Jump to content

Recommended Posts

  • Publishers
Posted
4 Min Read

Lagniappe for March 2025

new production RS-25 engine arriving at the Fred Haise Test Stand
<a>Explore the March 2025 issue, highlighting the installation of the new production RS-25 engine at NASA Stennis, and more!</a>

Explore Lagniappe for March 2025 featuring:

  • NASA Stennis Teams Install New Production RS-25 Engine for Upcoming Hot Fire
  • NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
  • NASA in NOLA for Super Bowl

Gator Speaks

Gator, a fictional character, for the Lagniappe for March 2025 issue is seen on a background of clover
Gator Speaks
NASA/Stennis

Welcome to March. It is the month that refuses to sit still. One day, the sun is shining, and the next day, the wind is howling through the trees, especially in the 125,000-acre buffer zone at NASA Stennis.

The buffer zone and location of NASA Stennis helps provide the right conditions for around-the-clock propulsion test capabilities.

March, like NASA Stennis, is full of possibilities.

The month kicks off a season of new beginnings. It is a time when farmers begin to plant seeds.

Did you know powering space dreams at NASA Stennis is a lot like farmers planting seeds?

Planting a seed is simple, yet profound. It signals a fresh start no matter if you are an experienced planter or if it is your first time.

Picking the right seed, carefully choosing the spot, and preparing the soil are ways to get going. Anticipation begins in March as planters set the stage for something that will happen over time.

Similarly, NASA Stennis is the right place to pick for many aerospace companies large and small. It is where the road to launch begins.

Whether the company is brand new to the field, like a first-time planter, or more experienced, the soil is right at NASA Stennis. South Mississippi is where a team of experts can help companies achieve a successful outcome.

Ah yes, the month of March and NASA Stennis are indeed alike.

They both can be a bridge between what was and what is to come – one, a time of year and the other, a place to shake off the winter slumber, take a deep breath, and step into something new.

There is something magical about planting seeds, just like there is something magical about powering space dreams at NASA Stennis.

NASA Stennis Top News

NASA Stennis Teams Install New Production RS-25 Engine for Upcoming Hot Fire

NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.

NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel

NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is widely known as the nation’s largest rocket propulsion test site.

Center Activities

NASA in NOLA for Super Bowl

NASA Stennis Leaders Visit Kennedy Space Center

Leadership Class Visits NASA Stennis

a group of people from the Pearl River County Leadership stand in front of the the Thad Cochran Test Stand
The Pearl River County Leadership Class visits the Thad Cochran Test Stand (B-1/B-2) during a NASA Stennis tour on Feb. 20. NASA Stennis is at the front end of the critical path for the future of human deep space exploration through NASA’s Artemis campaign. The B-2 side of the Thad Cochran Test Stand is undergoing preparations for exploration upper stage testing. The upper stage is scheduled to undergo Green Run tests of its integrated systems before its first flight on the Artemis IV mission. The test series will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
NASA/Danny Nowlin

Rocket Lab Leader Visits NASA Stennis

NASA Stennis Director John Bailey, left, stands with Richard French, Rocket Lab USA, Inc. vice president of business development and strategy of space systems
NASA Stennis Director John Bailey, left, welcomes Richard French, Rocket Lab USA, Inc. vice president of business development and strategy of space systems, for a tour of NASA Stennis on Feb. 26. In 2022, NASA and Rocket Lab reached an agreement for the aerospace company to locate its engine test complex at NASA Stennis. The initial 10-year agreement between NASA and Rocket Lab includes an option to extend an additional 10 years. The Archimedes Test Complex includes 24 acres surrounding the site’s A-3 Test Stand. Archimedes is Rocket Lab’s liquid oxygen and liquid methane rocket engine to power its medium-lift Neutron rocket. The company successfully completed the first hot fire of the new Archimedes rocket engine at NASA Stennis in August 2024.
NASA/Danny Nowlin

NASA in the News

Employee Profile: Jason Hopper

a man wearing a blue and white striped shirt stand on the E Test Complex stairs
NASA’s Jason Hopper is shown at the E Test Complex at NASA’s Stennis Space Center.
NASA/Danny Nowlin

Jason Hopper’s journey to NASA started with assessing the risk of stepping into the unknown.

Additional Resources

Subscription Info

Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail).

The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin.

To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Science Activation 2025 Aviation Weather Mission:… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds
      The Science Activation Program’s NASA Earth Science Education Collaborative (NESEC) is working alongside the Civil Air Patrol (CAP) to launch the 2025 Aviation Weather Mission. The mission will engage cadets (students ages 11-20) and senior members to collect aviation-relevant observations including airport conditions, Global Learning and Observations to Benefit the Environment (GLOBE) Cloud observations, commercial aircraft information (including registration number and altitude), and satellite collocations provided by the NASA GLOBE Clouds team at NASA Langley Research Center. This mission results from a highly successful collaboration between NESEC and CAP as cadets and senior members collected cloud, air temperature, and land cover observations during the partial and total solar eclipses in 2023 and 2024, engaging over 400 teams with over 3,000 cadets and over 1,000 senior members in every state, Washington DC, and Puerto Rico.
      The 2025 Aviation Weather Mission will take place from April through July 2025, collecting observations over two 4-hour periods while practicing additional skills, such as flight tracking, orienteering, and data management. So far, over 3,000 cadets in 46 wings (states) have signed up to participate.
      Science Activation recently showed support for this mission through a letter of collaboration sent to CAP Major General Regena Aye in early February. NASA GLOBE Clouds and GLOBE Observer are part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Cadets from the Virginia wing making cloud observations as they prepare for the 2025 Aviation Weather Mission. Share








      Details
      Last Updated Mar 04, 2025 Editor NASA Climate Editorial Team Location NASA Langley Research Center Related Terms
      Science Activation Clouds Opportunities For Students to Get Involved Weather and Atmospheric Dynamics Explore More
      2 min read Sharing PLANETS Curriculum with Out-of-School Time Educators


      Article


      1 week ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      2 weeks ago
      2 min read An Afternoon of Family Science and Rocket Exploration in Alaska


      Article


      3 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      3 Min Read March’s Night Sky Notes: Messier Madness
      Showing a large portion of M66, this Hubble photo is a composite of images obtained at visible and infrared wavelengths. The images have been combined to represent the real colors of the galaxy. Credits:
      NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; Acknowledgment: Davide De Martin and Robert Gendler by Kat Troche of the Astronomical Society of the Pacific
      What Are Messier Objects?
      During the 18th century, astronomer and comet hunter Charles Messier wanted to distinguish the ‘faint fuzzies’ he observed from any potential new comets. As a result, Messier cataloged 110 objects in the night sky, ranging from star clusters to galaxies to nebulae. These items are designated by the letter ‘M’ and a number. For example, the Orion Nebula is Messier 42 or M42, and the Pleiades are Messier 45 or M45. These are among the brightest ‘faint fuzzies’ we can see with modest backyard telescopes and some even with our eyes.
      Stargazers can catalog these items on evenings closest to the new moon. Some even go as far as having “Messier Marathons,” setting up their telescopes and binoculars in the darkest skies available to them, from sundown to sunrise, to catch as many as possible. Here are some items to look for this season:
      M44 in Cancer and M65 and 66 in Leo can be seen high in the evening sky 60 minutes after sunset. Stellarium Web Messier 44 in Cancer: The Beehive Cluster, also known as Praesepe, is an open star cluster in the heart of the Cancer constellation. Use Pollux in Gemini and Regulus in Leo as guide stars. A pair of binoculars is enough to view this and other open star clusters. If you have a telescope handy, pay a visit two of the three galaxies that form the Leo Triplet – M65 and M66. These items can be seen one hour after sunset in dark skies.
      Locate M3 and M87 rising in the east after midnight. Stellarium Web Messier 3 Canes Venatici: M3 is a globular cluster of 500,000 stars. Through a telescope, this object looks like a fuzzy sparkly ball. You can resolve this cluster in an 8-inch telescope in moderate dark skies. You can find this star cluster by using the star Arcturus in the Boötes constellation as a guide.
      Messier 87 in Virgo: Located just outside of Markarian’s Chain, M87 is an elliptical galaxy that can be spotted during the late evening hours. While it is not possible to view the supermassive black hole at the core of this galaxy, you can see M87 and several other Messier-labeled galaxies in the Virgo Cluster using a medium-sized telescope.
      Locate M76 and M31 setting in the west, 60 minutes after sunset. Stellarium Web Plan Ahead
      When gearing up for a long stargazing session, there are several things to remember, such as equipment, location, and provisions:
      Do you have enough layers to be outdoors for several hours? You would be surprised how cold it can get when sitting or standing still behind a telescope! Are your batteries fully charged? If your telescope runs on power, be sure to charge everything before you leave home and pack any additional batteries for your cell phone. Most people use their mobile devices for astronomy apps, so their batteries may deplete faster. Cold weather can also impact battery life. Determine the apparent magnitude of what you are trying to see and the limiting magnitude of your night sky. You can learn more about apparent and limiting magnitudes with our Check Your Sky Quality with Orion article. When choosing a location to observe from, select an area you are familiar with and bring some friends! You can also connect with your local astronomy club to see if they are hosting any Messier Marathons. It’s always great to share the stars! You can see all 110 items and their locations with NASA’s Explore the Night Sky interactive map and the Hubble Messier Catalog, objects that have been imaged by the Hubble Space Telescope.
      View the full article
    • By NASA
      The National Society of Professional Engineers recently named Debbie Korth, Orion deputy program manager at Johnson Space Center, as NASA’s 2025 Engineer of the Year. Korth was recognized during an award ceremony at the National Press Club in Washington, D.C., on Feb. 21, alongside honorees from 17 other federal agencies. The annual awards program honors the impactful contributions of federal engineers and their commitment to public service.

      Debbie Korth received the NASA 2025 Engineer of the Year Award from the National Society of Professional Engineers at the National Press Club in Washington, D.C. Image courtesy of Debbie Korth Korth said she was shocked to receive the award. “At NASA there are so many brilliant, talented engineers who I get to work with every day who are so specialized and know so much about a certain area,” she said. “It was very surprising, but very appreciated.”

      Korth has dedicated more than 30 years of her career to NASA, supporting human spaceflight development, integration, and operations across the Space Shuttle, International Space Station, and Orion Programs. Her earliest roles involved extravehicular and mission operations planning, as well as managing spaceflight hardware for shuttle missions and space station crews. Working on hardware such as the Crew Health Care System in the early days of space station planning and development was a unique experience for Korth.

      After spending significant time in Russia collaborating with Russian counterparts to integrate equipment such as a treadmill, cycle ergometer, and blood pressure monitor into their module, Korth recalled, “When we finally got that all delivered and integrated, it was a huge step because we had to have all of that on board before we could put crew members on the station for the first time. I remember feeling a huge sense of accomplishment and happiness that we were able to work through this international partnership and forge those relationships to get that hardware integrated.”

      Korth transitioned to the Orion Program in 2008 and has since served in a variety of leadership roles. In her current role, Korth assists the program manager in the design, development, testing, verification, and certification of Orion, NASA’s next-generation, human-rated spacecraft for Artemis missions. The spacecraft’s first flight test around the Moon during the Artemis I mission was a standout experience for Korth and a major accomplishment for the Orion team.

      “It was a long mission and every day we were learning more and more about the spacecraft and pushing boundaries,” she said. “We really wrung out some of the core systems – systems that were developed individually and for the first time we got to see them work together.”

      Korth said that understanding how different systems interact with each other is what she loves most about engineering. “In systems engineering, you really look at how changes to and the performance of one system affects everything else,” she said. “I like looking across the entire spacecraft and saying, if I have to strengthen this structure to take some additional landing loads, that’s going to add mass to the vehicle, which means I have to look at my parachutes and the thermal protection system to make sure they can handle that increased load.”

      The Orion team is working to achieve two major milestones in 2025 – delivery of the Artemis II Orion spacecraft to the Exploration Ground Systems team that will fuel and integrate Orion with its launch abort system at NASA’s Kennedy Space Center, and the spacecraft’s integration with the Space Launch System rocket, which is currently being stacked. These milestones will support the launch of the first crewed mission on NASA’s path to establishing a long-term presence at the Moon for science and exploration, with liftoff targeted no earlier than April 2026.

      “It’s going to be a big year,” said Korth.
      View the full article
    • By Space Force
      Remarks by CSO Gen. Chance Saltzman at the 2025 Air and Space Forces Association’s Warfare Symposium.
      View the full article
    • By NASA
      Preventing biofilm formation in space
      Ashley Keeley, University of Idaho, holds an anti-bacterial coating sample.University of Idaho Student Payload Opportunity with Citizen Science Team Two anti-microbial coatings reduced formation of biofilms in microgravity and have potential for use in space. Controlling biofilms could help protect human health and prevent corrosion and degradation of equipment on future long-duration space missions.

      Biofilms, communities of microorganisms that attach to a surface, can damage mechanical systems and present a risk of disease transmission. Bacteria Resistant Polymers in Space examined how microgravity affects polymer materials designed to prevent or reduce biofilm formation. Better anti-fouling coatings also could reduce disease transmission on Earth.

      Evaluating organ changes in lunar gravity
      Set up for the Mouse Epigenetics experiment aboard the International Space Station. NASA Researchers found different changes in gene expression and other responses to simulated lunar gravity levels in specific organs. This finding could help determine safe gravity thresholds and support development of ways to maintain skeletal and immune function on future space journeys.

      Spaceflight can affect skeletal and immune system function, but the molecular mechanisms of these changes are not clear. Mouse Epigenetics, a JAXA (Japan Aerospace Exploration Agency) investigation, studied gene expression changes in mice that spent a month in space and in the DNA of their offspring. Results could help determine spaceflight’s long-term effects on genetic activity, including changes within individual organs and those that can be inherited later.

      Performance report for cosmic ray observatory
      The CALorimetric Electron Telescope instrument is visible on the far left of the space station’s Kibo laboratory module. JAXA (Japanese Aerospace Exploration Agency)/Norishige Kanai Researchers report on-orbit performance from the first 8 years of operation of the International Space Station’s cosmic ray observatory, CALET. The instrument has provided valuable data on cosmic ray, proton, and helium spectra; produced a gamma-ray sky map; observed gamma-ray bursts; and searched for gravitational wave counterparts and solar effects.

      The JAXA CALorimetric Electron Telescope or CALET helps address questions such as the origin and acceleration of cosmic rays and the existence of dark matter and nearby cosmic-ray sources. The instrument also could help characterize risks from the radiation environment that humans and electronics experience in space.
      View the full article
  • Check out these Videos

×
×
  • Create New...