Members Can Post Anonymously On This Site
Hegseth directs civilians to prepare 5 bullet points on weekly work
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
At left is NASA’s Perseverance Mars rover, with a circle indicating the location of the calibration target for the rover’s SHERLOC instrument. At right is a close-up of the calibration target. Along the bottom row are five swatches of spacesuit materials that scientists are studying as they de-grade.NASA/JPL-Caltech/MSSS The rover carries several swatches of spacesuit materials, and scientists are assessing how they’ve held up after four years on the Red Planet.
NASA’s Perseverance rover landed on Mars in 2021 to search for signs of ancient microbial life and to help scientists understand the planet’s climate and geography. But another key objective is to pave the way for human exploration of Mars, and as part of that effort, the rover carries a set of five spacesuit material samples. Now, after those samples have endured four years of exposure on Mars’ dusty, radiation-soaked surface, scientists are beginning the next phase of studying them.
The end goal is to predict accurately the usable lifetime of a Mars spacesuit. What the agency learns about how the materials perform on Mars will inform the design of future spacesuits for the first astronauts on the Red Planet.
This graphic shows an illustration of a prototype astronaut suit, left, along with suit samples included aboard NASA’s Perseverance rover. They are the first spacesuit materials ever sent to Mars. NASA “This is one of the forward-looking aspects of the rover’s mission — not just thinking about its current science, but also about what comes next,” said planetary scientist Marc Fries of NASA’s Johnson Space Center in Houston, who helped provide the spacesuit materials. “We’re preparing for people to eventually go and explore Mars.”
The swatches, each three-quarters of an inch square (20 millimeters square), are part of a calibration target used to test the settings of SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), an instrument on the end of Perseverance’s arm.
The samples include a piece of polycarbonate helmet visor; Vectran, a cut-resistant material used for the palms of astronaut gloves; two kinds of Teflon, which has dust-repelling nonstick properties; and a commonly used spacesuit material called Ortho-Fabric. This last fabric features multiple layers, including Nomex, a flame-resistant material found in firefighter outfits; Gore-Tex, which is waterproof but breathable; and Kevlar, a strong material used in bulletproof vests that makes spacesuits more rip-resistant.
Martian Wear and Tear
Mars is far from hospitable. It has freezing temperatures, fine dust that can stick to solar panels and spacesuits (causing wear and tear on the latter), and a surface rife with perchlorates, a kind of corrosive salt that can be toxic to humans.
There’s also lots of solar radiation. Unlike Earth, which has a magnetic field that deflects much of the Sun’s radiation, Mars lost its magnetic field billions of years ago, followed by much of its atmosphere. Its surface has little protection from the Sun’s ultraviolet light (which is why researchers have looked into how rock formations and caves could provide astronauts some shielding).
“Mars is a really harsh, tough place,” said SHERLOC science team member Joby Razzell Hollis of the Natural History Museum in London. “Don’t underestimate that — the radiation in particular is pretty nasty.”
Razzell Hollis was a postdoctoral fellow at NASA’s Jet Propulsion Laboratory in Southern California from 2018 to 2021, where he helped prepare SHERLOC for arrival on Mars and took part in science operations once the rover landed. A materials scientist, Razzell Hollis has previously studied the chemical effects of sunlight on a new kind of solar panel made from plastic, as well as on plastic pollution floating in the Earth’s oceans.
He likened those effects to how white plastic lawn chairs become yellow and brittle after years in sunlight. Roughly the same thing happens on Mars, but the weathering likely happens faster because of the high exposure to ultraviolet light there.
The key to developing safer spacesuit materials will be understanding how quickly they would wear down on the Martian surface. About 50% of the changes SHERLOC witnessed in the samples happened within Perseverance’s first 200 days on Mars, with the Vectran appearing to change first.
Another nuance will be figuring out how much solar radiation different parts of a spacesuit will have to withstand. For example, an astronaut’s shoulders will be more exposed — and likely encounter more radiation — than his or her palms.
Next Steps
The SHERLOC team is working on a science paper detailing initial data on how the samples have fared on Mars. Meanwhile, scientists at NASA Johnson are eager to simulate that weathering in special chambers that mimic the carbon dioxide atmosphere, air pressure, and ultraviolet light on the Martian surface. They could then compare the results generated on Earth while putting the materials to the test with those seen in the SHERLOC data. For example, the researchers could stretch the materials until they break to check if they become more brittle over time.
“The fabric materials are designed to be tough but flexible, so they protect astronauts but can bend freely,” Fries said. “We want to know the extent to which the fabrics lose their strength and flexibility over time. As the fabrics weaken, they can fray and tear, allowing a spacesuit to leak both heat and air.”
More About Perseverance
A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet, and is the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program (MEP) portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
For more about Perseverance:
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Share
Details
Last Updated Mar 26, 2025 Related Terms
Perseverance (Rover) Johnson Space Center Mars Mars 2020 Radioisotope Power Systems (RPS) Explore More
3 min read Engineering Reality: Lee Bingham Leads Lunar Surface Simulation Support for Artemis Campaign
Article 2 days ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on…
Article 2 days ago 3 min read 50 Years Ago: Final Saturn Rocket Rolls Out to Launch Pad 39
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
Defense Secretary Pete Hegseth remarked on the value of the Air Force and Space Force in both deterring and engaging in future military conflicts while speaking at the Department of the Air Force Summit.
View the full article
-
By Space Force
DAF guidance on Return to In-Person Work for the purpose of creating a more capable and lethal force.
View the full article
-
By NASA
NASA’s Worm logo is displayed in front of the agency’s headquarters in Washington.Credit: NASA For the 13th straight year, NASA has earned the title of Best Place to Work in the Federal Government – large agency – from the Partnership for Public Service. The ranking reflects employee satisfaction and workplace elements across the agency while executing NASA’s mission to explore the unknown and discover new knowledge for the benefit of humanity.
“NASA’s greatest asset has always been its people – those who rise to the challenge of leading in air and space,” said NASA acting Administrator Janet Petro. “This recognition reflects a culture of collaboration, innovation, and excellence that fuels our mission every day and defines NASA as the best place to work in the federal government. I’m honored to lead this remarkable team as we continue benefiting humanity and inspiring the world in the process.”
Throughout 2024, NASA’s workforce supported the agency’s groundbreaking accomplishments, including landing new science and technology on the Moon with an American company for the first time and launching a new mission to study Jupiter’s icy moon Europa. NASA teams also collaborated to maintain more than 24 years of continuous human exploration and scientific research aboard the International Space Station and unveiled its supersonic quiet aircraft.
The agency also shared the wonder of a total eclipse with millions of Americans, conducted the final flight of its Ingenuity helicopter on Mars, and announced the newest class of Artemis Generation astronauts. With the release of its latest Economic Impact Report, NASA demonstrated how its work impacts the U.S. economy, creates value to society, and returns investment to taxpayers.
The Partnership for Public Service began to compile the Best Places to Work rankings in 2003 to analyze federal employee’s viewpoints of leadership, work-life balance, and other factors of their job. A formula is used to evaluate employee responses to a federal survey, dividing submissions into four groups: large, midsize, and small agencies, in addition to their subcomponents.
Read about the Best Places to Work for 2024 online.
To learn more about NASA’s missions, visit:
https://www.nasa.gov
-end-
Share
Details
Last Updated Mar 07, 2025 Related Terms
People of NASA Life at NASA Missions NASA Centers & Facilities View the full article
-
By NASA
Tess Caswell, a stand-in crew member for the Artemis III Virtual Reality Mini-Simulation, executes a moonwalk in the Prototype Immersive Technology (PIT) lab at NASA’s Johnson Space Center in Houston. The simulation was a test of using VR as a training method for flight controllers and science teams’ collaboration on science-focused traverses on the lunar surface. Credit: NASA/Robert Markowitz When astronauts walk on the Moon, they’ll serve as the eyes, hands, and boots-on-the-ground interpreters supporting the broader teams of scientists on Earth. NASA is leveraging virtual reality to provide high-fidelity, cost-effective support to prepare crew members, flight control teams, and science teams for a return to the Moon through its Artemis campaign.
The Artemis III Geology Team, led by principal investigator Dr. Brett Denevi of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, participated in an Artemis III Surface Extra-Vehicular VR Mini-Simulation, or “sim” at NASA’s Johnson Space Center in Houston in the fall of 2024. The sim brought together science teams and flight directors and controllers from Mission Control to carry out science-focused moonwalks and test the way the teams communicate with each other and the astronauts.
“There are two worlds colliding,” said Dr. Matthew Miller, co-lead for the simulation and exploration engineer, Amentum/JETSII contract with NASA. “There is the operational world and the scientific world, and they are becoming one.”
NASA mission training can include field tests covering areas from navigation and communication to astronaut physical and psychological workloads. Many of these tests take place in remote locations and can require up to a year to plan and large teams to execute. VR may provide an additional option for training that can be planned and executed more quickly to keep up with the demands of preparing to land on the Moon in an environment where time, budgets, and travel resources are limited.
VR helps us break down some of those limitations and allows us to do more immersive, high-fidelity training without having to go into the field. It provides us with a lot of different, and significantly more, training opportunities.
BRI SPARKS
NASA co-lead for the simulation and Extra Vehicular Activity Extended Reality team at Johnson.
Field testing won’t be going away. Nothing can fully replace the experience crew members gain by being in an environment that puts literal rocks in their hands and incudes the physical challenges that come with moonwalks, but VR has competitive advantages.
The virtual environment used in the Artemis III VR Mini-Sim was built using actual lunar surface data from one of the Artemis III candidate regions. This allowed the science team to focus on Artemis III science objectives and traverse planning directly applicable to the Moon. Eddie Paddock, engineering VR technical discipline lead at NASA Johnson, and his team used data from NASA’s Lunar Reconnaissance Orbiter and planet position and velocity over time to develop a virtual software representation of a site within the Nobile Rim 1 region near the south pole of the Moon. Two stand-in crew members performed moonwalk traverses in virtual reality in the Prototype Immersive Technology lab at Johnson, and streamed suit-mounted virtual video camera views, hand-held virtual camera imagery, and audio to another location where flight controllers and science support teams simulated ground communications.
A screen capture of a virtual reality view during the Artemis III VR Mini-Simulation. The lunar surface virtual environment was built using actual lunar surface data from one of the Artemis III candidate regions. Credit: Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. The crew stand-ins were immersed in the lunar environment and could then share the experience with the science and flight control teams. That quick and direct feedback could prove critical to the science and flight control teams as they work to build cohesive teams despite very different approaches to their work.
The flight operations team and the science team are learning how to work together and speak a shared language. Both teams are pivotal parts of the overall mission operations. The flight control team focuses on maintaining crew and vehicle safety and minimizing risk as much as possible. The science team, as Miller explains, is “relentlessly thirsty” for as much science as possible. Training sessions like this simulation allow the teams to hone their relationships and processes.
Members of the Artemis III Geology Team and science support team work in a mock Science Evaluation Room during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Video feeds from the stand-in crew members’ VR headsets allow the science team to follow, assess, and direct moonwalks and science activities. Credit: NASA/Robert Markowitz Denevi described the flight control team as a “well-oiled machine” and praised their dedication to getting it right for the science team. Many members of the flight control team have participated in field and classroom training to learn more about geology and better understand the science objectives for Artemis.
“They have invested a lot of their own effort into understanding the science background and science objectives, and the science team really appreciates that and wants to make sure they are also learning to operate in the best way we can to support the flight control team, because there’s a lot for us to learn as well,” Denevi said. “It’s a joy to get to share the science with them and have them be excited to help us implement it all.”
Artemis III Geology Team lead Dr. Brett Denevi of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, left, Artemis III Geology Team member, Dr. Jose Hurtado, University of Texas at El Paso, and simulation co-lead, Bri Sparks, work together during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz This simulation, Sparks said, was just the beginning for how virtual reality could supplement training opportunities for Artemis science. In the future, using mixed reality could help take the experience to the next level, allowing crew members to be fully immersed in the virtual environment while interacting with real objects they can hold in their hands. Now that the Nobile Rim 1 landing site is built in VR, it can continue to be improved and used for crew training, something that Sparks said can’t be done with field training on Earth.
While “virtual” was part of the title for this exercise, its applications are very real.
“We are uncovering a lot of things that people probably had in the back of their head as something we’d need to deal with in the future,” Miller said. “But guess what? The future is now. This is now.”
Test subject crew members for the Artemis III Virtual Reality Mini-Simulation, including Grier Wilt, left, and Tess Caswell, center, execute a moonwalk in the Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz Grier Wilt, left, and Tess Caswell, crew stand-ins for the Artemis III Virtual Reality Mini-Simulation, execute a moonwalk in the Prototype Immersive Technology (PIT) lab at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz Engineering VR technical discipline lead Eddie Paddock works with team members to facilitate the virtual reality components of the Artemis III Virtual Reality Mini-Simulation in the Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. Credit: Robert Markowitz Flight director Paul Konyha follows moonwalk activities during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz
Rachel Barry
NASA’s Johnson Space Center
Keep Exploring Discover More Topics From NASA
Astromaterials
Artemis Science
A Time Capsule The Moon is a 4.5-billion-year-old time capsule, pristinely preserved by the cold vacuum of space. It is…
Lunar Craters
Earth’s Moon is covered in craters. Lunar craters tell us the history not only of the Moon, but of our…
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.