Members Can Post Anonymously On This Site
Intuitive Machines-2 Lunar Landing (Official NASA Broadcast)
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
On Sept. 9, 2025, NASA’s Solar Dynamics Observatory captured this image of the Sun.NASA/GSFC/Solar Dynamics Observatory It looked like the Sun was heading toward a historic lull in activity. That trend flipped in 2008, according to new research.
The Sun has become increasingly active since 2008, a new NASA study shows. Solar activity is known to fluctuate in cycles of 11 years, but there are longer-term variations that can last decades. Case in point: Since the 1980s, the amount of solar activity had been steadily decreasing all the way up to 2008, when solar activity was the weakest on record. At that point, scientists expected the Sun to be entering a period of historically low activity.
But then the Sun reversed course and started to become increasingly active, as documented in the study, which appears in The Astrophysical Journal Letters. It’s a trend that researchers said could lead to an uptick in space weather events, such as solar storms, flares, and coronal mass ejections.
“All signs were pointing to the Sun going into a prolonged phase of low activity,” said Jamie Jasinski of NASA’s Jet Propulsion Laboratory in Southern California, lead author of the new study. “So it was a surprise to see that trend reversed. The Sun is slowly waking up.”
The earliest recorded tracking of solar activity began in the early 1600s, when astronomers, including Galileo, counted sunspots and documented their changes. Sunspots are cooler, darker regions on the Sun’s surface that are produced by a concentration of magnetic field lines. Areas with sunspots are often associated with higher solar activity, such as solar flares, which are intense bursts of radiation, and coronal mass ejections, which are huge bubbles of plasma that erupt from the Sun’s surface and streak across the solar system.
NASA scientists track these space weather events because they can affect spacecraft, astronauts’ safety, radio communications, GPS, and even power grids on Earth. Space weather predictions are critical for supporting the spacecraft and astronauts of NASA’s Artemis campaign, as understanding the space environment is a vital part of mitigating astronaut exposure to space radiation.
Launching no earlier than Sept. 23, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory missions, as well as the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow On-Lagrange 1) mission, will provide new space weather research and observations that will help to drive future efforts at the Moon, Mars, and beyond.
Solar activity affects the magnetic fields of planets throughout the solar system. As the solar wind — a stream of charged particles flowing from the Sun — and other solar activity increase, the Sun’s influence expands and compresses magnetospheres, which serve as protective bubbles of planets with magnetic cores and magnetic fields, including Earth. These protective bubbles are important for shielding planets from the jets of plasma that stream out from the Sun in the solar wind.
Over the centuries that people have been studying solar activity, the quietest times were a three-decade stretch from 1645 to 1715 and a four-decade stretch from 1790 to 1830. “We don’t really know why the Sun went through a 40-year minimum starting in 1790,” Jasinski said. “The longer-term trends are a lot less predictable and are something we don’t completely understand yet.”
In the two-and-a-half decades leading up to 2008, sunspots and the solar wind decreased so much that researchers expected the “deep solar minimum” of 2008 to mark the start of a new historic low-activity time in the Sun’s recent history.
“But then the trend of declining solar wind ended, and since then plasma and magnetic field parameters have steadily been increasing,” said Jasinski, who led the analysis of heliospheric data publicly available in a platform called OMNIWeb Plus, run by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The data Jasinski and colleagues mined for the study came from a broad collection of NASA missions. Two primary sources — ACE (Advanced Composition Explorer) and the Wind mission — launched in the 1990s and have been providing data on solar activity like plasma and energetic particles flowing from the Sun toward Earth. The spacecraft belong to a fleet of NASA Heliophysics Division missions designed to study the Sun’s influence on space, Earth, and other planets.
News Media Contacts
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
Karen Fox / Abbey Interrante
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / abbey.a.interrante@nasa.gov
2025-118
Share
Details
Last Updated Sep 15, 2025 Related Terms
Heliophysics Jet Propulsion Laboratory The Solar System Explore More
3 min read Weird Ways to Observe the Moon
International Observe the Moon Night is on October 4, 2025, this year– but you can observe…
Article 8 hours ago 5 min read NASA’s GUARDIAN Tsunami Detection Tech Catches Wave in Real Time
Article 3 days ago 5 min read New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
One of the challenges many teachers face year after year is a sense of working alone. Despite the constant interaction with students many questions often linger: Did the lesson stick? Will students carry this knowledge with them? Will it shape how they see and engage with the world? What can be easy to overlook is that teaching does not happen in isolation. Each classroom, or any other educational setting, is part of a much larger journey that learners travel. This journey extends through a network of educators, where each experience can build on the last. These interconnected networks, known as Connected Learning Ecosystems (CLEs), exist wherever learning happens. At their core, CLEs are the collective of people who contribute to a young person’s growth and education over time.
Educators at the August 2025 Connected Learning Ecosystems Gathering in Orono, ME engaged in discussion around using NASA data in their learning contexts. Recognizing this, NASA’s Science Activation Program launched the Learning Ecosystems Northeast (LENE) project to strengthen and connect regional educator networks across Maine and the broader Northeast. With a shared focus on Science, Technology, Engineering, and Mathematics (STEM), LENE brings together teachers, librarians, 4-H mentors, land trust educators, and many others committed to expanding scientific understanding, deepening data literacy, and preparing youth to navigate a changing planet. To support this work, LENE hosts biannual Connected Learning Ecosystem Gatherings. These multi-day events bring educators together to share progress, celebrate achievements, and plan future collaborations. More than networking, these gatherings reinforce the collective impact educators have, ensuring that their efforts resonate far beyond individual classrooms and enrich the lives of the learners they guide.
“I am inspired by the GMRI staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of this the LENE community. This was a very well-run event! Thank you to all!” -anonymous
This year’s Gathering took place August 12 and 13, 2025, in Orono, ME at the University of Maine (a LENE project partner). Nearly 70 educators from across the northeast came together for two amazingly energized days of connection, learning, and future planning. While each event is special, this summer’s Gathering was even more remarkable due to the fact that for, the first time, each workshop was led by an established LENE educator. Either by self-nomination or request from leadership (requiring little convincing), every learning experience shared over the conference days was guided by the thoughtful investigation and real life application of LENE Project Partners, CLE Lead Educators, and community collaborators.
Brian Fitzgerald and Jackie Bellefontaine from the Mount Washington Observatory in New Hampshire, a LENE Project Partner, led the group through a hands-on activity using NASA data and local examples to observe extreme weather. Librarian Kara Reiman guided everyone through the creation and use of a newly established Severe Weather Disaster Prep Kit, including games and tools to manage climate anxiety. Katrina Heimbach, a long time CLE constituent from Western Maine taught how to interpret local data using a creative and fun weaving technique. Because of the established relationship between Learning Ecosystems Northeast and the University of Maine, attendees to the Gathering were able to experience a guided tour through the Advanced Structures and Composites Center and one of its creations, the BioHome3D – the world’s first 3D printed house made entirely with forest-derived, recyclable materials.
Two full days of teachers leading teachers left the entire group feeling energized and encouraged, connected, and centered. The increased confidence in their practices gained by sustained support from their peers allowed these educators to step up and share – embodying the role of Subject Matter Expert. Seeing their colleagues take center stage makes it easier for other educators to envision themselves in similar roles and provides clear guidance on how to take those steps themselves. One educator shared their thoughts following the experience:
“This was my first time attending the LENE conference, and I was immediately welcomed and made to feel ‘part of it all’. I made connections with many of the educators who were present, as well as the LENE staff and facilitators. I hope to connect with my new CLE mates in the near future!” Another participant reported, “I am inspired by the … staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of the LENE community. This was a very well-run event! Thank you to all!”
Even with the backing of regional groups, many educators, especially those in rural communities, still struggle with a sense of isolation. The biannual gatherings play an important role in countering that, highlighting the fact that this work is unfolding across the state. Through Connected Learning Ecosystems, educators are able to build and reinforce networks that help close the gaps created by distance and geography.
These Gatherings are part of ongoing programming organized by Learning Ecosystems Northeast, based at the Gulf of Maine Research Institute, that fosters peer communities across the Northeast, through which teachers, librarians, and out-of-school educators can collaborate to expand opportunities for youth to engage in data-driven investigations and integrate in- and out-of-school learning. Learn more about Learning Ecosystems Northeast’s efforts to empower the next generation of environmental stewards: https://www.learningecosystemsnortheast.org.
The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/.
Share
Details
Last Updated Sep 15, 2025 Related Terms
Earth Science Science Activation Explore More
13 min read The Earth Observer Editor’s Corner: July–September 2025
Article
5 days ago
21 min read Summary of the 11th ABoVE Science Team Meeting
Article
5 days ago
5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini
Article
3 weeks ago
View the full article
-
By NASA
5 min read
Avatars for Astronaut Health to Fly on NASA’s Artemis II
An organ chip for conducting bone marrow experiments in space. Emulate NASA announced a trailblazing experiment that aims to take personalized medicine to new heights. The experiment is part of a strategic plan to gather valuable scientific data during the Artemis II mission, enabling NASA to “know before we go” back to the lunar surface and on to Mars.
The AVATAR (A Virtual Astronaut Tissue Analog Response) investigation will use organ-on-a-chip devices, or organ chips, to study the effects of deep space radiation and microgravity on human health. The chips will contain cells from Artemis II astronauts and fly side-by-side with crew on their approximately 10-day journey around the Moon. This research, combined with other studies on the health and performance of Artemis II astronauts, will give NASA insight into how to best protect astronauts as exploration expands to the surface of the Moon, Mars, and beyond.
AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration.”
Nicky Fox
Associate Administrator, NASA Science Mission Directorate
“AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Each tissue chip is a tiny sample uniquely created so that we can examine how the effects of deep space act on each human explorer before we go to ensure we pack the appropriate medical supplies tailored to each individual’s needs as we travel back to the Moon, and onward to Mars.”
The investigation is a collaboration between NASA, government agencies, and industry partners, leveraging commercial expertise to gain a deeper understanding of human biology and disease. This research could accelerate innovations in personalized healthcare, both for astronauts in space and patients on Earth.
Organ-on-a-chip: mimic for human health
Organ chips, also referred to as tissue chips or microphysiological systems, are roughly the size of a USB thumb drive and used to help understand — and then predict — how an individual might respond to a variety of stressors, such as radiation or medical treatments, including pharmaceuticals. Essentially, these small devices serve as “avatars” for human organs.
Organ chips contain living human cells that are grown to model the structures and functions of specific regions in human organs, such as the brain, lungs, heart, pancreas, and liver — they can beat like a heart, breathe like a lung, or metabolize like a liver. Tissue chips can be linked together to mimic how organs interact with each other, which is important for understanding how the whole human body responds to stressors or treatments.
Researchers and oncologists use human tissue chips today to understand how a specific patient’s cancer might react to different drugs or radiation treatments. To date, a standard milestone for organs-on-chips has been to keep human cells healthy for 30 days. However, NASA and other research institutions are pushing these boundaries by increasing the longevity of organ chips to a minimum of six months so that scientists can observe diseases and drug therapies over a longer period.
Bone marrow as bellwether
The Artemis II mission will use organ chips created using blood-forming stem and progenitor cells, which originate in the bone marrow, from Artemis II crew members.
Bone marrow is among the organs most sensitive to radiation exposure and, therefore, of central importance to human spaceflight. It also plays a vital role in the immune system, as it is the origin of all adult red and white blood cells, which is why researchers aim to understand how deep space radiation affects this organ.
Studies have shown that microgravity affects the development of bone marrow cells. Although the International Space Station operates in low Earth orbit, which is shielded from most cosmic and solar radiation by the Earth’s magnetosphere, astronauts often experience a loss of bone density. Given that Artemis II crew will be flying beyond this protective layer, AVATAR researchers also seek to understand how the combined stressors of deep space radiation and microgravity affect the developing cells.
To make the bone marrow organ chips, Artemis II astronauts will first donate platelets to a local healthcare system. The cells remaining from their samples will contain a small percentage of bone marrow-derived stem and progenitor cells. NASA-funded scientists at Emulate, Inc., which developed the organ chip technology used in AVATAR, will purify these cells with magnetic beads that bind specifically to them. The purified cells will then be placed in the bone marrow chips next to blood vessel cells and other supporting cells to model the structure and function of the bone marrow.
Investigating how radiation affects the bone marrow can provide insights into how radiation therapy and other DNA-damaging agents, such as chemotherapeutic drugs, impair blood cell formation. Its significance for both spaceflight and medicine on Earth makes the bone marrow an ideal organ to study in the Artemis II AVATAR project.
Passenger for research
“For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions,” said Lisa Carnell, director of NASA’s Biological and Physical Sciences division at NASA Headquarters. “As we go farther and stay longer in space, crew will have only limited access to on-site clinical healthcare. Therefore, it’ll be critical to understand if there are unique and specific healthcare needs of each astronaut, so that we can send the right supplies with them on future missions.”
During the Artemis II mission, the organ chips will be secured in a custom payload developed by Space Tango and mounted inside the capsule during the mission. The battery-powered payload will maintain automated environmental control and media delivery to the organ chips throughout the flight.
For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions.”
Lisa Carnell
Director of NASA’s Biological and Physical Sciences Division
Upon return, researchers at Emulate will examine how spaceflight affected the bone marrow chips by performing single-cell RNA sequencing, a powerful technique that measures how thousands of genes change within individual cells. The scientists will compare data from the flight samples to measurements of crew cells used in a ground-based immunology study happening simultaneously. This will provide the most detailed look at the impact of spaceflight and deep space radiation on developing blood cells to date.
Keep Exploring BPS Scientific Goals
Goals
Precision Health
AVATAR
Quantum Leaps
Biological & Physical Sciences Division (BPS)
NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Langley Research Center Acting Director Dr. Trina Marsh Dyal and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle Aeronautical University, complete the signing of a Space Act Agreement during a ceremony held at NASA Langley in Hampton, Virginia on Thursday, Sept. 11, 2025NASA/Mark Knopp As NASA inspires the world through discovery in a new era of innovation and exploration, NASA’s Langley Research Center in Hampton, Virginia, and Embry-Riddle Aeronautical University are working together to advance research, educational opportunities, and workforce development to enable the next generation of aerospace breakthroughs.
The collaborative work will happen through a Space Act Agreement NASA Langley and Embry-Riddle signed during a ceremony held Thursday at NASA Langley. The agreement will leverage NASA Langley’s aerospace expertise and Embry-Riddle’s specialized educational programs and research to drive innovation in aerospace, research, education, and technology, while simultaneously developing a highly skilled workforce for the future of space exploration and advanced air mobility.
Dr. Trina Marsh Dyal, NASA Langley’s acting center director, and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle, presided over the ceremony.
“NASA Langley values opportunities to partner with colleges and universities on research and technology demonstrations that lay the foundation for tomorrow’s innovations,” said Dyal. “These collaborations play an essential role in advancing aeronautics, space exploration, and science initiatives that benefit NASA, industry, academia, and the nation.”
In addition to forging a formal partnership between NASA Langley and Embry-Riddle, the agreement lays the framework to support Embry-Riddle’s development of an Augmented Reality tool by using NASA sensor technology and data. Augmented Reality uses computer-generated elements to enhance a user’s real-world environment and can help users better visualize data. Incorporating model and lunar landing data from Navigation Doppler Lidar, a technology developed at NASA Langley, this tool will enhance visualization and training for entry, descent, and landing, and deorbit, descent, and landing systems — advancing our capabilities for future Moon and Mars missions.
NASA’s Langley Research Center Acting Director Dr. Trina Marsh Dyal and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle Aeronautical University, sign a Space Act Agreement during a ceremony held at NASA Langley in Hampton, Virginia on Thursday, Sept. 11, 2025.NASA/Mark Knopp “As we work to push the boundaries of what is possible and solve the complexities of a sustained human presence on the lunar surface and Mars, this partnership with Embry-Riddle will not only support NASA’s exploration goals but will also ensure the future workforce is equipped to maintain our nation’s aerospace leadership,” Dyal said.
Embry-Riddle educates more than 30,000 students through its residential campuses in Daytona Beach, Florida, and Prescott, Arizona, and through online programs offered by its
Worldwide Campus, which counts more than 100 locations across the globe, including a site at Naval Station Norfolk in Virginia.
“We are thrilled that this partnership with NASA Langley is making it possible for our faculty, students, and staff to engage with NASA talent and collaborate on cutting-edge aerospace applications and technology,” said Ernst. “This partnership also presents an incredible opportunity for our students to augment direct research experiences, enhancing career readiness as they prepare to take on the aerospace challenges of tomorrow.”
NASA is committed to partnering with a wide variety of domestic and international partners, in academia, industry, and across the government, to successfully accomplish its diverse missions, including NASA’s Artemis campaign which will return astronauts to the Moon and help pave the way for future human missions to Mars.
For more information on programs at NASA Langley, visit:
https://nasa.gov/langley
Brittny McGraw
NASA Langley Research Center
Share
Details
Last Updated Sep 11, 2025 Related Terms
Langley Research Center Explore More
4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care
Article 1 week ago 4 min read Strap In! NASA Aeroshell Material Takes Extended Space Trip
Article 2 weeks ago 4 min read Washington State Student Wins 2025 NASA Art Contest
Article 2 weeks ago View the full article
-
By NASA
Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.NASA/Frank Michaux With Artemis II, NASA is taking the science of living and working in space beyond low Earth orbit. While the test flight will help confirm the systems and hardware needed for human deep space exploration, the crew also will be serving as both scientists and volunteer research subjects, completing a suite of experiments that will allow NASA to better understand how human health may change in deep space environments. Results will help the agency build future interventions, protocols, and preventative measures to best protect astronauts on future missions to the lunar surface and to Mars.
Science on Artemis II will include seven main research areas:
ARCHeR: Artemis Research for Crew Health and Readiness
NASA’s Artemis II mission provides an opportunity to explore how deep space travel affects sleep, stress, cognition, and teamwork — key factors in astronaut health and performance. While these effects are well-documented in low Earth orbit, they’ve never been fully studied during lunar missions.
Artemis II astronauts will wear wristband devices that continuously monitor movement and sleep patterns throughout the mission. The data will be used for real-time health monitoring and safety assessments, while pre- and post-flight evaluations will provide deeper insights into cognition, behavior, sleep quality, and teamwork in the unique environment of deep space and the Orion spacecraft.
The findings from the test flight will inform future mission planning and crew support systems, helping NASA optimize human performance for the next era of exploration on the Moon and Mars.
Immune Biomarkers
Saliva provides a unique window into how the human immune system functions in a deep space environment. Tracing changes in astronauts’ saliva from before, during, and after the mission will enable researchers to investigate how the human body responds to deep space in unprecedented ways.
Dry saliva will be collected before, during, and after the mission. It will be blotted onto specialized paper in pocket-sized booklets since equipment needed to preserve wet spit samples in space – including refrigeration – will not be available due to volume constraints. To augment that information, liquid saliva and blood samples will be collected before and after the mission.
NASA Astronaut Randy Bresnik prepares to collect a dry saliva sample aboard the International Space Station. The process, which helps scientists investigate how the immune system is affected by spaceflight and will be part of the Artemis II mission, involves blotting saliva onto special paper that’s stored in pocket-sized booklets.Credit: NASA With these wet and dry saliva samples, scientists will gain insights into how the astronauts’ immune systems are affected by the increased stresses of radiation, isolation, and distance from Earth during their deep space flight. They also will examine whether otherwise dormant viruses are reactivated in space, as has been seen previously on the International Space Station with viruses that can cause chickenpox and shingles.
The information gathered from this study, when combined with data from other missions, will help researchers develop ways to keep crew members safe and healthy as we explore farther and travel for longer periods on deep space missions.
AVATAR: A Virtual Astronaut Tissue Analog Response
AVATAR is another important component of NASA’s strategy to gain a holistic understanding of how the deep space environment affects humans. Scientists plan to use organ-on-a-chip technology during Artemis II, marking the first time these devices will be used beyond the Van Allen belts.
Roughly the size of a USB thumb drive, the chips will measure how individual astronauts respond to deep space stressors, including extreme radiation and microgravity. The organ chips will contain cells developed from preflight blood donations provided by crew members to create miniature stand-ins, or “avatars,” of their bone marrow. Bone marrow plays a vital role in the immune system and is particularly sensitive to radiation, which is why scientists selected it for this study.
An organ chip for conducting bone marrow experiments in space. Credit: Emulate
A key goal for this research is to validate whether organ chips can serve as accurate tools for measuring and predicting human responses to stressors. To evaluate this, scientists will compare AVATAR data with space station findings, as well as with samples taken from the crew before and after flight.
AVATAR could inform measures to ensure crew health on future deep space missions, including personalizing medical kits to each astronaut. For citizens on Earth, it could lead to advancements in individualized treatments for diseases such as cancer.
AVATAR is a demonstration of the power of public-private partnerships. It’s a collaboration between government agencies and commercial space companies: NASA, National Center for Advancing Translational Sciences within the National Institutes of Health, Biomedical Advanced Research and Development Authority, Space Tango, and Emulate.
Artemis II Standard Measures
The crew also will become the first astronauts in deep space to participate in the Spaceflight Standard Measures study, an investigation that’s been collecting data from participating crew members aboard the space station and elsewhere since 2018. The study aims to collect a comprehensive snapshot of astronauts’ bodies and minds by gathering a consistent set of core measurements of physiological response.
The crew will provide biological samples including blood, urine, and saliva for evaluating nutritional status, cardiovascular health, and immunological function starting about six months before their launch. The crew also will participate in tests and surveys evaluating balance, vestibular function, muscle performance, changes in their microbiome, as well as ocular and brain health. While in space, data gathering will include an assessment of motion sickness symptoms. After landing, there will be additional tests of head, eye, and body movements, among other functional performance tasks. Data collection will continue for a month after their return.
All this information will be available for scientists interested in studying the effects of spaceflight via request to NASA’s Life Sciences Data Archive. The results from this work could lead to future interventions, technologies, and studies that help predict the adaptability of crews on a Mars mission.
Radiation Sensors Inside Orion
During the uncrewed Artemis I mission, Orion was blanketed in 5,600 passive and 34 active radiation sensors. The information they gathered assured researchers Orion’s design can provide protection for crew members from hazardous radiation levels during lunar missions. That doesn’t mean that scientists don’t want more information, however.
Similar to Artemis I, six active radiation sensors, collectively called the Hybrid Electronic Radiation Assessors, will be deployed at various locations inside the Orion crew module. Crew also will wear dosimeters in their pockets. These sensors will provide warnings of hazardous radiation levels caused by space weather events made by the Sun. If necessary, this data will be used by mission control to drive decisions for the crew to build a shelter to protect from radiation exposure due to space weather.
Additionally, NASA has again partnered the German Space Agency DLR for an updated model of their M-42 sensor – an M-42 EXT – for Artemis II. The new version offers six times more resolution to distinguish between different types of energy, compared to the Artemis I version. This will allow it to accurately measure the radiation exposure from heavy ions which are thought to be particularly hazardous for radiation risk. Artemis II will carry four of the monitors, affixed at points around the cabin by the crew.
Collectively, sensor data will paint a full picture of radiation exposures inside Orion and provide context for interpreting the results of the ARCHeR, AVATAR, Artemis II Standard Measures, and Immune Biomarkers experiments.
Lunar Observations Campaign
The Artemis II crew will take advantage of their location to explore the Moon from above. As the first humans to see the lunar surface up close since 1972, they’ll document their observations through photographs and audio recordings to inform scientists’ understanding of the Moon and share their experience of being far from Earth. It’s possible the crew could be the first humans to see certain areas of the Moon’s far side, though this will depend on the time and date of launch, which will affect which areas of the Moon will be illuminated and therefore visible when the spacecraft flies by.
Spacecraft such as NASA’s Lunar Reconnaissance Orbiter have been surveying and mapping the Moon for decades, but Artemis II provides a unique opportunity for humans to evaluate the lunar surface from above. Human eyes and brains are highly sensitive to subtle changes in color, texture, and other surface characteristics. Having the crew observe the lunar surface directly – equipped with questions that scientists didn’t even know to ask during Apollo missions – could form the basis for future scientific investigations into the Moon’s geological history, the lunar environment, or new impact sites.
This visualization simulates what the crew of Artemis II might see out the Orion windows on the day of their closest approach to the Moon. It compresses 36 hours into a little more than a minute as it flies the virtual camera on a realistic trajectory that swings the spacecraft around the Moon’s far side. This sample trajectory is timed so that the far side is fully illuminated when the astronauts fly by, but other lighting conditions are possible depending on the exact Artemis II launch date. The launch is scheduled for no later than April of 2026. NASA Goddard/Ernie Wright
It will also offer the first opportunity for an Artemis mission to integrate science flight control operations. From their console in the flight control room in mission control, a science officer will consult with a team of scientists with expertise in impact cratering, volcanism, tectonism, and lunar ice, to provide real-time data analysis and guidance to the Artemis II crew in space. During the mission, the lunar science team will be located in mission control’s Science Evaluation Room at NASA’s Johnson Space Center in Houston.
Lessons learned during Artemis II will pave the way for lunar science operations on future missions.
CubeSats
Several additional experiments are hitching a ride to space onboard Artemis II in the form of CubeSats – shoe-box-sized technology demonstrations and scientific experiments. Though separate from the objectives of the Artemis II mission, they may enhance understanding of the space environment.
Technicians install the Korea AeroSpace Administration (KASA) K-Rad Cube within the Orion stage adapter inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Tuesday, Sept. 2, 2025. The K-Rad Cube, about the size of a shoebox, is one of the CubeSats slated to fly on NASA’s Artemis II test flight in 2026. Credit: NASA Four international space agencies have signed agreements to send CubeSats into space aboard the SLS (Space Launch System) rocket, each with their own objectives. All will be released from an adapter on the SLS upper stage into a high-Earth orbit, where they will conduct an orbital maneuver to reach their desired orbit.
ATENEA – Argentina’s Comisión Nacional de Actividades Espaciales will collect data on radiation doses across various shielding methods, measure the radiation spectrum around Earth, collect GPS data to help optimize future mission design, and validate a long-range communications link.
K-Rad Cube – The Korea Aerospace Administration will use a dosimeter made of material designed to mimic human tissue to measure space radiation and assess biological effects at various altitudes across the Van Allen radiation belt.
Space Weather CubeSat – The Saudi Space Agency will measure aspects of space weather, including radiation, solar X-rays, solar energetic particles, and magnetic fields, at a range of distances from Earth.
TACHELES – The Germany Space Agency DLR will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.
Together, these research areas will inform plans for future missions within NASA’s Artemis campaign. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.