Members Can Post Anonymously On This Site
35 Years Ago: STS-36 Flies a Dedicated Department of Defense Mission
-
Similar Topics
-
By Space Force
The Department of the Air Force released the memorandum Department of the Air Force Hiring Freeze pursuant to Secretary of Defense Memorandum “Immediate Civilian Hiring Freeze for Alignment with National Defense Priorities.”
View the full article
-
By NASA
On March 3, 1915, the United States Congress created the National Advisory Committee for Aeronautics (NACA). Although the NACA’s founding took place just over 11 years after the Wright Brothers’ first powered flightfirst powered flight at Kitty Hawk, North Carolina, Congress took the action in response to America lagging behind other world powers’ advances in aviation and aeronautics. From its modest beginnings as an advisory committee, over the years, the NACA established research centers and test facilities that enabled groundbreaking advances in civilian and military aviation, as well as the fledgling discipline of spaceflight. With the creation of the National Aeronautics and Space Administration in 1958, the new agency incorporated the NACA’s facilities, its employees, and its annual budget. The NACA provided NASA with a strong foundation as it set out to explore space.
The first meeting of the National Advisory Committee for Aeronautics on April 23, 1915.NASA The NACA executive committee in 1934. NASA The Congressional action that created the NACA, implemented as a rider to the 1915 Naval Appropriations Bill, reads in part, “…It shall be the duty of the advisory committee for aeronautics to supervise and direct the scientific study of the problems of flight with a view to their practical solution. …”. In its initial years, the NACA fulfilled its intended role, coordinating activities already in place in the area of aeronautics research, reporting directly to the president. The committee, made up of 12 representatives from government agencies, academia, and the military, first met on April 23 in the Office of the Secretary of War in Washington, D.C. It established a nine-member executive committee to oversee day-to-day operations and spent the first few years establishing its headquarters in Washington.
The committee’s logo, approved in 1941.NASA The committee’s seal, approved by presidential executive order in 1953.NASA
Hangars at the Langley Memorial Aeronautical Laboratory in Hampton, Virginia, in 1931. NASA The Variable Density Tunnel at Langley. NASA Aerial view of the Ames Aeronautical Laboratory in Sunnyvale, California, in 1944. NASA Aerial view of the Aircraft Engine Research Laboratory in Cleveland, Ohio, in 1945.NASA Within a few years, the NACA’s role began to expand with the establishment of research facilities. The Langley Memorial Aeronautical Laboratory, today NASA’s Langley Research Center, in Hampton, Virginia, opened on June 11, 1920. Over the next few decades, Langley served as a testing facility for new types of aircraft, using wind tunnels and other technological advances. The Ames Aeronautical Laboratory in Sunnyvale, California, today NASA’s Ames Research Center, opened in 1940 and the Aircraft Engine Research Laboratory in Cleveland, today NASA’s Glenn Research Center, in 1941. The three labs achieved many breakthroughs in civilian and military aviation before, during, and after World War II. The Cleveland lab, renamed the Lewis Flight Propulsion Laboratory in 1948, concentrated most of its efforts on advances in jet propulsion.
The NACA High-Speed Flight Station, now NASA’s Armstrong Flight Research Center, at Edwards Air Force Base in California’s Mojave Desert. NASA The Bell X-1, the first aircraft to break the sound barrier in 1947.NASA The first sounding rocket launch from the Pilotless Aircraft Research Station at Wallops Island, Virginia, in 1945.NASA After World War II, the NACA began work on achieving supersonic flight. In 1946, the agency established the Muroc Flight Test Unit at the Air Force’s Muroc Field, later renamed Edwards Air Force Base, in California’s Mojave Desert. In a close collaboration, the NACA, the Air Force, and Bell Aircraft developed the X-1 airplane that first broke the sound barrier in 1947. Muroc Field underwent several name changes, first to the High-Speed Flight Station in 1949, then in 1976 to NASA’s Dryden, and in 2014 to Armstrong Flight Research Center. In 1945, the NACA established the Pilotless Aircraft Research Station on Wallops Island, Virginia, now NASA’s Wallops Flight Facility, as a test site for rocketry research, under Langley’s direction. From the first launch in 1945 through 1958, the NACA launched nearly 400 different types of rockets from Wallops.
Shadowgraph of finned hemispherical model in free flight shows shock waves produced by blunt bodies.NACA Meeting of the NACA’s Special Committee on Space Technology in May 1958.NASA In the 1950s, the NACA began to study the feasibility of spaceflight, including sending humans into space. In 1952, NACA engineers developed the concept of a blunt body capsule as the most efficient way to return humans from space. The design concept found its way into the Mercury capsule and all future American spacecraft. Following the dawn of the space age in 1957, the NACA advocated that it take the lead in America’s spaceflight effort. The Congress passed, and President Dwight D. Eisenhower signed legislation to create a new civilian space agency, and on Oct. 1, 1958, NASA officially began operations. The new organization incorporated the NACA’s research laboratories and test facilities, its 8,000 employees, and its $100 million annual budget. Many of NASA’s key early leaders and engineers began their careers in the NACA. The NACA’s last director, Hugh Dryden, served as NASA’s first deputy administrator.
For more information about the NACA and its transition to NASA, read former NASA Chief Historian Roger Launius’ book NASA to NASA to Now: The Frontiers of Air and Space in the American Century. Watch this video narrated by former NASA Chief Historian Bill Barry about the NACA.
Explore More
7 min read 65 Years Ago: The National Aeronautics and Space Act of 1958 Creates NASA
Article 2 years ago 4 min read 65 Years Ago: Eisenhower Nominates Glennan and Dryden to Top NASA Positions
Article 2 years ago 6 min read 65 Years Ago: NASA Begins Operations
Article 1 year ago 7 min read 65 Years Ago: The International Geophysical Year Begins
Article 3 years ago View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
To celebrate the 110th anniversary of the organization that ultimately became NASA, the agency released a new collection of videos to highlight the history of the National Advisory Committee for Aeronautics (NACA) and the ways it transformed flight over four decades.
A new video collection highlights the history and significance of NASA’s predecessor organization. Not long after the beginning of World War I, the United States Congress, concerned that America was lagging behind other countries, created a new committee to advance the nation’s flight technology development. On March 3, 1915, the NACA was founded “to supervise and direct the scientific study of the problems of flight, with a view to their practical solution.”
While the NACA began as a committee of only 12 leaders representing government, military, and industry, it rapidly expanded through World War II to develop America’s flight capabilities for defense and commercial uses. The organization became home to some of the nation’s best and brightest aeronautical engineers and world-class facilities, transforming into NASA at the dawn of the Space Age in 1958.
The new video collection highlights some of NACA’s striking historic photography and celebrates this pioneering organization with a brief history of its formation, expansion, and groundbreaking aeronautics research at four centers across the United States — the current homes of NASA’s Langley Research Center in Hampton Virginia, Ames Research Center in California’s Silicon Valley, Glenn Research Center in Cleveland, and Armstrong Flight Research Center in Edwards, California.
Related Links
The NACA’s 110th Anniversary Feature E-book: NACA to NASA to Now: The Frontiers of Air and Space in the American Century E-book: A Wartime Necessity: The National Advisory Committee for Aeronautics (NACA) and Other National Aeronautical Research Organizations’ Efforts at Innovation During World War II Share
Details
Last Updated Mar 03, 2025 EditorMichele Ostovar Related Terms
NASA History Aeronautics Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center National Advisory Committee for Aeronautics (NACA) Explore More
5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
Article 2 months ago 3 min read NASA Glenn Established in Cleveland in 1941
Article 1 year ago 9 min read From Biplanes to Supersonic Flight
Article 10 years ago Keep Exploring Discover More Topics From NASA
The National Advisory Committee for Aeronautics (NACA)
Aeronautics
NASA History
NACA Oral Histories
View the full article
-
By NASA
6 Min Read NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork
NASA’s Marshall Space Flight Center in Huntsville, Alabama, is celebrating its 65-year legacy of ingenuity and service to the U.S. space program – and the expansion of its science, engineering, propulsion, and human spaceflight portfolio with each new decade since the NASA field center opened its doors on July 1, 1960.
What many Americans likely call to mind are the “days of smoke and fire,” said Marshall Director Joseph Pelfrey, referring to the work conducted at Marshall to enable NASA’s launch of the first Mercury-Redstone rocket and the Saturn V which lifted Americans to the Moon, the inaugural space shuttle mission, and the shuttle flights that carried the Hubble Space Telescope, Chandra X-ray Observatory, and elements of the International Space Station to orbit. Most recently, he said they’re likely to recall the thunder of NASA’s SLS (Space Launch System), rising into the sky during Artemis I.
NASA’s Space Launch System, carrying the Orion spacecraft, launches on the Artemis I flight test on Nov. 16, 2022. NASA’s Marshall Space Flight Center in Huntsville, Alabama, led development and oversees all work on the new flagship rocket, building on its storied history of propulsion and launch vehicle design dating back to the Redstone and Saturn rockets. The most powerful rocket ever built, SLS is the backbone of NASA’s Artemis program, set to carry explorers back to the Moon in 2026, help establish a permanent outpost there, and make possible new, crewed journeys to Mars in the years to come.NASA/Bill Ingalls Yet all the other days are equally meaningful, Pelfrey said, highlighting a steady stream of milestones reflecting the work of Marshall civil service employees, contractors, and industry partners through the years – as celebrated in a new “65 Years of Marshall” timeline.
“The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable,” Pelfrey said. “Together they’ve blended legacy with innovation – advancing space exploration and scientific discovery through collaboration, engineering excellence, and technical solutions. They’ve invented and refined technologies that make it possible to safely live and work in space, to explore other worlds, and to help safeguard our own.
The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable.
Joseph Pelfrey
Marshall Space Flight Center Director
“Days of smoke and fire may be the most visible signs, but it’s the months and years of preparation and the weeks of post-launch scientific discovery that mark the true dedication, sacrifice, and monumental achievements of this team.”
Reflecting on Marshall history
Marshall’s primary task in the 1960s was the development and testing of the rockets that carried the first American astronaut to space, and the much larger and more technically complex Saturn rocket series, culminating in the mighty Saturn V, which carried the first human explorers to the Moon’s surface in 1969.
“Test, retest, and then fly – that’s what we did here at the start,” said retired engineer Harry Craft, who was part of the original U.S. Army rocket development team that moved from Fort Bliss, Texas, to Huntsville to begin NASA’s work at Marshall. “And we did it all without benefit of computers, working out the math with slide rules and pads of paper.”
The 138-foot-long first stage of the Saturn V rocket is lowered to the ground following a successful static test firing in fall 1966 at the S-1C test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The Saturn V, developed and managed at Marshall, was a multi-stage, multi-engine launch vehicle that stood taller than the Statue of Liberty and lofted the first Americans to the Moon. Its success helped position Marshall as an aerospace leader in propulsion, space systems, and launch vehicle development.NASA “Those were exciting times,” retired test engineer Parker Counts agreed. He joined Marshall in 1963 to conduct testing of the fully assembled and integrated Saturn first stages. It wasn’t uncommon for work weeks to last 10 hours a day, plus weekend shifts when deadlines were looming.
Counts said Dr. Wernher von Braun, Marshall’s first director, insisted staff in the design and testing organizations be matched with an equal number of engineers in Marshall’s Quality and Reliability Assurance Laboratory.
“That checks-and-balances engineering approach led to mission success for all 32 of the Saturn family of rockets,” said Counts, who went on to support numerous other propulsion programs before retiring from NASA in 2003.
“We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century,” said instrumentation and electronics test engineer Willie Weaver, who worked at Marshall from 1960 to 1988 – and remains a tour guide at its visitor center, the U.S. Space & Rocket Center.
We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century.
Willie Weaver
Former Marshall Space Flight Center Employee
The 1970s at Marshall were a period of transition and expanded scientific study, as NASA ended the Apollo Program and launched the next phase of space exploration. Marshall provided critical work on the first U.S. space station, Skylab, and led propulsion element development and testing for NASA’s Space Shuttle Program.
Marshall retiree Jim Odom, a founding engineer who got his start launching NASA satellites in the run-up to Apollo, managed the Space Shuttle External Tank project. The role called for weekly trips to NASA’s Michoud Assembly Facility in New Orleans, which has been managed by Marshall since NASA acquired the government facility in 1961. The shuttle external tanks were manufactured in the same bays there where NASA and its contractors built the Saturn rockets.
This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle’s three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.NASA “We didn’t have cellphones or telecon capabilities yet,” Odom recalled. “I probably spent more time with the pilot of the twin-engine plane in those days than I did with my wife.”
Marshall’s shuttle propulsion leadership led to the successful STS-1 mission in 1981, launching an era of orbital science exemplified by NASA’s Spacelab program.
“Spacelab demonstrated that NASA could continue to achieve things no one had ever done before,” said Craft, who served as mission manager for Spacelab 1 in 1983 – a highlight of his 40-year NASA career. “That combination of science, engineering, and global partnership helped shape our goals in space ever since.”
Engineers in the X-ray Calibration Facility at NASA’s Marshall Space Flight Center in Huntsville, Alabama, work to integrate elements of the Chandra X-ray Observatory in this March 1997 photo. Chandra was lifted to orbit by space shuttle Columbia on July 23, 1999, the culmination of two decades of telescope optics, mirror, and spacecraft development and testing at Marshall. In the quarter century since, Chandra has delivered nearly 25,000 detailed observations of neutron stars, supernova remnants, black holes, and other high-energy objects, some as far as 13 billion light-years distant. Marshall continues to manage the program for NASA. NASA Bookended by the successful Hubble and Chandra launches, the 1990s also saw Marshall deliver the first U.S. module for the International Space Station, signaling a transformative new era of human spaceflight.
Odom, who retired in 1989 as associate administrator for the space station at NASA Headquarters, reflects on his three-decade agency career with pride.
“It was a great experience, start to finish, working with the teams in Huntsville and New Orleans and our partners nationwide and around the globe, meeting each new challenge, solving the practical, day-to-day engineering and technology problems we only studied about in college,” he said.
Shrouded for transport, a 45-foot segment of the International Space Station’s “backbone” truss rolls out of test facilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in July 2000, ready to be flown to the Kennedy Space Center in Florida for launch. Marshall played a key role in the development, testing, and delivery of the truss and other critical space station modules and structural elements, as well as the station’s air and water recycling systems and science payload hardware. Marshall’s Payload Operations Integration Center also continues to lead round-the-clock space station science. NASA That focus on human spaceflight solutions continued into the 21st century. Marshall delivered additional space station elements and science hardware, refined its air and water recycling systems, and led round-the-clock science from the Payload Operations Integration Center. Marshall scientists also managed the Gravity Probe Band Hinode missions and launched NASA’s SERVIR geospatial observation system. Once primary space stationconstruction – and the 40-year shuttle program – concluded in the 2010s, Marshall took on oversight of NASA’s Space Launch System, led James Webb Space Telescope mirror testing, and delivered the orbiting Imaging X-ray Polarimetry Explorer.
As the 2020s continue, Marshall meets each new challenge with enthusiasm and expertise, preparing for the highly anticipated Artemis II crewed launch and a host of new science and discovery missions – and buoyed by strong industry partners and by the Huntsville community, which takes pride in being home to “Rocket City USA.”
“Humanity is on an upward, outward trajectory,” Pelfrey said. “And day after day, year after year, Marshall is setting the course to explore beyond tomorrow’s horizon.”
Read more about Marshall and its 65-year history:
https://www.nasa.gov/marshall
Hannah Maginot
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
hannah.l.maginot@nasa.gov
Share
Details
Last Updated Feb 24, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation
Article 2 weeks ago 5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
Article 1 month ago Keep Exploring Discover More Topics From NASA
Legacy to Horizon: Marshall 65
Marshall Space Flight Center Missions
Marshall Space Flight Center
Marshall Space Flight Center History
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.