Jump to content

University High Knows the Answers at NASA JPL Regional Science Bowl


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A team from University High School of Irvine, California, won the 2025 regional Science Bowl at NASA’s Jet Propulsion Laboratory
A team from University High School of Irvine, California, won the 2025 regional Science Bowl at NASA’s Jet Propulsion Laboratory on March 1. From left, co-coach Nick Brighton, sophomores Shloke Kamat and Timothy Chen, juniors Feodor Yevtushenko and Angelina Yan, senior Sara Yu, and coach David Knight.
NASA/JPL-Caltech

In a fast-paced competition, students showcased their knowledge across a wide range of science and math topics.

What is the molecular geometry of sulfur tetrafluoride? Which layer of the Sun is thickest? What is the average of the first 10 prime numbers? If you answered “see-saw,” “radiation zone,” and “12.9,” respectively, then you know a tiny fraction of what high school students must learn to compete successfully in the National Science Bowl.

On Saturday, March 1, students from University High School in Irvine answered enough of these kind of challenging questions correctly to earn the points to defeat 19 other high school teams, winning a regional Science Bowl competition hosted by NASA’s Jet Propulsion Laboratory in Southern California. Troy High, from Fullerton, won second place, while Arcadia High placed third.

Some 100 students gathered at JPL for the fast-paced event, which drew schools from across Los Angeles, Orange, and San Bernardino counties. Teams are composed of four students and one alternate, with a teacher serving as coach. Two teams at a time face off in a round robin tournament, followed by tie-breaker and double-elimination rounds, then final matches.

Students, coaches, and volunteers gathered on March 1 for the annual regional Science Bowl competition
Students, coaches, and volunteers gathered on March 1 for the annual regional Science Bowl competition held at JPL, which has hosted the event since 1993.
NASA/JPL-Caltech

The questions — in biology, chemistry, Earth and space science, energy, mathematics, and physics — are at a college first-year level. Students spend months preparing, studying, quizzing each other, and practicing with “Jeopardy!”-style buzzers.

It was the third year in a row for a University victory at the JPL-hosted event, and the championship round with Troy was a nail-biter until the very last question. The University team only had one returning student from the previous year’s team, junior Feodor Yevtushenko. Both he and longtime team coach and science teacher David Knight said the key to success is specialization — with each student focusing on particular topic areas.

“I wake up and grind math before school,” Feodor said. “Being a jack-of-all-trades means you’re a jack-of-no-trades. You need ruthless precision and ruthless speed.”

University also won for four years in row from 2018 to 2021. The school’s victory this year enables its team to travel to Washington in late April and vie for ultimate dominance alongside other regional event winners in the national finals.

More than 10,000 students compete in some 115 regional events held across the country. Managed by the U.S. Department of Energy, the National Science Bowl was created in 1991 to make math and science fun for students, and to encourage them to pursue careers in those fields. It’s one of the largest academic competitions in the United States.

JPL’s Public Services Office coordinates the regional contest with the help of volunteers from laboratory staff and former Science Bowl participants in the local community. This year marked JPL’s 33rd hosting the event.

News Media Contact

Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov

2025-030      

Share

Details

Last Updated
Mar 03, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Massachusetts Institute of Technology Lincoln Laboratory pilot controls a drone during NASA’s In-Time Aviation Safety Management System test series in collaboration with a George Washington University team July 17-18, 2024, at the U.S. Army’s Fort Devens in Devens, Massachusetts. MIT Lincoln Laboratory/Jay Couturier From agriculture and law enforcement to entertainment and disaster response, industries are increasingly turning to drones for help, but the growing volume of these aircraft will require trusted safety management systems to maintain safe operations.
      NASA is testing a new software system to create an improved warning system – one that can predict hazards to drones before they occur. The In-Time Aviation Safety Management System (IASMS) will monitor, assess, and mitigate airborne risks in real time. But making sure that it can do all that requires extensive experimentation to see how its elements work together, including simulations and drone flight tests.
      “If everything is going as planned with your flight, you won’t notice your in-time aviation safety management system working,” said Michael Vincent, NASA acting deputy project manager with the System-Wide Safety project at NASA’s Langley Research Center in Hampton, Virginia. “It’s before you encounter an unusual situation, like loss of navigation or communications, that the IASMS provides an alert to the drone operator.”
      The team completed a simulation in the Human-Autonomy Teaming Laboratory at NASA’s Ames Research Center in California’s Silicon Valley on March 5 aimed at finding out how critical elements of the IASMS could be used in operational hurricane relief and recovery.
      During this simulation, 12 drone pilots completed three 30-minute sessions where they managed up to six drones flying beyond visual line of sight to perform supply drops to residents stranded after a severe hurricane. Additional drones flew scripted search and rescue operations and levee inspections in the background. Researchers collected data on pilot performance, mission success, workload, and perceptions of the experiences, as well as the system’s usability.
      This simulation is part of a longer-term strategy by NASA to advance this technology. The lessons learned from this study will help prepare for the project’s hurricane relief and recovery flight tests, planned for 2027.  
      As an example of this work, in the summer of 2024 NASA tested its IASMS during a series of drone flights in collaboration with the Ohio Department of Transportation in Columbus, Ohio, and in a separate effort, with three university-led teams.
      For the Ohio Department of Transportation tests, a drone flew with the NASA-developed IASMS software aboard, which communicated back to computers at NASA Langley. Those transmissions gave NASA researchers input on the system’s performance.
      Students from the Ohio State University participate in drone flights during NASA’s In-Time Aviation Safety Management System test series in collaboration with the Ohio Department of Transportation from March to July 2024 at the Columbus Aero Club in Ohio. NASA/Russell Gilabert NASA also conducted studies with The George Washington University (GWU), the University of Notre Dame, and Virginia Commonwealth University (VCU). These occurred at the U.S. Army’s Fort Devens in Devens, Massachusetts with GWU; near South Bend, Indiana with Notre Dame; and in Richmond, Virginia with VCU. Each test included a variety of types of drones, flight scenarios, and operators.
      Students from Virginia Commonwealth University walk toward a drone after a flight as part of NASA’s In-Time Aviation Safety Management System (IASMS) test series July 16, 2024, in Richmond, Virginia. NASA/Dave Bowman Each drone testing series involved a different mission for the drone to perform and different hazards for the system to avoid. Scenarios included, for example, how the drone would fly during a wildfire or how it would deliver a package in a city. A different version of the NASA IASMS was used to fit the scenario depending on the mission, or depending on the flight area.
      Students from the University of Notre Dame prepare a small drone for takeoff as part of NASA’s In-Time Aviation Safety Management System (IASMS) university test series, which occurred on August 21, 2024 in Notre Dame, Indiana.University of Notre Dame/Wes Evard When used in conjunction with other systems such as NASA’s Unmanned Aircraft System Traffic Management, IASMS may allow for routine drone flights in the U.S. to become a reality. The IASMS adds an additional layer of safety for drones, assuring the reliability and trust if the drone is flying over a town on a routine basis that it remains on course while avoiding hazards along the way.
      “There are multiple entities who contribute to safety assurance when flying a drone,” Vincent said. “There is the person who’s flying the drone, the company who designs and manufactures the drone, the company operating the drone, and the Federal Aviation Administration, who has oversight over the entire National Airspace System. Being able to monitor, assess and mitigate risks in real time would make the risks in these situations much more secure.”
      All of this work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
      Share
      Details
      Last Updated Apr 02, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Advanced Air Mobility Aeronautics Research Mission Directorate Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Drones & You Flight Innovation Langley Research Center System-Wide Safety Explore More
      2 min read Artemis Astronauts & Orion Leadership Visit NASA Ames
      Article 1 hour ago 7 min read ARMD Solicitations (ULI Proposals Invited)
      Article 2 days ago 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronauts Victor Glover and Christina Koch tour the Arc Jet Facility at NASA’s Ames Research Center, learning more about the testing equipment’s capabilities to analyze thermal protection systems from George Raiche, thermophysics facilities branch chief at Ames.NASA/Donald Richey As NASA prepares to send astronauts to the Moon aboard the Orion spacecraft, research, testing, and development at NASA’s Ames Research Center in California’s Silicon Valley has played a critical role.
      Recently, Ames welcomed Artemis II astronauts Christina Koch and Victor Glover and Orion leaders Debbie Korth, deputy program manager, and Luis Saucedo, deputy crew and service module manager, to tour Ames facilities that support the Orion Program and celebrate the achievements of employees.
      The group started their visit at the Arc Jet Complex, where researchers use extremely hot, high-speed gases to simulate the intense heat of atmospheric reentry before visiting the Sensors & Thermal Protection Systems Advanced Research Laboratories. The team works to develop sensors and flight instrumentation that measure heat shield response throughout a mission.
      These systems were used to develop and test Orion’s thermal protection system to ensure the safety of astronauts during future missions. After the successful return of the Artemis I Orion spacecraft, Ames research was essential when analyzing unexpected charring loss on the heat shield.
      Debbie Korth, Orion deputy program manager, presents awards to the Ames workforce at the Orion Circle of Excellence Awards Ceremony, while astronauts Christina Koch and Victor Glover look on.NASA/Donald Richey The visit culminated in an award ceremony to honor employees with outstanding performance and a legacy of service to the Orion Program. Thirty-two employees were honored for their individual or team contributions.
      “The Ames workforce has played an important role in developing, testing, and validating the Orion spacecraft’s thermal protection system as well as supporting its software and guidance, navigation, and control,” said Eugene Tu, NASA Ames center director. “I’m pleased to see their contributions recognized and celebrated by program leadership and two of the astronauts whose safety and success were in mind when ensuring these systems are safe, reliable, and the highest quality possible.”
      Share
      Details
      Last Updated Apr 02, 2025 Related Terms
      Ames Research Center Artemis Christina H. Koch Exploration Systems Development Mission Directorate General Orion Program Victor J. Glover Explore More
      2 min read What Are the Dangers of Going to Space? We Asked a NASA Expert: Episode 55
      Article 1 hour ago 2 min read NASA Receives 10 Nominations for the 29th Annual Webby Awards
      Article 1 day ago 4 min read NASA Trains for Orion Water Recovery Ahead of Artemis II Launch
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Orion Spacecraft
      Arc Jet Complex
      Thermal Protection Materials Branch
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      What are the dangers of going to space?

      For human spaceflight, the first thing I think about is the astronauts actually strapping themselves to a rocket. And if that isn’t dangerous enough, once they launch and they’re out into space in deep exploration, we have to worry about radiation.

      Radiation is coming at them from all directions. From the Sun, we have solar particles. We have galactic cosmic rays that are all over in the universe. And those cause damage to DNA. On Earth here, we use sunscreen to protect us from DNA damage. Our astronauts are protected from the shielding that’s around them in the space vehicles.

      We also have to worry about microgravity. So what happens there? We see a lot of bone and muscle loss in our astronauts. And so to prevent this, we actually have the astronauts exercising for hours every day. And of course we don’t want to run out of food on a space exploration mission. So we want to make sure that we have everything that the astronauts need to take with them to make sure that we can sustain them.

      There are many risks associated with human space exploration. NASA has been planning for these missions to make our astronauts return home safely.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Apr 02, 2025 Related Terms
      General Biological & Physical Sciences Human Research Program International Space Station (ISS) Science Mission Directorate Explore More
      3 min read NASA Continues Support for Private Astronaut Missions to Space Station
      Article 3 hours ago 2 min read Citizen Scientists Use NASA Open Science Data to Research Life in Space
      How can life thrive in deep space? The Open Science Data Repository Analysis Working Groups invite…
      Article 11 hours ago 2 min read NASA Receives 10 Nominations for the 29th Annual Webby Awards
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA Webb Explores Effect of Strong Magnetic Fields on Star Formation
      An image of the Milky Way captured by the MeerKAT radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Full image below. Credits:
      NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Follow-up research on a 2023 image of the Sagittarius C stellar nursery in the heart of our Milky Way galaxy, captured by NASA’s James Webb Space Telescope, has revealed ejections from still-forming protostars and insights into the impact of strong magnetic fields on interstellar gas and the life cycle of stars.  
      “A big question in the Central Molecular Zone of our galaxy has been, if there is so much dense gas and cosmic dust here, and we know that stars form in such clouds, why are so few stars born here?” said astrophysicist John Bally of the University of Colorado Boulder, one of the principal investigators. “Now, for the first time, we are seeing directly that strong magnetic fields may play an important role in suppressing star formation, even at small scales.”
      Detailed study of stars in this crowded, dusty region has been limited, but Webb’s advanced near-infrared instruments have allowed astronomers to see through the clouds to study young stars like never before.
      “The extreme environment of the galactic center is a fascinating place to put star formation theories to the test, and the infrared capabilities of NASA’s James Webb Space Telescope provide the opportunity to build on past important observations from ground-based telescopes like ALMA and MeerKAT,” said Samuel Crowe, another principal investigator on the research, a senior undergraduate at the University of Virginia and a 2025 Rhodes Scholar.
      Bally and Crowe each led a paper published in The Astrophysical Journal.
      Image A: Milky Way Center (MeerKAT and Webb)
      An image of the Milky Way captured by the MeerKAT (formerly the Karoo Array Telescope) radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Like a super-long exposure photograph, MeerKAT shows the bubble-like remnants of supernovas that exploded over millennia, capturing the dynamic nature of the Milky Way’s chaotic core. At the center of the MeerKAT image the region surrounding the Milky Way’s supermassive black hole blazes bright. Huge vertical filamentary structures echo those captured on a smaller scale by Webb in Sagittarius C’s blue-green hydrogen cloud. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Image B: Milky Way Center (MeerKAT and Webb), Labeled
      The star-forming region Sagittarius C, captured by the James Webb Space Telescope, is about 200 light-years from the Milky Way’s central supermassive black hole, Sagittarius A*. The spectral index at the lower left shows how color was assigned to the radio data to create the image. On the negative end, there is non-thermal emission, stimulated by electrons spiraling around magnetic field lines. On the positive side, thermal emission is coming from hot, ionized plasma. For Webb, color is assigned by shifting the infrared spectrum to visible light colors. The shortest infrared wavelengths are bluer, and the longer wavelengths appear more red. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Using Infrared to Reveal Forming Stars
      In Sagittarius C’s brightest cluster, the researchers confirmed the tentative finding from the Atacama Large Millimeter Array (ALMA) that two massive stars are forming there. Along with infrared data from NASA’s retired Spitzer Space Telescope and SOFIA (Stratospheric Observatory for Infrared Astronomy) mission, as well as the Herschel Space Observatory, they used Webb to determine that each of the massive protostars is already more than 20 times the mass of the Sun. Webb also revealed the bright outflows powered by each protostar.
      Even more challenging is finding low-mass protostars, still shrouded in cocoons of cosmic dust. Researchers compared Webb’s data with ALMA’s past observations to identify five likely low-mass protostar candidates.
      The team also identified 88 features that appear to be shocked hydrogen gas, where material being blasted out in jets from young stars impacts the surrounding gas cloud. Analysis of these features led to the discovery of a new star-forming cloud, distinct from the main Sagittarius C cloud, hosting at least two protostars powering their own jets.
      “Outflows from forming stars in Sagittarius C have been hinted at in past observations, but this is the first time we’ve been able to confirm them in infrared light. It’s very exciting to see, because there is still a lot we don’t know about star formation, especially in the Central Molecular Zone, and it’s so important to how the universe works,” said Crowe.
      Magnetic Fields and Star Formation
      Webb’s 2023 image of Sagittarius C showed dozens of distinctive filaments in a region of hot hydrogen plasma surrounding the main star-forming cloud. New analysis by Bally and his team has led them to hypothesize that the filaments are shaped by magnetic fields, which have also been observed in the past by the ground-based observatories ALMA and MeerKAT (formerly the Karoo Array Telescope).
      “The motion of gas swirling in the extreme tidal forces of the Milky Way’s supermassive black hole, Sagittarius A*, can stretch and amplify the surrounding magnetic fields. Those fields, in turn, are shaping the plasma in Sagittarius C,” said Bally.
      The researchers think that the magnetic forces in the galactic center may be strong enough to keep the plasma from spreading, instead confining it into the concentrated filaments seen in the Webb image. These strong magnetic fields may also resist the gravity that would typically cause dense clouds of gas and dust to collapse and forge stars, explaining Sagittarius C’s lower-than-expected star formation rate. 
      “This is an exciting area for future research, as the influence of strong magnetic fields, in the center of our galaxy or other galaxies, on stellar ecology has not been fully considered,” said Crowe.  
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper led by Bally from the The Astrophysical Journal.
      View/Download the science paper led by Crowe from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Leah Ramsay – lramsay@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more: press releases about the center of the Milky Way
      NASA’s Universe of Learning: ViewSpace Interactive image tour of the center of the Milky Way
      Learn more about the Milky Way and Sagittarius Constellation
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What Is a Nebula?
      What Is a Galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una nebulosa?
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Universe


      Share








      Details
      Last Updated Apr 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Protostars Science & Research Stars The Milky Way The Universe View the full article
    • By NASA
      2 min read
      Citizen Scientists Use NASA Open Science Data to Research Life in Space
      2023 Workshop of Analysis Working Group members, Washington, D.C., November 14, 2023. Now, you are invited to join their quest to understand how life can thrive in deep space! Want to learn more first? Join our live virtual event April 17 at 3pm Eastern Time to hear an overview of the OSDR AWG’s operations. Photo: NASA OSDR Team How can life thrive in deep space? The Open Science Data Repository Analysis Working Groups invite volunteers from all backgrounds to help answer this question. Request to join these citizen science groups to help investigate how life adapts to space environments, exploring topics like radiation effects, microgravity’s impact on human and plant health, and how microbes change in orbit.
      Currently, nine Analysis Working Groups (AWGs) hold monthly meetings to advance their specific focus areas. Participants collaborate using an online platform, the AWG “Forum-Space”, where they connect with peers and experts, join discussions, and contribute to over 20 active projects. 
      The AWGs work with data primarily from the NASA Open Science Data Repository (OSDR), a treasure trove of spaceflight data on physiology, molecular biology, bioimaging, and much more. For newcomers, there are tutorials and a comprehensive paper covering all aspects of the repository and the AWG community. You can explore 500+ studies, an omics multi-study visualization portal, the environmental data app, and RadLab, a portal for radiation telemetry data. (“Omics” refers to fields of biology that end in “omics,” like “genomics”.)   
      Each of the nine AWGs has a Lead who organizes their group and holds monthly virtual meetings. Once you join, make sure to connect with the Lead and get on the agenda so you can introduce yourself. Learn more about the AWGs here.
      Have an idea for a new project? Propose a new project and help lead it! From data analysis and visualization to shaping data standards and conducting literature meta-analyses, there’s a place for everyone to contribute. Request to join, and together, we can address a great challenge for humanity: understanding and enabling life to thrive in deep space! 
      Want to learn more?
      On April 17 at 3pm Eastern Time, the NASA Citizen Science Leaders Series is hosting an virtual event with Ryan Scott about these Analysis Working Groups and their work. Ryan is the Science Lead for the Ames Life Sciences Data Archive and the liaison between the Open Data Science Repository and the Analysis Working Groups. Click here to register for this event!
      Share








      Details
      Last Updated Apr 01, 2025 Related Terms
      Citizen Science Biological & Physical Sciences Explore More
      9 min read Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper


      Article


      2 weeks ago
      2 min read Redshift Wranglers Reach Remarkable Milestones


      Article


      4 weeks ago
      2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds


      Article


      4 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...