Members Can Post Anonymously On This Site
X-ray Signal Points to Destroyed Planet, Chandra Finds
-
Similar Topics
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 6 Min Read NASA’s Hubble Finds Kuiper Belt Duo May Be Trio
This artist’s concept depicts one of the possible scenarios for the 148780 Altjira system in the solar system’s Kuiper Belt. Credits:
NASA, ESA, Joseph Olmsted (STScI) The puzzle of predicting how three gravitationally bound bodies move in space has challenged mathematicians for centuries, and has most recently been popularized in the novel and television show “3 Body Problem.” There’s no problem, however, with what a team of researchers say is likely a stable trio of icy space rocks in the solar system’s Kuiper Belt, found using data from NASA’s Hubble Space Telescope and the ground-based W. M. Keck Observatory in Hawaii.
If confirmed as the second such three-body system found in the region, the 148780 Altjira system suggests there could be similar triples waiting to be discovered, which would support a particular theory of our solar system’s history and the formation of Kuiper Belt objects (KBOs).
“The universe is filled with a range of three-body systems, including the closest stars to Earth, the Alpha Centauri star system, and we’re finding that the Kuiper Belt may be no exception,” said the study’s lead author Maia Nelsen, a physics and astronomy graduate of Brigham Young University in Provo, Utah.
Known since 1992, KBOs are primitive icy remnants from the early solar system found beyond the orbit of Neptune. To date, over 3,000 KBOs have been cataloged, and scientists estimate there could be several hundred thousand more that measure over 10 miles in diameter. The largest KBO is dwarf planet Pluto.
The Hubble finding is crucial support for a KBO formation theory, in which three small rocky bodies would not be the result of collision in a busy Kuiper Belt, but instead form as a trio directly from the gravitational collapse of matter in the disk of material surrounding the newly formed Sun, around 4.5 billion years ago. It’s well known that stars form by gravitational collapse of gas, commonly as pairs or triples, but that idea that cosmic objects like those in the Kuiper Belt form in a similar way is still under investigation.
This artist’s concept depicts one of the possible scenarios for the 148780 Altjira system in the solar system’s Kuiper Belt. It is likely a hierarchical triple formation, in which two very close companions are orbited by a third member at a greater distance. The inner bodies are too close together to be resolved by the Hubble Space Telescope. But Hubble observations of the orbit of the outermost object were used to determine that the central body is not a single spherical object. Other possibilities are that the inner object is a contact binary, where two separate bodies become so close they touch each other. Another idea is that the central body is oddly flat, like a pancake. Of the 40 identified binary objects in the Kuiper Belt, another system, Lempo, has been found to be a triple. The Altjira system is located in the outer reaches of the solar system, 3.7 billion miles away, or 44 times the distance between Earth and the Sun. In this artist’s concept, our Sun is in the constellation Sagittarius, with the Milky Way in the background. The bright red star Antares appears at the top center. Dust in the plane of our solar system glows as zodiacal light. NASA, ESA, Joseph Olmsted (STScI) The Altjira system is located in the outer reaches of the solar system, 3.7 billion miles away, or 44 times the distance between Earth and the Sun. Hubble images show two KBOs located about 4,700 miles (7,600 kilometers) apart. However, researchers say that repeated observations of the objects’ unique co-orbital motion indicate the inner object is actually two bodies that are so close together they can’t be distinguished at such a great distance.
“With objects this small and far away, the separation between the two inner members of the system is a fraction of a pixel on Hubble’s camera, so you have to use non-imaging methods to discover that it’s a triple,” said Nelsen.
This takes time and patience, Nelsen explained. Scientists have gathered a 17-year observational baseline of data from Hubble and the Keck Observatory, watching the orbit of the Altjira system’s outer object.
“Over time, we saw the orientation of the outer object’s orbit change, indicating that the inner object was either very elongated or actually two separate objects,” said Darin Ragozzine, also of Brigham Young University, a co-author of the Altjira study.
“A triple system was the best fit when we put the Hubble data into different modeling scenarios,” said Nelsen. “Other possibilities are that the inner object is a contact binary, where two separate bodies become so close they touch each other, or something that actually is oddly flat, like a pancake.”
Currently, there are about 40 identified binary objects in the Kuiper Belt. Now, with two of these systems likely triples, the researchers say it is more likely they are looking not at an oddball, but instead a population of three-body systems, formed by the same circumstances. However, building up that evidence takes time and repeated observations.
Recent research using data from the Keck Observatory and NASA’s Hubble Space Telescope has revealed a potential three-body system in the Kuiper Belt, known as the Altjira system. This discovery challenges traditional collision theories by suggesting that these triple systems might form directly from the gravitational collapse of material in the early solar disk.
Nasa’s Goddard Space Flight Center; Producer: Paul Morris The only Kuiper Belt objects that have been explored in detail are Pluto and the smaller object Arrokoth, which NASA’s New Horizons mission visited in 2015 and 2019, respectively. New Horizons showed that Arrokoth is a contact binary, which for KBOs means that two objects that have moved closer and closer to one another are now touching and/or have merged, often resulting in a peanut shape. Ragozzine describes Altjira as a “cousin” of Arrokoth, a member of the same group of Kuiper Belt objects. They estimate Altjira is 10 times larger than Arrokoth, however, at 124 miles (200 kilometers) wide.
While there is no mission planned to fly by Altjira to get Arrokoth-level detail, Nelsen said there is a different upcoming opportunity for further study of the intriguing system. “Altjira has entered an eclipsing season, where the outer body passes in front of the central body. This will last for the next ten years, giving scientists a great opportunity to learn more about it,” Nelsen said. NASA’s James Webb Space Telescope is also joining in on the study of Altjira as it will check if the components look the same in its upcoming Cycle 3 observations.
The Hubble study is published in The Planetary Science Journal.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, Maryland
Leah Ramsay
Space Telescope Science Institute, Baltimore, Maryland
Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
Share
Details
Last Updated Mar 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Science The Kuiper Belt Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Uncovering Icy Objects in the Kuiper Belt
Hubble’s Night Sky Challenge
Reshaping Our Cosmic View: Hubble Science Highlights
View the full article
-
By Space Force
Defense Secretary Pete Hegseth signed a memorandum to all Defense Department civilian employees directing them to prepare five bullet points detailing their work accomplishments from the prior week.
View the full article
-
By NASA
5 min read
NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Key Points
The May 2024 solar storm created two new temporary belts of high-energy particles surrounding Earth. Such belts have been seen before, but the new ones were particularly long lasting, especially the new proton belt. The findings are particularly important for spacecraft launching into geostationary orbits, which can be damaged as they traverse the dangerous belts. The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the Sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.
With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this storm also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology.
The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like concentric rings high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight.
The May 2024 solar storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. NASA/Goddard Space Flight Center/Kristen Perrin The discovery of the new belts, made possible by NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite and published Feb. 6, 2025, in the Journal of Geophysical Research: Space Physics, is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
New Belts Amaze Scientists
Temporary belts have been detected in the aftermath of large solar storms before. But while previous belts have been composed mostly of electrons, the innermost of the two new belts also included energetic protons. This unique composition is likely due to the strength and composition of the solar storm.
“When we compared the data from before and after the storm, I said, ‘Wow, this is something really new,’” said the paper’s lead author Xinlin Li, a professor at the Laboratory for Atmospheric and Space Physics (LASP) and Department of Aerospace Engineering Sciences at the University of Colorado Boulder. “This is really stunning.”
The new belts also seem to have lasted much longer than previous belts. Whereas previous temporary belts lasted around four weeks, the new belt composed primary of electrons lasted more than three months. The other belt, that also includes protons, has lasted much longer than the electron belt because it is in a more stable region and is less prone to the physical processes that can knock the particles out of orbit. It is likely still there today.
“These are really high-energy electrons and protons that have found their way into Earth’s inner magnetic environment,” said David Sibeck, former mission scientist for NASA’s Van Allen Probes and research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved with the new study. “Some might stay in this place for a very long time.”
How long such belts stick around depends on passing solar storms. Large storms can provide the energy to knock particles in these belts out of their orbits and send them spiraling off into space or down to Earth. One such storm at the end of June significantly decreased the size of the new electron belt and another in August nearly erased the remainder of that electron belt, though a small population of high-energy electrons endured.
CubeSat Fortuitously Comes Back to Life to Make the Discovery
The new discovery was made by NASA’s CIRBE satellite, a CubeSat about the size of a shoebox that circled the planet’s magnetic poles in a low Earth orbit from April 2023 to October 2024. CIRBE housed an instrument called the Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2) — a miniaturized and upgraded version of an instrument that flew aboard NASA’s Van Allen Probes, which made the first discovery of a temporary electron belt in 2013.
The CIRBE CubeSat in the laboratory before launch. CIRBE was designed and built by LASP at the University of Colorado Boulder. Xinlin Li/LASP/CU Boulder After a year in space, the CubeSat experienced an anomaly and unexpectedly went quiet on April 15, 2024. The scientists were disappointed to miss the solar storm in May but were able to rely on other spacecraft to provide some preliminary data on the electron belt. Luckily, on June 15, the spacecraft sprang back to life and resumed taking measurements. The data provided high-resolution information that couldn’t be gleaned by any other instrument and allowed the scientists to understand the magnitude of the new belts.
“Once we resumed measurements, we were able to see the new electron belt, which wasn’t visible in the data from other spacecraft,” Li said.
Having the CubeSat in orbit to measure the effect of the solar storm has been bittersweet, Li said. While it provided the opportunity to measure the effects of such a large event, the storm also increased atmospheric drag on the CubeSat, which caused its orbit to decrease prematurely. As a result, the CubeSat deorbited in October 2024. However, the spacecraft’s data makes it all worth it.
“We are very proud that our very small CubeSat made such a discovery,” Li said.
CIRBE was designed and built by LASP at the University of Colorado Boulder and was launched through NASA’s CubeSat Launch Initiative (CSLI). The mission is sponsored by NASA’s Heliophysics Flight Opportunities for Research & Technology (H-FORT) program.
By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Feb 06, 2025 Related Terms
Heliophysics CubeSats Goddard Space Flight Center Heliophysics Division Ionosphere Space Weather The Sun Van Allen Probes Explore More
5 min read Straight Shot: Hubble Investigates Galaxy with Nine Rings
Article
2 days ago
2 min read Hubble Spots a Supernova
Article
6 days ago
2 min read Hubble Studies the Tarantula Nebula’s Outskirts
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 Min Read Planetary Alignments and Planet Parades
A sky chart showing Mars, Jupiter, Saturn, and Venus in a “planet parade.” Credits:
NASA/JPL-Caltech On most nights, weather permitting, you can spot at least one bright planet in the night sky. While two or three planets are commonly visible in the hours around sunset, occasionally four or five bright planets can be seen simultaneously with the naked eye. These events, often called “planet parades” or “planetary alignments,” can generate significant public interest. Though not exceedingly rare, they’re worth observing since they don’t happen every year.
Why Planets Appear Along a Line in The Sky
“Planet parade” isn’t a technical term in astronomy, and “planetary alignment” can refer to several different phenomena. As the planets of our solar system orbit the Sun, they occasionally line up in space in events called oppositions and conjunctions. A planetary alignment can also refer to apparent lineups in our sky with other planets, the Moon, or bright stars.
The planets of our solar system always appear along a line on the sky. This line, referred to as the ecliptic, represents the plane in which the planets orbit, seen from our position within the plane itself. NASA/Preston Dyches When it comes to this second type of planetary alignment, it’s important to understand that planets always appear along a line or arc across the sky. This occurs because the planets orbit our Sun in a relatively flat, disc-shaped plane. From Earth, we’re looking into that solar system plane from within. We see the racetrack of the planets from the perspective of one of the racers ourselves. When viewed edge-on, this disc appears as a line, which we call the ecliptic or ecliptic plane.
So, while planet alignment itself isn’t unusual, what makes these events special is the opportunity to observe multiple planets simultaneously with the naked eye.
Will the Planets Actually be Visible?
Before preparing to observe a planet parade, we have to consider how high the planets will appear above the horizon. For most observers to see a planet with the naked eye, it needs to be at least a few degrees above the horizon, and10 degrees or higher is best. This is crucial because Earth’s atmosphere near the ground dims celestial objects as they rise or set. Even bright planets become difficult or impossible to spot when they’re too low, as their light gets scattered and absorbed on its path to your eye. Buildings, trees, and other obstructions often block the view near the horizon as well.
This visibility challenge is particularly notable after sunset or before sunrise, where the sky is still glowing. If a planet appears very low within the sunset glow, it is very difficult to observe.
The Planets You Can See, and Those You Can’t
Five planets are visible without optical aid: Mercury, Venus, Mars, Jupiter, and Saturn. Ancient civilizations recognized these worlds as bright lights that wandered across the starscape, while the background stars remained fixed in place. In fact, the word “planet” comes to us from the Greek word for “wanderer.”
The solar system includes two additional major planets, Uranus and Neptune, plus numerous dwarf planets like Pluto and Ceres. Uranus and Neptune orbit in the dim, cold depths of the outer solar system. Neptune absolutely requires a telescope to observe. While Uranus is technically bright enough to detect with good eyesight, it’s quite faint and requires dark skies and precise knowledge of its location among similarly faint stars, so a telescope is recommended. As we’ll discuss in the next section, planet parades necessarily must be observed in twilight before dawn or after sunset, and this is not a good time to try observing extremely faint objects like Uranus and Neptune.
Thus, claims about rare six- or seven-planet alignments which include Uranus and Neptune should be viewed with the understanding that these two distant planets will not be visible to the unaided eye.
What Makes Multi-Planet Lineups Special
Lineups of four or five planet naked-eye planets with optimal visibility typically occur every few years. Mars, Jupiter, and Saturn are frequently seen in the night sky, but the addition of Venus and Mercury make four- and five-planet lineups particularly noteworthy. Both orbit closer to the Sun than Earth, with smaller, faster orbits than the other planets. Venus is visible for only a couple of months at a time when it reaches its greatest separation from the Sun (called elongation), appearing just after sunset or before sunrise. Mercury, completing its orbit in just 88 days, is visible for only a couple of weeks (or even a few days) at a time just after sunset or just before sunrise.
Planet parades aren’t single-day events, as the planets move too slowly for that. Generally, multi-planet viewing opportunities last for weeks to a month or more. Even five-planet events last for several days as Mercury briefly emerges from and returns to the Sun’s glare.
In summary, while they aren’t once-in-a-lifetime events, planetary parades afford an uncommon opportunity to look up and appreciate our place in our solar system, with diverse worlds arrayed across the sky before our very eyes.
Other Planet Lineups
Other recent and near-future multi-planet viewing opportunities:
January 2016 – Four planets visible at once before sunrise Late April to Late August 2022 – Four planets visible at once before sunrise Mid-June to Early July 2022 – Five planets visible at once before sunrise January to mid-February 2025 – Four planets visible at once after sunset Late August 2025 – Four planets visible at once before sunrise Late October 2028 – Five planets visible at once before sunrise Late February 2034 – Five planets visible at once after sunset (Venus and Mercury challenging to observe) About the January/February 2025 Planet Parade
The current four-planet lineup concludes by mid-February, as Saturn sinks increasingly lower in the sky each night after sunset. By mid-to-late February, Saturn appears less than 10 degrees above the horizon as sunset fades, making it difficult to observe for most people. While Mercury briefly joins Saturn in the post-sunset glow at the end of February, both planets will be too low and faint for most observers to spot.
Keep Exploring Discover More Topics From NASA
Skywatching
Planets
Solar System Exploration
Moons
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.