Members Can Post Anonymously On This Site
Interview with Sean Colgan
-
Similar Topics
-
By NASA
Image of Caleb Scharf _________________________________________________________________________________________
In the following interview, questions from the interviewer, Fred Van Wert, are in bold, and Caleb Scharf’s responses are in regular text.
_________________________________________________________________________________________
Let’s begin with your early years. Where you were born, something about your family, what your mother and father did, your early schooling, what got you interested in the career that you’ve been pursuing, that kind of thing.
Well, I was born in London, England, about a ten minute walk from the British Museum, right in the center of Old London. My parents were very interesting. My dad was American and my mother was British. They were both academics and both were art historians, in fact my dad was somewhat famous for his work in art history. My mother also did a lot of study in London. But when I was about three or four years old we moved out to a small village in England, in a county called Norfolk. It was just farms and us, so I actually grew up in a very rural part of England. Today it’s become a second home location for a lot of people but back then it was . . . well, you were excited if you saw a loaf of white bread in the village shop! So, I have a bit of an eclectic background. Like I said, my dad was American, so I have a lot of family in the U.S., mostly in Los Angeles. My father’s family had emigrated from Austria to the U.S. My grandfather was a musician and in the 1930’s he played in the Hollywood Studios, and that’s how that side of the family ended up in LA. There’s music in the family but I missed that gene! (laughs).
Regarding the question of if there was something in my early childhood that got me interested in space, astronomy, and science, I feel like it may have been moving out into the countryside where suddenly you could see the sky at night. London in the late 1960’s and early ‘70’s had light pollution and other pollution everywhere. But I have memories of going out into the countryside at night, even as a little kid. I’d get excused from the dinner table and go outside to burn off some energy, and I could see these brilliant night skies, the Milky Way and all the other features, with my naked eyes. I remember spending a lot of time just gazing and thinking about that. And, although my parents wouldn’t let me watch much TV, for some reason they did let me watch Star Trek when it was a new thing. I remember being both terrified by it and hiding behind the couch, but also being fascinated. I didn’t really understand everything that was going on, but it was just so intriguing. There was this guy with pointy ears who wasn’t human. How could you not be human, right? That was a really interesting thing to me. But also seeing how this group of people, who were intelligent but weren’t sitting behind a desk all the time, could do interesting things – that stuck with me for a long time, so maybe it was a combination of pop culture and living in the countryside.
Night sky with Milky Way, and a youthful scientist Star Trek’s Mr. Spock with pointy ears. It’s interesting to me how often something early on, like being able to see the beautiful night sky clearly or as with one researcher who on a Sunday drive with her family looked out the window and saw beautiful clouds. And with that interest in clouds, she decided on a career in meteorology, and then realized there were clouds on Mars, and became a planetary scientist because she wanted to study the Martian atmosphere. And it all started with being interested in something as a little kid, so there’s a commonality there.
Yeah, yeah, definitely.
Do you have siblings?
No, I’m an only child, for which my wife always pokes fun at me. She has a sister, but I’m an only child, which, growing up in the countryside, was good and bad because you had to make an effort to go see your friends since you were more distant from each other. You didn’t have neighbors right next door.
So starting in school, at some point, you had a growing interest in the stars, and that’s a science, astronomy is science. Did you find yourself in school being drawn toward, and being good in, science classes?
When I was in grade school I definitely was better at things like writing and art, that kind of thing. But by the time I was sixteen or seventeen, I started to realize that science classes were really interesting, and I also began to realize I could do some of this stuff. The math was, I wouldn’t say it was easy, but it came reasonably naturally to me. In England at that time you had to pick your academic direction by the time you were sixteen, which seems crazy early looking back. So, by sixteen, I was focusing on science and by the time I was eighteen I had completed some of the more specialized science classes. I did physics. I did chemistry. I did mathematics. And then it seemed to me that the most obvious thing I wanted to do was go to college and do physics. Physics seemed like the topic to go after because it felt more fundamental. Physicists are terrible this way, right? We think that if you do physics you can do anything, which of course isn’t really true, but it was the most attractive because it was a combination of simplicity and complexity, right? With simple rules you could learn things about very complex stuff, and I think that was something that attracted me. So I went to college to do physics. I studied at the University of Durham in the north of England, which is one of the equivalents to the various Ivy League schools in the U.S. or Cambridge, Oxford, or Imperial College in England.
University of Durham, England I did physics with a concentration in theoretical physics, which drove me a little crazy because it was really difficult and I saw my limits there in the very theoretical aspects of physics, realizing that this was not for me. But we had a couple of really great astronomy classes as part of the physics degree and those kind of piqued my interest. Before graduating everyone was trying to figure out what to do next and I knew I didn’t want to go work in finance or industry. In England at that time, an undergraduate degree was three years, so it was intensive, and I felt that I hadn’t had enough chance to put into action what I had learned. So I decided to go to graduate school and earn a PhD. The things that came to my mind were astronomy, cosmology, and astrophysics, so that’s what I pursued. I was really, really lucky to get into Cambridge University to do my PhD and there was a wonderful place called the Institute of Astronomy in Cambridge where Fred Hoyle, Steven Hawking, and many other luminaries of the field had worked and that was a really terrific experience. I ended up doing my PhD in cosmology, studying the large scale structure of the universe and trying to understand how we can make measurements today that inform us about the contents of the universe, things like dark matter and the history of the universe since the big bang. It was rather theoretical but it was also the beginnings of what I would call early data science. It was a lot of statistical work, a lot of analysis of catalogs of galaxies and other things like that. So that’s what I did.
Cambridge University Institute of Astronomy Well, let me poke at this a little because what you’ve described is a very natural progression into your career field. The things that interested you, and were available, you were good at, and if you were going down a path that you didn’t think was right for you, you made choices, and wound up where you are, which is great. We usually ask those we interview about their path to Ames. You did your postdoc at Goddard and didn’t come to Ames until later when you were already prominent in your field. So how did you wind up coming here? Did you reach out because you wanted to come to Ames, or did Ames reach out to you because they wanted you here, Ames being the cradle of the science of astrobiology? Or was it a combination of both?
I‘ve had a convoluted path! Having trained in cosmology and astrophysics, that’s what I wound up doing as a postdoc and then after, establishing a decent career. But then I switched fields almost entirely back in the early 2000’s. I made a conscious decision to switch to the kind of interesting stuff about exoplanets and astrobiology that had lingered in the background for me, but was then exploding as a field. And I established an astrobiology center at Columbia University. Then, after 22 years at Columbia, the opportunity came up to apply to the opening at Ames. It was intriguing, and I knew Ames’ reputation, I mean Ames and astrobiology, as you say, kind of go together. So it was very, very appealing, the idea of a bit of change and of coming to the place where so much of this science had begun or been scoped out in the early days, and seeing what I could do here, how I could help continue that legacy of innovation and of leading the field.
Is the work that you do hindered at all by the Covid situation? Do you go into the office every day? Many people don’t anymore.
I don’t run a physical lab, so while Covid was hugely impactful, it didn’t hit my work the way it did for many others. I actually work remotely, but really for family reasons. I was at Ames for seven months to get to know the place when I started in late 2022, and now I’m typically remote from New York. But I do come to Ames on a fairly regular basis. Today I’m sitting in our apartment in Manhattan. Often, I’m sitting in a falling down Victorian house up in the Catskills in New York, where it’s really quiet, and I can work to my heart’s content. I can sit in on my Teams calls and nobody knows any better! (laughs)
We often ask for a comment on the value of your work to NASA and the taxpayer, but that’s probably redundant because one of the goals of astrobiology is the search for life, or evidence of life, in the Universe, and that’s the preeminent thing that people are interested in. The people underwriting our work, the taxpayers, would love an answer to that and anything that pursues the answer is going to be supported by the public at large. Has there been something important that has come from your research, some new finding or advancement in that quest, or in something else?
If you’re lucky enough to stick around in science long enough, you’ll end up getting to do some things that make a genuine contribution to the field. I’ve been lucky to have worked on a number of projects in astrobiology, and also astrophysics, where we touched on new phenomena or developed new ideas that I think have been important. For instance, in astrobiology I’ve spent a number of years working with some really excellent scientists, most of whom are at NASA, developing sophisticated climate models for worlds that are not the Earth. Modeling the Earth’s climate is super difficult, but we’ve figured out how to do it well. However, modeling climate on worlds that may be configured very differently, may have a different star, may have a different day length, may be in a different orbit, may have a different configuration of land and oceans – that’s a real challenge because climate system variables are really complicated. We’ve developed ways to do this for exoplanets, for worlds where we’re just beginning to understand their configuration enough that we can plug that information into our model and derive things like how hot is this world, what kind of climate does it have, does it have seasons, what those seasons look like, what kind of cloud cover does it have, and so forth. I’ve only played a modest role in a lot of that, but I feel really happy with that work. I think it’s made a significant contribution to understanding not only the possibilities for life but also the possibilities for planets themselves. Planets are interesting objects even if there isn’t anything living there. I was also very lucky to work on a number of astrophysics projects where I think we made some significant discoveries. One I’m particularly proud of was using the Chandra X-ray Telescope, one of NASA’s Great Observatories. It lets you study very energetic phenomenon, and in one project we found evidence of a super massive black hole in the very early universe, maybe a billion or two years after the Big Bang, that was spewing material out into the surrounding cosmos and we were actually able to detect that material. It’s hot gas, the result of some complicated physics and it suggests that black holes can influence the growth and evolution of entire galaxies. I remember that work particularly because, as with all these space telescopes, you propose for the data and then you wait. Eventually, if you’re lucky, the telescope takes your data, and it gets sent to you and you’re pretty much the first person to have seen it. I remember getting this data and creating an image on my computer screen, looking at it and thinking “that’s weird”. And then printing it out, running to the printer down the hall and picking up this piece of paper, and seeing this crazy looking structure from a black hole that existed twelve and a half billion years ago, and I’m one of the first humans to hold it in my sweaty little hands and see it with my own eyes. It was a pretty thrilling moment because of the implications of that. It was at the time the most distant such object anyone had ever seen. So, there can be those “aha” moments where you’re excited and run down the hallway and tell your colleagues, “Look what I did!”
Caleb during the making of a TV documentary on his work. And you don’t know what your contribution might result in until years later, maybe after you’re gone. But something that you did was important.
Yeah, yeah, yeah.
It’s not the first time that I’ve heard this from scientists, the appeal of being the first one to find out something or to know something, or to see something. There’s something very satisfying in that. You mentioned the Chandra X-ray telescope and I have to ask you a question: in researching your bio there was a comment of yours that I found humorous. It was that the delays in JWST occurred so we had time to develop 4K and 8K TV to properly view the images. That prompted me to look at some JWST images and I found some were labeled JWST+Hubble. Were those images somehow combined or enhanced by each other, or are they dual images? I didn’t understand in what sense they were dual.
I don’t know if I’ve seen those images, but Hubble is more sensitive to visible light and blue light than JWST, which looks at the infrared, so they are looking at different parts of the electromagnetic spectrum. So, if you are looking at a beautiful nebula, you will see slightly different phenomena or slightly different things. Putting the images together gives you a much grander painting of what’s there because you’re capturing much more of the electromagnetic spectrum. The spatial resolution of both Hubble and JWST is so exquisite that you can do that and not make a mess of things.
I also wondered, since the perspective from different angles would be different, how can they combine them without overlap or something? But I’m sure they can do things with computers now.
I think the perspective won’t really change because of the distances involved.
Oh, sure, that’s true.
But when aligning those images, as any person who builds instruments will tell you, there are always subtle imperfections, and a flat surface is not always a perfectly flat surface. Even though JWST and Hubble have some of the flattest surfaces, or precisely formed surfaces, humanity has ever managed to produce, there will still be differences. So yes, making those images is actually quite an art form. But people have put quite a lot of time into getting it all perfectly lined up so that it makes sense.
Thank you for that explanation. I hadn’t thought of that, but it certainly makes sense. If you weren’t a physicist, have you ever thought about another career that you would have liked to pursue?
It’s a great question! I really like what I do. I feel very privileged to get to do what I do. It’s close to my dream job. I do enjoy writing a great deal, which I do in my spare time, and some part of me likes the romantic idea of being the fabulous writer who is paid so well they don’t have to care about things, they can just focus on their art. (laughs) So a bit of me feels like that would be OK. That would be a kind of nice way to be. Just get up and think great things and put them down on paper. But I’ve also long wondered what it would be like to try to make movies. I think some of that comes from my dad’s career. He was an art historian, but his specialty was the topic of photography and how that changed the way humans thought about the world. So, film and that side of things. Hollywood director, best-selling author, those sound like good career choices to me! (laughs)
I liked your quote about being a writer. You said, “I’m a thinker, a writer, and sometimes both.” I don’t know if you remember that comment, but I got a kick out of it as I researched you online.
Yes, I do remember that comment and it pretty much describes things. When you’re writing for your fellow scientists there are very specific ways that you construct your papers or your proposals and so on, and it’s not always clear that thinking at the same time is an advantage. (laughs)
Caleb speaking about NASA science. That’s a good way to put it. Would you like to share anything about your home life, your family? Do you have a wife, partner, kids, or pets?
I’m married and have two daughters who are now in their twenties, one has just graduated from college and the other is getting close to graduating, and I’m extremely proud of them both. It’s really exciting as a parent to see them beginning to find their way in the world. We don’t have any pets because everybody in the family but me is allergic!
Are your daughters pursuing science?
No, not science, really. I think we’ll see what they end up wanting to do. One is interested in media, in making documentaries, and using those tools for underserved and underrepresented communities in the world, which is really interesting. She’s spent a lot of time in Spain, so is very fluent in Spanish and is interested in that culture. My other daughter is interested in psychology but also in history and the way humans function as a society, which is interesting to me but is very different from my interests. They’ve clearly not followed the purely scientific pathway, but I think they’re both analytic thinkers. I recognize that so maybe it is something that runs in the family.
Well, congratulations to them on where they are now; you said one has graduated and one is about to?
The one who graduated is, as we speak, starting her first day working in a museum here in in New York.
That’s wonderful. I can lose myself in museums. I could visit them every day. You’re obviously quite busy being a scientist and a writer and the other things that you’ve described, but when you have time, what do you like to do for fun?
Sometimes I write, which may not like sound like fun to some people, but I do it also because I have books in my head that I want to write and publish. I also love being outdoors and that doesn’t mean just hiking, I just like being outside. When I’m out of a city, out in the countryside, I just like to wander around or sit there, absorbing all the plants, animals, and planetary goodness around me! I don’t know if that really counts as a hobby, but it definitely is something I enjoy a great deal. I also like a bit of gardening. I’m a strange variety of person who enjoys mowing the lawn! I find it a nice thing to do. It’s nice to do something physical where there’s an immediate outcome versus so much of science, certainly the kind of science I do, where a lot of it is sitting at a computer and you don’t necessarily see the product of your work for a while. So, physical things I enjoy. And I enjoy cycling and traveling for sure. I don’t like the process of traveling but I like it when I get there, let’s put it that way.
My wife says that, too. It piqued my interest when you said you liked to mow the lawn because you can see the results of your work immediately. When I was growing up, my two siblings and I each had to choose a room in the house to clean and I chose the kitchen. It was the hardest one to keep clean because everybody’s in there all the time and there are always dirty dishes and pots and pans, but once it was clean, you could really tell. You could look in there and tell it had been cleaned. If you are vacuuming somewhere, you can’t usually tell if that’s been done or not, so I, too, like the sense of seeing what I’ve accomplished.
That’s right. That’s absolutely right. And I like hedge trimming as well. I’m definitely into that, which may be the British side of me! (laughs). We like carefully pruned hedges and shrubbery, and I’ve probably become a bit obsessed with that.
You don’t make figures out of your hedges, shapes and things like that, do you?
No, no yet, but I am tempted. (laughs)
Would you have advice for a young postdoc? Perhaps one who’s just starting out, who would like to have the kind of career and success that you are having? What advice would you give them in pursuing their dream, be it science or whatever?
That’s always an interesting and quite a difficult question to answer. Some of it depends on if they find astrobiology in particular an interesting topic. I myself came to astrobiology, not right away but via a circuitous route through astrophysics, getting interested in exoplanets, then just deciding to focus on the search for life. What else is there? This is such a profound thing to do. So I would say to people, young scientists, maybe postdocs or grad students, if you have an interest in something like astrobiology, it’s really important to do two things: one is to be really skillful at a few technical areas, to specialize in useful things, but also to make sure that you look for ways to apply that specialization more broadly because that’s really what astrobiology is all about. For me it’s this playground where you can take very specialized skill sets and find new ways to apply them. Astrobiology demands that you engage with people in different fields, it really does, more than any other science that I know. So be specialized, but also be engaged with everyone around you. Scientists you might not expect to have things in common with, talk to them. Learn. See commonalities. Look for those little threads to pull on because those little threads are the interesting stuff and that might lead you to something really, really interesting, where a physicist like me can have a productive engagement with microbiologists, with very useful results. So that’s part of the advice I would say to people: don’t shut off other things, especially in astrobiology.
That’s very good advice, thank you. You may have already answered this because you said you weren’t particularly musical, so you probably don’t play musical instrument, but do you have other hobbies or interests? You mentioned bicycle riding and hiking. Anything else? Art perhaps? Or literature? Or something else you’d characterize as a hobby?
It’s a good question. I’m a pretty good cook, although cooking for me is primarily because I enjoy eating, so I don’t know if that really qualifies as a hobby, but it’s definitely a skill that I put into practice and it’s very different from work. I like it because there’s an end result that you see right there and you can share it with other people and that’s kind of a lovely thing. But all in all, I’m pretty boring. I spend a lot of time thinking about science and/or writing about science , so I don’t think I have hobbies in the conventional sense.
Trust me, you’re not boring. I can tell just from reading your bio and having this conversation that you’re not boring. What accomplishment in your life to date are you most proud of that’s not related to your science work?
Well, I think it’s probably that between my wife and myself, we’ve brought up two daughters who seem to be high functioning, decent human beings, is probably my proudest thing outside of science.
If you hadn’t said that, I would have wondered why. (laughs) Who or what inspires you?
That’s a very good question. I’ve been asked that question before in interviews and it’s always a struggle for me because I think I find inspiration in the most unexpected things all the time. I’ve had some of the most inspiring conversations in my life with farmers who lived down the lane from where I grew up in rural England. These people who have tended their fields for generations. They have this deep intuition about the way nature works but they were always inquisitive. As a little kid you could talk to them about all sorts of things. They were engaged with what was happening in the broader world as well as their own microcosm and I find that pretty inspiring. The ability to live a life where they’re not staring at TV screens, they’re not Tik-Tok influencers, but they’re thoughtful, observant, curious people. I always find that inspiring. I also find nature inspiring. I can sit on my back deck and just watch the birds and the bees doing their thing and I always find questions that I hadn’t thought of before. So, I think it’s a combination of, not celebrities or famous people so much, although some of them are extremely inspiring and impressive, but I’m more inspired by the day to day, and the people going about their lives quietly and carefully.
That’s a very thoughtful answer and I appreciate it. One of the things we do with these conversations is invite you to provide pictures of the things you’ve talked about. Of your work of course, but also of your family perhaps or of trips you’ve taken, things that go along with the narrative because it makes the whole post more interesting. If there’s a JWST image that you find particularly appealing or interesting, one that we might we see on the wall of your office or in your house, you can include that and others when you return the edited transcript.
Among the images I find most interesting are the earth from space, and the most interesting of those are where a spacecraft is on its way to do something else. Some of the earliest images were where you see the Earth and the moon in one frame and you realize how far apart they are from each other and how tiny they really are. There’s something about those images that I find quite disturbing, in a good way.
Artemis Orion Completes Final Lunar Departure Maneuver, December 2022 Earthrise over moon, Apollo 8, December 1969 And there’s the famous blue dot, right?
Yes. The pale blue dot. it’s a pixel and I honestly look at that and I think it’s a bit of a dud! I have to really work hard in my imagination to get there, but when you see just enough of the earth and just enough of the moon to recognize what they are and where they are, just sitting in the blackness of space, that for me is both terrifying and exhilarating. That’s kind of a special thing, the sort of picture I would have looming over me.
Voyager 1’s iconic Pale Blue Dot picture, February 1990 I can just see you writing about these things and how interesting you find them. I’ll have to get one of your books and read it. Now is there a favorite quote that appeals to you because it’s clever or thought provoking or anything like that?
I was thinking about this because I saw the questions and I immediately thought “Oh my gosh!”, because for me humor is incredibly important. It just is. It’s how I cope with things, but also a sense of humor is so important because it cuts through cultural differences, it cuts through differences in background, all that stuff. Oh yeah! The best I could come up with, since I’m a fan of Yogi Berra, is one that I recall because it’s so beautifully daft, where he says, “When you come to a fork in the road, take it”. (laughs)
“A fork in the road” (metaphor) That’s a good one!
I like that because it makes you think for a moment, to realize that he’s not really saying anything, but he’s also saying everything. To me it means “You’re going to get through it no matter what.” The most important thing is that you take that step and you will eventually find out the rest of it and everything will be OK.
Is there something that you would like me to have asked you that I didn’t?
No. Well, we didn’t talk much about my writing stuff.
You can say something about that if you would like, sure.
It’s kind of separate from science, but it is a big part of my life, and it was kind of unexpected. At a certain point maybe about ten or twelve years ago I decided to try writing for a more general audience and it’s kind of turned into this parallel career that I’ve had since then, quite unexpectedly. And it’s resulted in my writing over five hundred pieces for Scientific American over ten years and I’ve also written a bunch of books. I’m working on a new book right now, if I can put in a plug for it. It’s called “The Giant Leap” and it’s all about space exploration. That’s been an interesting turn for me, and it’s also made me realize that, much like teaching, there’s value to sitting down to write for a readership that is not specialist in any way. I try to imagine I’m writing for my mother or the guy who does my plumbing, you know? It’s incredibly useful as a scientist because it really helps you play with ideas, but it also helps you refine your own understanding because you can’t explain things simply unless you really understand them. And that’s been an interesting journey for me. Like I say, it’s been an entire parallel career, in the spare moments in between everything else, but it’s been marvelous. And as advice to younger scientists, think about that side of yourself, your capacity to share. We live in an era where it’s easier than ever to share, in many respects, for better or worse and I think scientists do have a certain obligation, especially as government scientists. We’re being paid by the taxpayer and we’re doing things for the good of the nation and for humanity. We should be more willing to share what we’re doing. People deserve to hear what we’re up to, and I think NASA does a great job at that. But as individuals, we can all help. There you go, that’s my soap box! (laughs)
Thanks for the tip about your upcoming book “The Giant Leap”. And let’s not be timid about plugging your books. A brief online survey revealed these:
The Copernicus Complex: Our Cosmic Significance in a Universe of Planets and Probabilities
Gravity’s Engines: How Bubble-Blowing Black Holes Rule Galaxies
The Zoomable Universe: An Epic Tour Through Cosmic Scale, from Almost Everything to Nearly Nothing
The Ascent of Information: Books, Bits, Genes, Machines, and Life’s Unending Algorythm
Extrasolar Planets and Astrobiology
These all look fascinating and I hope they are doing well. Your comments describe a great ethic not only for the agency but also for individuals. I liked what you said about your writing: “anything expressed here is my fault alone”. It’s another way of saying the author is responsible. It was a little piece of humor. It’s been delightful to spend these few minutes chatting with you and I think we’re going to have a wonderful addition to our archive of scientist interviews.
Sounds good.
It’ll take probably two weeks, maybe three to get this on paper and then you can have whatever time you need and once you concur we will put it in a queue. It’s been a delight to chat with you today. Thank you again very much.
My pleasure.
Caleb standing beside a taxidermy moose head on display in Bryggen, a historic waterfront area with colorful wooden buildings in Bergen, Norway.
________________________________________________
Interview conducted by Fred Van Wert on March 28, 2024
View the full article
-
By NASA
Titans Space Industries, a commercial space company, selected a new cohort of astronaut candidates this spring – and among them is NASA citizen scientist, Benedetta Facini. She has participated in not one, but many NASA citizen science projects: Cloudspotting on Mars, Active Asteroids, Daily Minor Planet, GLOBE, Exoasteroids and International Astronomical Collaboration (IASC). We asked her a few questions about her work with NASA and her path to becoming an astronaut candidate.
Benedetta Facini visiting Kennedy Space Center in 2023 Credit: B.F. Q: How did you learn about NASA Citizen Science?
A: Through colleagues and social media, I often came across people talking about Citizen Science, and this immediately caught my curiosity. I did some online research on the subject, and I asked some colleagues already involved in it. Finally, I managed to find the way to participate by exploring the programs offered by NASA Citizen Science, which impressed me with their variety.
Q: What would you say you have gained from working on these NASA projects?
A: Curiosity in discovering new things and a lot of patience: many projects indeed require attention and, as mentioned, patience. I was pleased to discover that even NASA relies on “ordinary people” to carry out research, giving them the opportunity to learn new things using simple tools.
I also gained hands-on experience in analyzing real data and identifying celestial objects to contribute to real research efforts. My favorite part was to learn to recognize the pattern of clouds in data collected by the Mars Climate Sounder on the Mars Reconnaissance Orbiter.
I have learned the importance of international collaboration: I know many citizen scientists now, and interacting with them teaches me a lot every day.
Q. What do you do when you’re not working on citizen science?
A: I am a student and a science communicator. I share my knowledge and enthusiasm through social media, schools, webinars around the world, and space festivals across Italy where I have the opportunity to engage with a wide audience, from young students to adults.
Recently, I achieved a major milestone: I was selected as an Astronaut Candidate by the commercial space company, Titans Space Industries. I am thrilled to soon begin the basic training, which marks the first step toward realizing my dream of becoming an astronaut and contributing directly to human spaceflight and scientific research.
Q. What do you need to do to become an astronaut?
A: Gain as much experience as possible. During astronaut selection, not only academic achievements are evaluated, but also professional and personal experiences.
Every skill can be useful during the selection process: the ability to work in a team, which is essential during space missions; survival skills; experience as a diver, skydiver, or pilot; knowledge of other languages; and the ability to adapt to different situations.
I would also like to debunk a myth: you don’t need to be Einstein and fit as an Olympic level athlete; you just need to be good at what you do and be healthy.
Q: How has citizen science helped you with your career?
A: Citizen Science was very helpful for my career as a science communicator, as it gave me the opportunity to show people that anyone can contribute to the space sector. At the same time, it has allowed me to become a mentor and a point of reference for many students (mainly with the IASC project).
The hands-on experience I gained in analyzing real data was also very helpful for my academic career, too. I had never had real data to work with before, and this experience proved extremely valuable for the practical courses in my physics degree program.
Q. Do you have any advice you’d like to share for other citizen scientists or for people who want to become astronauts?
A: For other citizen scientists my advice is to stay curious and persistent.
Don’t be afraid to ask for help and interact with other colleagues because the goal of the NASA Citizen Science program is international collaboration and every small contribution can make a difference.
For aspiring astronauts, my advice is to gain as much experience as possible. Academic results are important but hands-on skills, teamwork, adaptability, and real experiences are also important.
Stay passionate and never lose your curiosity; the astronaut path is challenging; don’t give up after an eventual first rejection. You will always meet people trying to make you change your mind and your dream, even people from your family, but don’t stop in front of obstacles. The greatest regret is knowing you didn’t try to make your dream come true.
Quoting my inspiration, Italian astronaut Paolo Nespoli: “You need to have the ability and the courage to dream of impossible things. Everyone can dream of things that are possible. Dream of something impossible, one of those things that, when you say it out loud, people look at you and say: “Sure, study hard and you’ll make it,” but deep down no one really believes it. Those are the impossible things that are worth trying to do!”
Q: Thank you for sharing your story with us! Is there anything else you would like to add?
A: I would like to thank the team behind NASA Citizen Science.
These projects play a crucial role in keeping students’ passion for science alive and guiding them toward a potential career in this field.
Knowing that I have contributed to helping scientists is incredibly motivating and encourages me and students around the world to keep going, stay curious, and continue pursuing our path in the science field.
The opportunity to participate in these projects while learning is inspiring and it reinforces the idea that everyone, regardless of their background, can make a real impact in the scientific community.
Share
Details
Last Updated Aug 25, 2025 Related Terms
Astrophysics Citizen Science Earth Science Planetary Science Explore More
5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
Article
59 minutes ago
9 min read Harmonized Landsat and Sentinel-2: Collaboration Drives Innovation
Article
1 hour ago
2 min read Hubble Observes Noteworthy Nearby Spiral Galaxy
Article
3 days ago
View the full article
-
By NASA
Credit: NASA U.S. Transportation Secretary and acting NASA Administrator Sean Duffy joined President Donald J. Trump at the White House Wednesday for the historic signing of the Executive Order (EO), “Enabling Competition in the Commercial Space Industry.”
“People think the Department of Transportation (DOT) is just planes, trains, and automobiles – but we have a critical role to play in unlocking the final frontier. By slashing red tape tying up spaceport construction, streamlining launch licenses so they can occur at scale, and creating high-level space positions in government, we can unleash the next wave of innovation. At NASA, this means continuing to work with commercial space companies and improving our spaceports’ ability to launch,” said Duffy. “Thanks to the leadership of President Trump, we will enable American space competitiveness and superiority for decades to come. I look forward to leveraging my dual role at DOT and NASA to make this dream a reality.”
The EO will enable a competitive launch marketplace and substantially increase commercial space launch cadence and novel space activities by 2030.
“The FAA strongly supports President Trump’s Executive Order to make sure the U.S. leads the growing space economy and continues to lead the world in space transportation and innovation,” said FAA Administrator Bryan Bedford. “This order safely removes regulatory barriers so that U.S. companies can dominate commercial space activities.”
Executive Order highlights:
The “Enabling Competition in the Commercial Space Industry” EO will help to:
Streamline commercial license and permit approvals for United States-based operators. This includes eliminating regulatory barriers and expediting environmental reviews for commercial launches and reentries. Cut unnecessary red tape to make it easier to build new spaceports in the U.S. where more commercial space operations will be launched from. To ensure this Next Generation Spaceport Infrastructure, duplicate review process will be eliminated, and environmental reviews will be expedited. Promote new space activities like in-space manufacturing and orbital refueling through a streamlined framework. Expediting and streamlining authorization for this Novel Space Activity is essential to American space competitiveness and superiority. Establish a new position in the Office of the Secretary with the responsibility of advising the Secretary of Transportation on fostering innovation and deregulation in the commercial space industry. The FAA’s associate administrator for Commercial Space Transportation also will be a senior executive non-career employee, and the Office of Space Commerce will be elevated into the Office of the Commerce Secretary. Mitigate the risk of the United States losing its competitive edge in the commercial space industry by dismantling regulatory barriers that prevent rapid innovation and expansion. For more information about the EO, visit:
https://go.nasa.gov/3J8fMZ5
-end-
Bethany Stevens
Headquarters, Washington
202-358-1600
bethany.c.stevens@nasa.gov
Share
Details
Last Updated Aug 13, 2025 LocationNASA Headquarters Related Terms
NASA Headquarters Commercial Space The Future of Commercial Space View the full article
-
By NASA
Portrait of Dave Des Marais Let’s start with your childhood, where you’re from, your family at the time, if you have siblings, your early years, and when it was that you became interested in what has developed into your career as an astrophysicist or research scientist?
I was born in Richmond, Virginia in 1948, the youngest of four siblings – two brothers, a sister and myself. My father was a civil engineer for DuPont chemical company and designed HVAC systems for plants built in the late 30’s and early 40’s for the war effort. Our family moved around frequently back then, so my siblings and I were born in different states. When our father transferred to DuPont headquarters in Wilmington, Delaware, we moved to nearby Kennett Square, Pennsylvania, about 30 miles southwest of Philadelphia. During my childhood, my participation in outdoor activities with the Boy Scouts and my motivation by excellent high school chemistry and physics teachers stimulated my interest in the natural sciences.
I attended Purdue University in Indiana in part because Purdue had an excellent chemistry curriculum and because my second older brother, whom I had always admired, received his chemical engineering degree there. As an undergraduate, I was particularly fascinated by the periodic table of the elements and analytical chemistry. Experiences outside the classroom were also important. I noticed that another student in my dormitory had a little miner’s carbide headlamp on his desk. He explored caves as a member of the Purdue Outing Club and invited me to join. When we took caving and climbing trips in southern Indiana, I developed a fascination with geology, particularly about how caves form and about rocks generally. This kindled my interest in geochemistry, which ultimately guided my choices of graduate school and career. Three factors led to my decision in 1970 to attend Indiana University. One was IU’s strong geology and geochemistry programs. I also wanted to remain as near as possible to Shirley, my future spouse. The third reason was to continue exploring caves!
While at IU I indeed continued cave exploration. I joined the Cave Research Foundation (CRF), which maps caves and supports research in the national parks, particularly in Mammoth Cave, Kentucky, which is the longest cave in the world, with 250 miles of mapped passageways. My involvement with CRF deepened my interest in other aspects of geology and geochemistry.
(left) Cave in the Guadalupe Mountains, NM (D. Des Marais, 1980). (right) Climbing the 510 ft.-pit in Ellisons Cave, GA (D. Des Marais, 1972) My NASA connection began when Dr. John Hayes became my graduate advisor in geochemistry. Hayes’ graduate dissertation had addressed organic compounds in meteorites. He was also involved with the Viking mission as a member of Klaus Bieman’s MIT research group, which created the mass spectrometer for the Mars Viking mission. I took Hayes’ class on mass spectrometry, and fortunately he liked my term paper! Soon after, I chose to do my dissertation with him on lunar sample analyses, focusing on carbon and other elements relevant to life. I first presented my work in 1972 at the third Lunar Science Conference, where I met Sherwood Chang, then chief of the Ames Exobiology branch. Sherwood was also investigating carbon and other elements in lunar samples. Sherwood, John, and others inspired me to continue in the space sciences.
That’s an Interesting path because many of our researchers had a postdoc with somebody or attended a conference and met someone through that network and found their way to Ames that way.
I then did a postdoctoral fellowship at UCLA with Dr. Isaac (Ian) Kaplan, whose biogeochemistry group also had analzed lunar samples. I continued developing methods for carbon isotopic analyses of very small samples. The carbon-13 to carbon-12 abundance ratios of molecules can offer clues about how they are formed. Isotopic measurements also help to identify contamination in meteorites and other extraterrestrial samples. Sherwood Chang wanted to create an isotope geochemistry laboratory in the Ames Exobiology Branch, and that led to my being hired at Ames in 1976.
You mentioned contamination of the meteorites. Was it geo-contamination or contamination from elsewhere that concerned you?
The basic analytical goal is to decipher the entire history of an extraterrestrial sample, starting with understanding the contents of an object when it was formed, which in most cases was billions of years ago. When an object was still in space, other events happened that altered its composition. But our major concern has been about what happens after a meteorite arrives here. Life has become so pervasive that its chemical ‘fingerprints’ are on virtually everything. It’s difficult to avoid these substances anywhere in the shallow Earth’s crust. Also, Earth is an inhospitable place for meteorites because its surface environments are relatively hot and moist compared to conditions in space. So our environment can alter the meteorites and add organic contamination.
What has been your most interesting work here at Ames?
I have had a near-unique opportunity to explore the biogeochemistry of carbon across a wide range of processes and environments that sustain our biosphere. I investigated the isotope geochemistry of carbon and nitrogen in lunar samples, meteorites, and oceanic basalts. Our molecular isotopic measurements of hydrocarbons in carbonaceous chondrites confirmed their extraterrestrial origins and provided clues about their synthesis. My measurements of mid-oceanic basalts and hydrocarbon gases in geothermal systems chracterized components from the mantle and from sedimentary organic carbon.
Co-leading a field trip in Yellowstone National Park (2015) I participated in the Precambrian Paleobiology Research Group at U.C.L.A., led by Dr. J. W. Schopf. For example, we documented carbon isotopic evidence for the long-term evolution and oxygenation of Earth’s early environment. Later, I coordinated a long-term project to study the biogeochemistry of marine benthic microbial communities as modern analogs of Earth’s oldest known (>3 billion yr.-old) ecosystems. We characterized their enormous microbial diversity, their highly efficient harvesting of sunlight, their cycling of life-sustaining elements, and mechanisms for their fossilization in sedimentary rocks. These experiences, among others, informed me as I chaired the development of NASA’s Astrobiology Roadmaps in 2003 and 2008, and as I served as PI of Ames’ NASA Astrobiology Institute team from 1998 to 2014. These roles also informed my participation in NASA’s Mars Exploration Rover and Curiosity rover missions.
Des Marais et al. with a microbial mat experiment in Baja California (2000) Now that you’ve described what your pursuit is, what your discipline or research interests are, how would you justify that to people who are not scientists as to why taxpayers should be funding this particular research for NASA?
NASA’s research programs are uniquely positioned to explore and compare multiple planets, including Earth. All life depends critically upon interactions between organisms and the geological processes and climate of their host planet. My career has addressed these interactions in multiple ways. Studies such as these are important for understanding the future of life on Earth, and they also guide our search for evidence of life elsewhere and for planning human missions to other bodies in our solar system.
A more specific answer to your question is that the public has been interested in any life on Mars. Searching for evidence of past or present life there requires environmental surveys and analyses to identify the most promising locations. NASA’s Viking mission illustrated why most of the Martian surface is really not suitable to look for evidence of life. At least 70% of the surface of Mars is clearly unsuitable, but the remaining more promising 30% is still a lot of territory. The surface area of Mars is equal to that of all the continents on Earth. Much of my research has related to an assessment of habitability, namely, assessing the resources that an environment must provide to sustain life. Where are the best places to look? Our rovers have now visited places that we are convinced could have supported life some three or more billion years ago. The next questions are: did any fossils survive and can we actually bring the right samples back to Earth to confirm any findings?
Also, could a human mission sustain itself there? Again, we must look for resources that might support life today. Geochemical analyses are a key aspect of that search. If we have any future interest in Mars related to astrobiology or to human missions, we need to assess the past habitability and the present life-sustaining resources of potential landing sites. The public generally supports these exploration goals.
They do, that is true, and that’s really the answer to why NASA does what it does. It’s directed by Congress, and they are influenced by the public, by what the public wants. I’ve always thought, or at least for a long time, that robotic exploration is much more practical, but the country wants astronauts, that’s where the public support is.
I agree totally!
And so, we continue to do that, and they’ve done wonderful things. But the time will come when it’s not feasible to do astronautic things because we humans don’t live long enough given the distances involved.
Certainly that’s applies for destinations beyond our solar system. And even if there is a human mission to Mars, astronauts are going to be in a station, with robots going out in all directions. So robots will be with us in many ways for the future.
It’s a very fascinating career you’ve described and the work that has followed from it.
Thanks! It’s certainly been very fulfilling personally.
What advice might you give to a young person who sees what you’re doing, is intrigued by it, and would like to pursue it as a career, would like to become a researcher for NASA?
The advice I would give a young person is just engage in multiple experiences. You don’t know what what will stimulate and motivate you until you try it. And once you find something in particular, like astrobiology, then apply to institutions, like universities or institutes that are involved. Go to a place where they’re doing stuff that’s related to astrobiology in some way. Secondly, see if you can get yourself in a lab and get some undergraduate research experience.
As an example, what worked for my son? He’s not in astrobiology. He went to Berkeley as an undergraduate and wanted to be a physician. But then he had an opportunity to work in someone’s plant biology lab. By the time he was applying for graduate schools he was identifying professors with whom he might want to work. Now, years later, he’s a professor in plant genetics at a major university. When I applied to graduate schools, my approach wasn’t nearly as rigorous as my son’s strategy! So, perhaps get an undergraduate experience in a lab and, in any case, get a sense of what’s interesting by giving yourself multiple experiences and not necessarily focusing too soon. That’s the most general advice.
That is similar to what parents do with their children. They don’t know what their children are going to be interested in or would do well, so they expose them to music, to art, and to all kinds of things and with some of them there won’t be any connection, but at some point, they’ll be interested in something and want to pursue it. So, you’re right, get a broad exposure to a variety of things and something will resonate.
Yes, the more experiences, the better chance you might hit something that really resonates for you.
You’ve talked about your professional work and research interests but what do you do for fun?
Well, along with a lot of the things I’ve already described, my interest in the outdoors has always been high. Our family has done a lot of hiking and travel.
Do you still do caving or spelunking?
I was still active after joining Ames in 1976. I got CRF involved at Sequoia-Kings Canyon National Park, and CRF is still working there. I’ve been fortunate to participate in this collaboration between CRF and the National Park Service at Mammoth Cave, Kentucky, Carlsbad Caverns, New Mexico, and Sequoia-Kings Canyon National Park, California. My active participation tapered off about the same time my involvement with Mars picked up in the 1990’s.
Earlier, I mentioned a little miner’s carbide cap lamp in another student’s dormitory room that led me to the Outing Club, geology, and ultimately my career. So, over the years I’ve collected artifacts related to mining and interacted with folks who explore the history of mining and its economic importance. That has made me realize just how difficult were the lives of miners. What I hadn’t anticipated was how grateful I became that I am alive today and not 100+ years ago, or that I live in the US and not many other places today.
I often feel that. There are a lot of places in the world where you can’t just go over to the wall and dial up the temperature you want. We are certainly blessed in that regard. So, the collecting has been kind of a hobby for you. Do you have any musical interest or talent, anything like that?
I was pretty proficient at the piano until I got into high school. But I took up the saxophone and got into the high school band. Later, I joined the Purdue Marching Band and played at football games. That was a great experience but I didn’t continue beyond my college sophomore year. My daughter and son have continued on piano intermittently as an effective form of relaxation. This reminds me of Carl Pilcher (former NASA Senior Scientist for Astrobiology and Director of the NASA Astrobiology Institute) who was a really good pianist.
I didn’t know that and that’s interesting to me because I knew Carl. This is one reason why we do these interviews, because there will be a number of people who will read this and they won’t have known that about Carl if they knew him, and that’s how these little things that we don’t know about people come out as we sit down and talk with each other. You’ve mentioned your wife, Shirley, and your son and your daughter. Would you like to say anything else about your family? Or your pets, or things you like to do together or vacations, anything like that?
Shirley and I have been married 54 years as of this interview. She was an elementary school teacher for more than 25 years. Her support was crucial while I was in graduate school. She became a full-time parent for our pre-school children but then returned to Redwood City schools for most of her teaching career. She then became deeply involved in the local chapter of the League of Women Voters, serving both as its chairman and in other leadership positions. Shirley is the keystone of our family and she has enabled my career achievements immeasurably.
Our son is a is a molecular biologist. He went to Berkeley first aspiring to be a doctor probably because his high school biology teacher emphasized human physiology. At Berkeley he ventured from one interest to the next. He had not been inspired by plant biology in high school, probably because his teachers focused on rote memorization of facts. But later he gained research experience in a Berkeley plant lab and got really interested in them. He attended graduate school at Duke University and is now an assistant professor in plant genetics with the MIT civil engineering department. Why, you ask, is a civil engineering department interested in plant genetics? MIT started a major climate change project and one key concern is how crops must adapt. His specialty is plant water use efficiency, response to CO2 levels, and temperature, factors that would be affected by a changing climate.
Des Marais family in Yellowstone National Park (2001) Our daughter also attended Berkeley. She studied international economics of developing countries. She is good at math and also interested in social issues, so that curriculum motivated her. But her ultimate career choice arose from the focus on developing countries and her experiences in South America when she spent a semester at a university in Chile, and then worked with nonprofit organizations in Brazil. She then got a master’s degree in public health at the University of North Carolina. She’s still involved in public health in North Carolina, working with a foundation that advises county health departments about treatments for drug addiction. The government has provided funds for counties, especially rural counties. She leads a group that’s advising them on how to administer these funds effectively.
That’s very commendable. You should be proud of her as well.
Yeah, we certainly are.
We also had cats from the early ‘70’s up until maybe 2010 or something like that. We eventually achieved ‘parental freedom’ when the kids moved away and the pets passed away. But our our family’s legacy lives on: both our son and our daughter have multiple cats in their houses! (laughs)
We had cats too, and enjoyed them. My wife used to have to go away for a week or so every month to tend her parents, who were getting elderly, because she wanted to keep them in their home. I used to think it was funny that people talked to their pets, but when she was away, I talked to the cat all the time! I really enjoyed having her around. She would curl up on my lap if I was watching TV. She was good company.
Yeah, no kidding. Dogs especially are like little kids that never grow up!
Yes!
One of the questions we like to ask is who or what has inspired you along your life path?
My high school chemistry teacher inspired me about chemistry. He was also an outdoorsman type. My older brother was involved in Boy Scouts, and that also nurtured my interest in Scouts and the outdoors.
At the time I was enrolled at Purdue University, a geology department had recently started and three faculty occupied the basement of an engineering building. Dr. Levandowski advocated that geochemistry might actually be a good match for me. At Indiana University, John Hayes, my thesis advisor, was very accomplished, charismatic, and inspirational. He was recognized internationally and ultimately inducted into the National Academy of Sciences. And, of course, Sherwood Chang and Chuck Klein helped inspire and guide my early career at Ames.
Do you read for pleasure and if so, what do you like to read? What genre do you enjoy?
I do not read fiction for pleasure. I frequently read popular science and technology articles, so I guess that’s my pleasure reading. It’s still science, but it’s science that extends well beyond my own work, and I find that interesting.
Absolutely it is. I don’t read enough for pleasure. I buy a lot of books that I intend to read, but I just never get around to them. My wife says, in jest I think, when I’m gone, she’s going to have a big bonfire and burn all of them because they take up a lot of space. I would like to live to be 200 and read all of them, but I know I won’t! (laughs)
One of the things that we like to do is add pictures to these interviews, of things we talked about, or any images that you particularly like. What picture might you have on the wall there in your office, or perhaps in your home? You could add something later after thinking about it a bit. I had a map of the world, a satellite image of the world at night, in my office for a time. You’ve probably seen it. I was fascinated by it because you could tell so much about the countries by the lighting, the different colors, where it was and where it wasn’t.
I have a big map of the world that emphasizes geology and particularly shows a lot of details about the ocean floor, especially with the volcanoes and all the features there. And you’ve probably seen the exobiology mural? it was in building N-200.
I think I know which one you’re talking about. It has sea life coming up from the ocean on one side across the land and up to the stars on the other side.
Exobiology panorama (D. Des Marais, L. Jahnke, T. Scattergood, 1988) That’s right. Linda Jahnke, Tom Scattergood, and I created that back in 1980’s.
You did?
Yeah. When the art department made copies, I got one for my office, and several others have copies also.
Oh, that’s wonderful. If you have an image of that you could include it when you send me back your edited transcript, and we could put it in and attribute it to you, Linda, and Tom.
OK. That mural touches on several research topics I’ve addressed during my career. So, it would be a good one to include.
We also ask if there is a favorite quote that has been particularly meaningful to you. We can put that in, too.
‘Life is what happens while you are busy making other plans’ (John Lennon)
‘We make a living by what we get, but we make a life by what we give.’ (the attribution to Winston Churchill is controversial)
Thank you for getting in touch with me and for sitting down for an hour to do this. I will get this into a format where you can edit it. And then we’ll make a post out of it. And I think you’ll be pleased. And if not, you’ll have only yourself to blame! (laughs)
That’s very cagey of you! (laughs) But then again, you’ve done this for quite a while.
Your approach is quite sophisticated, so I appreciate that. I also appreciate your effort because so often stuff like this just disappears from history.
Well, thank you, Dave. I’ve appreciated the chat and thank you for your time. We’ll make something out of it.
Thanks for your commitment and for pursuing me to do this. Take care.
You’re welcome.
________________________________________________
Interview conducted by Fred Van Wert on January 13, 2025
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.