Jump to content

Recommended Posts

  • Publishers
Posted

On March 2, 1995, space shuttle Endeavour launched from NASA’s Kennedy Space Center in Florida on its eighth trip into space, on the STS-67 Astro-2 mission. The crew included Commander Stephen Oswald, Pilot William Gregory, Mission Specialists John Grunsfeld, Wendy Lawrence, and Tamara Jernigan – who served as payload commander on the mission – and Payload Specialists Samuel Durrance and Ronald Parise. During their then record setting 17-day mission, the astronauts used the three ultraviolet telescopes of the Astro-2 payload to observe hundreds of celestial objects. The mission ended with a landing at Edwards Air Force Base in California. 

In August 1993, NASA assigned Jernigan as the payload commander for Astro-2, for a weeklong flight aboard Columbia then targeted for late 1994. Jernigan, selected by NASA in 1985, had previously flown aboard STS-40 and STS-52. Two months later, NASA assigned Grunsfeld, a space rookie from the class of 1992, as a mission specialist. In January 1994, NASA rounded out the crew by assigning Oswald, Gregory, Lawrence, Durrance, and Parise. Oswald, from the class of 1985, had flown previously as pilot on STS-42 and STS-56, while STS-67 represented the first spaceflight for Gregory, selected in 1990, and Lawrence, chosen in 1992. Durrance and Parise, selected as payload specialists in 1984, had flown on STS-35, the Astro-1 mission. 

The Astro-2 science payload consisted of three ultraviolet telescopes mounted on a Spacelab instrument pointing system in the shuttle’s cargo bay. The trio of telescopes flew previously on STS-35, the Astro-1 mission, in December 1990. That mission, originally planned to fly on STS-61E in March 1986, remained grounded following the Challenger accident. Due to equipment malfunctions, the Astro-1 mission only achieved 80% of its objectives, leading to the reflight of the instruments on Astro-2, originally planned as a seven-day mission aboard Discovery. A switch to Columbia enabled a mission twice as long, with significantly more observation time. A scheduled maintenance period for Columbia resulted in Astro-2 switching to Endeavour, with a new flight duration of more than 15 days, but a launch delay to February 1995. The three telescopes supported 23 different studies, observing more than 250 celestial objects including joint observations with the Hubble Space Telescope of the planet Jupiter. 

Endeavour returned to Kennedy following its previous flight, STS-68, in October 1994. After servicing the orbiter, workers rolled it to the vehicle assembly building on Feb. 3, 1995, for mating with its external tank and solid rocket boosters, and then out to Launch Pad 39A on Feb. 8. At 1:38 a.m. EST on March 2, Endeavour thundered into the night sky to begin the STS-67 mission. Eight and a half minutes later, the shuttle and its crew had reached space. 

Shortly after reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Jernigan and Durrance activated the Spacelab pallet and its pointing system and the telescopes. The crew split into two shifts to enable data collection around the clock during the mission. Oswald, Gregory, Grunsfeld, and Parise made up the red shift while Lawrence, Jernigan, and Durrance comprised the blue shift. 

For the remainder of the mission, the astronauts operated the telescopes, conducting 385 maneuvers of Endeavour to point the instruments at the celestial targets. The results met or exceeded preflight expectations. The crew also conducted a series of middeck investigations in technology demonstration and biotechnology. The Middeck Active Control Experiment studied the active control of flexible structures in space. Five years later, a newer version flew as one of the first experiments on the International Space Station. 

Like all space crews, the STS-67 astronauts also spent time taking photographs of the Earth using handheld cameras. The mission’s long duration enabled them to image many targets. 

On March 14, an eighth American joined the STS-67 crew in space when NASA astronaut Norman Thagard blasted off with two cosmonauts, headed for space station Mir. With three other cosmonauts already aboard Mir, the total number of humans in orbit grew to a then-record of 13. Two days later, Oswald and Thagard, who had flown together on STS-42, talked to each other via ship-to-ship radio. 

Inclement weather at Kennedy thwarted the planned reentry on March 17, and the astronauts spent an extra day in space. On March 18, they again waved off a Kennedy landing and one orbit later, Oswald and Gregory piloted Endeavour to a smooth landing at Edwards Air Force Base in California. The crew had flown 262 orbits around the Earth in 16 days, 15 hours, and 9 minutes, at the time the longest space shuttle mission. A few hours later, a large crowd greeted the astronauts upon their return to Houston’s Ellington Field. Endeavour began its ferry flight back to Kennedy on March 26, arriving there the next day. Workers towed Endeavour to the processing facility to prepare it for its next flight, STS-73, then planned for September 1995. 

Watch the crew narrate a video about the STS-67 mission.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Portrait of David Mitchell, Thursday, Jan. 27, 2022, NASA Headquarters Mary W. Jackson building in Washington.NASA/Bill Ingalls David Mitchell, the Associate Administrator for MSD.   
      Have you ever wondered how NASA manages to achieve all the incredible missions it does, like probing the Sun and studying the history of our Universe? We do it through teamwork, one of our core values. And an essential part of NASA’s team is what we call Mission Support. Mission Support makes sure NASA’s missions, centers, and programs have the capabilities and services they need to explore the unknown, innovate for the future, and inspire the world.  
      To illustrate Mission Support at NASA, look at the example of the Roman Space Telescope. It’s not just scientists and engineers who are making the telescope happen. The program works with NASA’s financial office to plan the budget for the telescope. Engineers design the telescope with tools developed in coordination with NASA’s shared services and information technology offices. NASA’s engineering authority checks the design, and international relations manages NASA’s collaborations with other countries on the telescope. All of this is Mission Support. 
      Of course, there is much more to Mission Support, but I think you get the picture. MSD enables Mission Support by:  
      Planning and executing the Mission Support budgets for safety, security, and mission services as well as construction and environmental management.   Executing strategy and governance to ensure Mission Support is financially sound, aligned with the agency’s goals, and serving NASA’s missions.  Addressing Mission Support’s financial, operational, legal, and reputational risks to ensure resilience and mission success.  Working with mission directorates and centers to ensure NASA is prioritizing the Mission Support services they need most urgently to be successful.  Integrating Mission Support services across the agency to maximize efficiency and effectiveness.  Current and future missions require significant support to be successful. MSD is working today to ensure Mission Support is there for NASA to explore the unknown, innovate for the future, and inspire the world.  
      To learn more, visit MSD Organization.  
      View the full article
    • By NASA
      NASA Deep Space Station 43 (DSS-43), a 230-foot-wide (70-meter-wide) radio antenna at NASA’s Deep Space Network facility in Canberra, Australia, is seen in this March 4, 2020, image. DSS-43 was more than six times as sensitive as the original antenna at the Canberra complex, so it could communicate with spacecraft at greater distances from Earth. In fact, Canberra is the only complex that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
      As the Canberra facility celebrated its 60th anniversary on March 19, 2025, work began on a new radio antenna. Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
      When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna.
      Image credit: NASA
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The radio antennas of NASA’s Canberra Deep Space Communications Complex are lo-cated near the Australian capital. It’s one of three Deep Space Network facilities around the world that keep the agency in contact with dozens of space missions Located at Tidbinbilla Nature Reserve near the Australian capital city, the Canberra complex joined the Deep Space Network on March 19, 1965, with one 85-foot-wide (26-meter-wide) radio antenna. The dish, called Deep Space Station 42, was decommis-sioned in 2000. This photograph shows the facility in 1965.NASA Canberra joined the global network in 1965 and operates four radio antennas. Now, preparations have begun on its fifth as NASA works to increase the network’s capacity.
      NASA’s Deep Space Network facility in Canberra, Australia celebrated its 60th anniversary on March 19 while also breaking ground on a new radio antenna. The pair of achievements are major milestones for the network, which communicates with spacecraft all over the solar system using giant dish antennas located at three complexes around the globe.
      Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
      Suzanne Dodd, the director for the Interplanetary Network Directorate at JPL, addresses an audience at the Deep Space Network’s Canberra complex on March 19, 2025. That day marked 60 years since the Australian facility joined the network.NASA “As we look back on 60 years of incredible accomplishments at Canberra, the groundbreaking of a new antenna is a symbol for the next 60 years of scientific discovery,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) Program at NASA Headquarters in Washington. “Building cutting-edge antennas is also a symbol of how the Deep Space Network embraces new technologies to enable the exploration of a growing fleet of space missions.”
      When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna. 
      Canberra’s Role
      The Deep Space Network was officially founded on Dec. 24, 1963, when NASA’s early ground stations, including Goldstone, were connected to the new network control center at the agency’s Jet Propulsion Laboratory in Southern California. Called the Space Flight Operations Facility, that building remains the center through which data from the three global complexes flows.
      The Madrid facility joined in 1964, and Canberra went online in 1965, going on to help support hundreds of missions, including the Apollo Moon landings.
      Three eye-catching posters featuring the larger 230-foot (70-meter) antennas located at the three Deep Space Network complexes around the world.NASA/JPL-Caltech “Canberra has played a crucial part in tracking, communicating, and collecting data from some of the most momentous missions in space history,” said Kevin Ferguson, director of the Canberra Deep Space Communication Complex. “As the network continues to advance and grow, Canberra will continue to play a key role in supporting humanity’s exploration of the cosmos.”
      By being spaced equidistant from one another around the globe, the complexes can provide continual coverage of spacecraft, no matter where they are in the solar system as Earth rotates. There is an exception, however: Due to Canberra’s location in the Southern Hemisphere, it is the only one that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
      New Technologies
      In addition to constructing more antennas like Canberra’s Deep Space Station 33, NASA is looking to the future by also experimenting with laser, or optical, communications to enable significantly more data to flow to and from Earth. The Deep Space Network currently relies on radio frequencies to communicate, but laser operates at a higher frequency, allowing more data to be transmitted.
      As part of that effort, NASA is flying the laser-based Deep Space Optical Communications experiment with the agency’s Psyche mission. Since the October 2023 launch, it has demonstrated high data rates over record-breaking distances and downlinked ultra-high definition streaming video from deep space.
      “These new technologies have the potential to boost the science and exploration returns of missions traveling throughout the solar system,” said Amy Smith, deputy project manager for the Deep Space Networkat JPL, which manages the network. “Laser and radio communications could even be combined to build hybrid antennas, or dishes that can communicate using both radio and optical frequencies at the same time. That could be a game changer for NASA.”
      For more information about the Deep Space Network, visit:
      https://www.nasa.gov/communicating-with-missions/dsn/
      NASA’s New Deep Space Network Antenna Has Its Crowning Moment NASA’s New Experimental Antenna Tracks Deep Space Laser VIDEO: How Do We Know Where Faraway Spacecraft Are? News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-048
      Explore More
      5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
      Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
      Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
      Article 2 weeks ago Share
      Details
      Last Updated Apr 08, 2025 Related Terms
      Deep Space Network Jet Propulsion Laboratory Explore More
      5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
      Article 5 days ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
      Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Credit: NASA NASA has selected ARES Technical Services of McLean, Virginia, to provide safety and mission assurance services at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, and Wallops Flight Facility in Virginia.
      The Safety and Mission Assurance Services III contract is a cost-plus-fixed-fee contract with an estimated total value of $226 million. The contract will have a five-year effective ordering period starting on June 1, 2025, with an optional six-month extension period.
      Under the contract, the vendor will provide support to the agency’s Safety and Mission Assurance Directorate at NASA Goddard. This includes performing independent surveillance, audits, reviews, and assessments of design, development, test, and mission operations activities on site at NASA and supplier facilities.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Jacob Richmond
      Goddard Space Flight Center, Maryland
      301-286-6255
      jacob.a.richmond@nasa.gov
      Share
      Details
      Last Updated Apr 07, 2025 LocationNASA Headquarters Related Terms
      Goddard Space Flight Center Wallops Flight Facility View the full article
    • By Space Force
      Another National Security Space Launch mission will deliver a GPS III space vehicle to orbit on a rapid response schedule, demonstrating a continual level of responsiveness by SSC and SpOC.

      View the full article
  • Check out these Videos

×
×
  • Create New...