’s internal communications team.  His team also responds to wildlife conflict calls, which often involve capturing and relocating animals that have wandered into areas where they pose a risk to people or operations.

      Additionally, Strausser runs the facilities contract’s small unmanned aircraft system, which uses drones to conduct facility inspections, support hurricane response, and survey on-site wildlife.

      An on-site wildlife snapshot captured by the Johnson Space Center facilities contract’s small unmanned aircraft system. NASA The nature of his work has instilled in Strausser an appreciation for teamwork and collaboration among colleagues with distinct experiences. Each of the projects he works on involves team members from different organizations and contracts, and most of them do not have a background in biology. “Building a wildlife and natural resource program from the ground up and bringing all of these once-disconnected and diverse professionals together to effectively address problems – that is the achievement I take the most pride in,” he said.

      Strausser observed that accomplishing the goals of the agency’s Artemis campaign will require a tremendous amount of specialized support infrastructure, and that developing and running that infrastructure will require a wide variety of professionals. “It is going to require students and specialists with all different types of backgrounds, passions, and talents.”

      Overall, Strausser said he has a very dynamic job. “Wildlife issues tend to be very seasonal, so throughout the year, the types of issues I am addressing change,” he said. “On top of that, there are always new projects, problems, and questions out there that keep the work fresh and challenging.” He has learned the value of being open to new challenges and learning new skills. “Being adaptable can be just as important as mastery in a specific field,” he said.
      An on-site wildlife snapshot captured by the Johnson Space Center facilities contract’s small unmanned aircraft system. NASA A Texas Longhorn relaxes onsite at Johnson Space Center, with Space Center Houston in the background.NASA Deer are plentiful on the Johnson Space Center campus.NASA A hawk perches in a tree at Johnson Space Center.NASA Attwater’s prairie chickens are bred at Johnson Space Center through a partnership with the Houston Zoo.NASA Explore More
      7 min read Station Nation: Meet Tess Caswell, Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      Article 2 hours ago 3 min read Human Rating and NASA-STD-3001
      Article 3 days ago 2 min read Juliana Barajas: Supporting NASA’s Mission, One Task at a Time 
      Article 1 week ago View the full article
    • By NASA
      While on tour at NASA’s Glenn Research Center in Cleveland on Monday, June 23, 2025, University Student Design Challenge winners from The Ohio State University stop to hear engineer Nancy Hall, center, discuss different parts of a sealed vessel used in research and development activities focused on nanotechnology and nanomaterials. Credit: NASA/Jef Janis 
        A student team from The Ohio State University secured first place in NASA Glenn Research Center’s 2025-2026 University Student Design Challenge for their innovative design aimed at managing fluids in space. The team will develop a working prototype as part of their senior capstone project during the upcoming academic year. 
      On June 23, the team visited NASA Glenn in Cleveland to present their winning designs to center leadership and tour the Zero Gravity Research Facility, where their design could undergo future testing. The challenge encourages college students to develop innovative approaches to NASA mission needs, featuring both aeronautics and space-themed projects.  
      University Student Design Challenge winners from The Ohio State University gather at the top of the Zero Gravity Drop Tower at NASA’s Glenn Research Center in Cleveland on Monday, June 23, 2025. Credit: NASA/Jef Janis  NASA Glenn engineers Nancy Hall and John McQuillan served as student mentors and technical advisors for the USDC SPACE I design challenge. 
      To learn more, explore NASA’s STEM opportunities.  

      Return to Newsletter View the full article
    • By Space Force
      Integration between the U.S. and its Allies is a consistent focal point for the U.S. Space Force, with critical command and control and operational elements of Allied partnerships being tested and validated in Resolute Space 2025.

      View the full article
  • Check out these Videos

×
×
  • Create New...