Members Can Post Anonymously On This Site
An Ocean in Motion: NASA’s Mesmerizing View of Earth’s Underwater Highways
-
Similar Topics
-
By NASA
Earth (ESD) Earth Explore Explore Earth Science Climate Change Science in Action Multimedia Image Collections Videos Data For Researchers About Us 8 Min Read Going With the Flow: Visualizing Ocean Currents with ECCO
The North American Gulf Stream as illustrated with the ECCO model. Credits:
Greg Shirah/NASA’s Scientific Visualization Studio Historically, the ocean has been difficult to model. Scientists struggled in years past to simulate ocean currents or accurately predict fluctuations in temperature, salinity, and other properties. As a result, models of ocean dynamics rapidly diverged from reality, which meant they could only provide useful information for brief periods.
In 1999, a project called Estimating the Circulation and Climate of the Ocean (ECCO) changed all that. By applying the laws of physics to data from multiple satellites and thousands of floating sensors, NASA scientists and their collaborators built ECCO to be a realistic, detailed, and continuous ocean model that spans decades. ECCO enabled thousands of scientific discoveries, and was featured during the announcement of the Nobel Prize for Physics in 2021.
NASA ECCO is a powerful integrator of decades of ocean data, narrating the story of Earth’s changing ocean as it drives our weather, and sustains marine life.
The ECCO project includes hundreds of millions of real-world measurements of temperature, salinity, sea ice concentration, pressure, water height, and flow in the world’s oceans. Researchers rely on the model output to study ocean dynamics and to keep tabs on conditions that are crucial for ecosystems and weather patterns. The modeling effort is supported by NASA’s Earth science programs and by the international ECCO consortium, which includes researchers from NASA’s Jet Propulsion Laboratory in Southern California and eight research institutions and universities.
The project provides models that are the best possible reconstruction of the past 30 years of the global ocean. It allows us to understand the ocean’s physical processes at scales that are not normally observable.
ECCO and the Western Boundary Currents
Western boundary currents stand out in white in this visualization built with ECCO data. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Large-scale wind patterns around the globe drag ocean surface waters with them, creating complex currents, including some that flow toward the western sides of the ocean basins. The currents hug the eastern coasts of continents as they head north or south from the equator: These are the western boundary currents. The three most prominent are the Gulf Stream, Agulhas, and Kuroshio. NASA Goddard’s Scientific Visualization Studio.
The North American Gulf Stream as illustrated with the ECCO model. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Seafarers have known about the Gulf Stream — the Atlantic Ocean’s western boundary current — for more than 500 years. By the volume of water it moves, the Gulf Stream is the largest of the western boundary currents, transporting more water than all the planet’s rivers combined.
In 1785, Benjamin Franklin added it to maritime charts showing the current flowing up from the Gulf, along the eastern U.S. coast, and out across the North Atlantic. Franklin noted that riding the current could improve a ship’s travel time from the Americas to Europe, while avoiding the current could shorten travel times when sailing back.
A visualization built of ECCO data reveals a cold, deep countercurrent that flows in the opposite direction of the warm Gulf Stream above it. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Franklin’s charts showed a smooth Gulf Stream rather than the twisted, swirling path revealed in ECCO data. And Franklin couldn’t have imagined the opposing flow of water below the Gulf Stream. The countercurrent runs at depths of about 2,000 feet (600 meters) in a cold river of water that is roughly the opposite of the warm Gulf Stream at the surface. The submarine countercurrent is clearly visible when the upper layers in the ECCO model are peeled away in visualizations.
The Gulf Stream is a part of the Atlantic Meridional Overturning Circulation (AMOC), which moderates climate worldwide by transporting warm surface waters north and cool underwater currents south. The Gulf Stream, in particular, stabilizes temperatures of the southeastern United States, keeping the region warmer in winter and cooler in summer than it would be without the current. After the Gulf Stream crosses the Atlantic, it tempers the climates of England and the European coast as well.
The Agulhas current originates along the equator in the Indian Ocean, travels down the western coast of Africa, and spawns swirling Agulhas rings that travel across the Atlantic toward South America. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio The Agulhas Current flows south along the western side of the Indian Ocean. When it reaches the southern tip of Africa, it sheds swirling vortices of water called Agulhas Rings. Sometimes persisting for years, the rings glide across the Atlantic toward South America, transporting small fish, larvae, and other microorganisms from the Indian Ocean.
Researchers using the ECCO model can study Agulhas Current flow as it sends warm, salty water from the tropics in the Indian Ocean toward the tip of South Africa. The model helps tease out the complicated dynamics that create the Agulhas rings and large loop of current called a supergyre that surrounds the Antarctic. The Southern Hemisphere supergyre links the southern portions of other, smaller current loops (gyres) that circulate in the southern Atlantic, Pacific, and Indian oceans. Together with gyres in the northern Atlantic and Pacific, the southern gyres and Southern Hemisphere supergyre influence climate while transporting carbon around the globe.
The Kuroshio Current flows on the western side of the Pacific Ocean, past the east coast of Japan, east across the Pacific, and north toward the Arctic. Along the way, it provides warm water to drive seasonal storms, while also creating ocean upwellings that carry nutrients that sustain fisheries off the coasts of Taiwan and northern Japan. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio In addition to affecting global weather patterns and temperatures, western boundary currents can drive vertical flows in the oceans known as upwellings. The flows bring nutrients up from the depths to the surface, where they act as fertilizer for phytoplankton, algae, and aquatic plants.
The Kuroshio Current that runs on the west side of the Pacific Ocean and along the east side of Japan has recently been associated with upwellings that enrich coastal fishing waters. The specific mechanisms that cause the vertical flows are not entirely clear. Ocean scientists are now turning to ECCO to tease out the connection between nutrient transport and currents like the Kuroshio that might be revealed in studies of the water temperature, density, pressure, and other factors included in the ECCO model.
Tracking Ocean Temperatures and Salinity
When viewed through the lens of ECCO’s temperature data, western boundary currents carry warm water away from the tropics and toward the poles. In the case of the Gulf Stream, as the current moves to far northern latitudes, some of the saltwater freezes into salt-free sea ice. The saltier water left behind sinks and then flows south all the way toward the Antarctic before rising and warming in other ocean basins.
Colors indicate temperature in this visualization of ECCO data. Warm water near the equator is bright yellow. Water cools when it flows toward the poles, indicated by the transition to orange and red shades farther from the equator. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Currents also move nutrients and salt throughout Earth’s ocean basins. Swirling vortexes of the Agulhas rings stand out in ECCO temperature and salinity maps as they move warm, salty water from the Indian Ocean into the Atlantic.
The Mediterranean Sea has a dark red hue that indicates its high salt content. Other than the flow through the narrow Strait of Gibraltar, the Mediterranean is cut off from the rest of the world’s oceans. Because of this restricted flow, salinity increases in the Mediterranean as its waters warm and evaporate, making it one of the saltiest parts of the global ocean. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Experimenting with ECCO
ECCO offers researchers a way to run virtual experiments that would be impractical or too costly to perform in real oceans. Some of the most important applications of the ECCO model are in ocean ecology, biology, and chemistry. Because the model shows where the water comes from and where it goes, researchers can see how currents transport heat, minerals, nutrients, and organisms around the planet.
In prior decades, for example, ocean scientists relied on extensive temperature and salinity measurements by floating sensors to deduce that the Gulf Stream is primarily made of water flowing past the Gulf rather than through it. The studies were time-consuming and expensive. With the ECCO model, data visualizers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, virtually replicated the research in a simulation that was far quicker and cheaper.
A simulation built with data from the ECCO model shows that very little of the water in the gulf contributes to the water flowing in the Gulf Stream.
Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Atousa Saberi/NASA’s Scientific Visualization Studio The example illustrated here relies on ECCO to track the flow of water by virtually filling the Gulf with 115,000 particles and letting them move for a year in the model. The demonstration showed that less than 1% of the particles escape the Gulf to join the Gulf Stream.
Running such particle-tracking experiments within the ocean circulation models helps scientists understand how and where environmental contaminants, such as oil spills, can spread.
Take an ECCO Deep Dive
Today, researchers turn to ECCO for a broad array of studies. They can choose ECCO modeling products that focus on one feature – such as global flows or the biology and chemistry of the ocean – or they can narrow the view to the poles or specific ocean regions. Every year, more than a hundred scientific papers include data and analyses from the ECCO model that delve into our oceans’ properties and dynamics.
Credits: Kathleen Gaeta Greer/ NASA’s Scientific Visualization Studio Composed by James Riordon / NASA’s Earth Science News Team
Information in this piece came from the resources below and interviews with the following sources: Nadya Vinogradova Shiffer, Dimitris Menemenlis, Ian Fenty, and Atousa Saberi.
References and Sources
Liao, F., Liang, X., Li, Y., & Spall, M. (2022). Hidden upwelling systems associated with major western boundary currents. Journal of Geophysical Research: Oceans, 127(3), e2021JC017649.
Richardson, P. L. (1980). The Benjamin Franklin and Timothy Folger charts of the Gulf Stream. In Oceanography: The Past: Proceedings of the Third International Congress on the History of Oceanography, held September 22–26, 1980 at the Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA on the occasion of the Fiftieth Anniversary of the founding of the Institution (pp. 703-717). New York, NY: Springer New York.
Biastoch, A., Rühs, S., Ivanciu, I., Schwarzkopf, F. U., Veitch, J., Reason, C., … & Soltau, F. (2024). The Agulhas Current System as an Important Driver for Oceanic and Terrestrial Climate. In Sustainability of Southern African Ecosystems under Global Change: Science for Management and Policy Interventions (pp. 191-220). Cham: Springer International Publishing.
Lee-Sánchez, E., Camacho-Ibar, V. F., Velásquez-Aristizábal, J. A., Valencia-Gasti, J. A., & Samperio-Ramos, G. (2022). Impacts of mesoscale eddies on the nitrate distribution in the deep-water region of the Gulf of Mexico. Journal of Marine Systems, 229, 103721.
Share
Details
Last Updated Mar 03, 2025 Editor Michael Carlowicz Contact James Riordon Related Terms
Oceans Earth Explore More
1 min read An Ocean in Motion: NASA’s Mesmerizing View of Earth’s Underwater Highways
This data visualization showing ocean currents around the world uses data from NASA’s Estimating the…
Article
6 mins ago
2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project
Article
3 weeks ago
1 min read 2024 is the Warmest Year on Record
Earth’s average surface temperature in 2024 was the warmest on record.
Article
2 months ago
Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
Explore Earth Science
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 1 min read
Hubble Captures New View of Colorful Veil
This NASA/ESA Hubble Space Telescope image a supernova remnant called the Veil Nebula. ESA/Hubble & NASA, R. Sankrit
Download this image
In this NASA/ESA Hubble Space Telescope image, Hubble once again lifts the veil on a famous — and frequently photographed — supernova remnant: the Veil Nebula. The remnant of a star roughly 20 times as massive as the Sun that exploded about 10,000 years ago, the Veil Nebula is situated about 2,400 light-years away in the constellation Cygnus. Hubble images of this photogenic nebula were first taken in 1994 and 1997, and again in 2015.
This view combines images taken in three different filters by Hubble’s Wide Field Camera 3, highlighting emission from hydrogen, sulfur, and oxygen atoms. The image shows just a small fraction of the Veil Nebula; if you could see the entire nebula without the aid of a telescope, it would be as wide as six full Moons placed side-by-side.
Although this image captures the Veil Nebula at a single point in time, it helps researchers understand how the supernova remnant evolves over decades. Combining this snapshot with Hubble observations from 1994 will reveal the motion of individual knots and filaments of gas over that span of time, enhancing our understanding of this stunning nebula.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
The Death Throes of Stars
Homing in on Cosmic Explosions
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 28, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Nebulae Supernova Remnants Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Reshaping Our Cosmic View: Hubble Science Highlights
Hubble’s Nebulae
Hubble’s Night Sky Challenge
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read NASA’s Hubble Provides Bird’s-Eye View of Andromeda Galaxy’s Ecosystem
A view of the distribution of known satellite galaxies orbiting the large Andromeda galaxy (M31), located 2.5 million light-years away. Credits:
NASA, ESA, Alessandro Savino (UC Berkeley), Joseph DePasquale (STScI), Akira Fujii DSS2 Located 2.5 million light-years away, the majestic Andromeda galaxy appears to the naked eye as a faint, spindle-shaped object roughly the angular size of the full Moon. What backyard observers don’t see is a swarm of nearly three dozen small satellite galaxies circling the Andromeda galaxy, like bees around a hive.
These satellite galaxies represent a rambunctious galactic “ecosystem” that NASA’s Hubble Space Telescope is studying in unprecedented detail. This ambitious Hubble Treasury Program used observations from more than a whopping 1,000 Hubble orbits. Hubble’s optical stability, clarity, and efficiency made this ambitious survey possible. This work included building a precise 3D mapping of all the dwarf galaxies buzzing around Andromeda and reconstructing how efficiently they formed new stars over the nearly 14 billion years of the universe’s lifetime.
This is a wide-angle view of the distribution of known satellite galaxies orbiting the large Andromeda galaxy (M31), located 2.5 million light-years away. The Hubble Space Telescope was used to study the entire population of 36 mini-galaxies circled in yellow. Andromeda is the bright spindle-shaped object at image center. All the dwarf galaxies seem to be confined to a plane, all orbiting in the same direction. The wide view is from ground-based photography. Hubble’s optical stability, clarity, and efficiency made this ambitious survey possible. Hubble close up snapshots of four dwarf galaxies are on image right. The most prominent dwarf galaxy is M32 (NGC 221), a compact ellipsoidal galaxy that might be the remnant core of a larger galaxy that collided with Andromeda a few billion years ago. NASA, ESA, Alessandro Savino (UC Berkeley), Joseph DePasquale (STScI), Akira Fujii DSS2 In the study published in The Astrophysical Journal, Hubble reveals a markedly different ecosystem from the smaller number of satellite galaxies that circle our Milky Way. This offers forensic clues as to how our Milky Way galaxy and Andromeda have evolved differently over billions of years. Our Milky Way has been relatively placid. But it looks like Andromeda has had a more dynamic history, which was probably affected by a major merger with another big galaxy a few billion years ago. This encounter, and the fact that Andromeda is as much as twice as massive as our Milky Way, could explain its plentiful and diverse dwarf galaxy population.
Surveying the Milky Way’s entire satellite system in such a comprehensive way is very challenging because we are embedded inside our galaxy. Nor can it be accomplished for other large galaxies because they are too far away to study the small satellite galaxies in much detail. The nearest galaxy of comparable mass to the Milky Way beyond Andromeda is M81, at nearly 12 million light-years.
This bird’s-eye view of Andromeda’s satellite system allows us to decipher what drives the evolution of these small galaxies. “We see that the duration for which the satellites can continue forming new stars really depends on how massive they are and on how close they are to the Andromeda galaxy,” said lead author Alessandro Savino of the University of California at Berkeley. “It is a clear indication of how small-galaxy growth is disturbed by the influence of a massive galaxy like Andromeda.”
“Everything scattered in the Andromeda system is very asymmetric and perturbed. It does appear that something significant happened not too long ago,” said principal investigator Daniel Weisz of the University of California at Berkeley. “There’s always a tendency to use what we understand in our own galaxy to extrapolate more generally to the other galaxies in the universe. There’s always been concerns about whether what we are learning in the Milky Way applies more broadly to other galaxies. Or is there more diversity among external galaxies? Do they have similar properties? Our work has shown that low-mass galaxies in other ecosystems have followed different evolutionary paths than what we know from the Milky Way satellite galaxies.”
For example, half of the Andromeda satellite galaxies all seem to be confined to a plane, all orbiting in the same direction. “That’s weird. It was actually a total surprise to find the satellites in that configuration and we still don’t fully understand why they appear that way,” said Weisz.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
This animation begins with a view of the neighboring Andromeda galaxy. We zoom through a scattering of foreground stars and enter the inky blackness of intergalactic space. We cross 2.5 million light-years to reach the Andromeda system, consisting of 36 dwarf satellite galaxies orbiting the giant spindle-shaped Andromeda galaxy at image center. An ambitious survey by the Hubble Space Telescope was made to plot the galaxy locations in three-dimensional space. In this video we circle around a model of the Andromeda system based on real Hubble observational data. NASA, ESA, Christian Nieves (STScI), Alessandro Savino (UC Berkeley); Acknowledgment: Joseph DePasquale (STScI), Frank Summers (STScI), Robert Gendler The brightest companion galaxy to Andromeda is Messier 32 (M32). This is a compact ellipsoidal galaxy that might just be the remnant core of a larger galaxy that collided with Andromeda a few billion years ago. After being gravitationally stripped of gas and some stars, it continued along its orbit. Galaxy M32 contains older stars, but there is evidence it had a flurry of star formation a few billion years ago. In addition to M32, there seems to be a unique population of dwarf galaxies in Andromeda not seen in the Milky Way. They formed most of their stars very early on, but then they didn’t stop. They kept forming stars out of a reservoir of gas at a very low rate for a much longer time.
“Star formation really continued to much later times, which is not at all what you would expect for these dwarf galaxies,” continued Savino. “This doesn’t appear in computer simulations. No one knows what to make of that so far.”
“We do find that there is a lot of diversity that needs to be explained in the Andromeda satellite system,” added Weisz. “The way things come together matters a lot in understanding this galaxy’s history.”
Hubble is providing the first set of imaging where astronomers measure the motions of the dwarf galaxies. In another five years Hubble or NASA’s James Webb Space Telescope will be able to get the second set of observations, allowing astronomers to do a dynamical reconstruction for all 36 of the dwarf galaxies, which will help astronomers to rewind the motions of the entire Andromeda ecosystem billions of years into the past.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Explore More
NASA’s Hubble Traces Hidden History of Andromeda Galaxy
Hubble’s High-Definition Panoramic View of the Andromeda Galaxy
Explore the Night Sky: Messier 31
Hubble’s Galaxies
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, Maryland
Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
Science Contact:
Alessandro Savino
University of California, Berkeley, California
Share
Details
Last Updated Feb 27, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Andromeda Galaxy Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Galaxy Details and Mergers
Reshaping Our Cosmic View: Hubble Science Highlights
Hubble’s Night Sky Challenge
View the full article
-
By NASA
6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind
Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure.
NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.
Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space.
“What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado.
This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D
The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.
Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.
“This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.”
All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation.
Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.
“I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.”
When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region.
Building Off Other Missions
“The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.”
When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers).
Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.
A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025.
“The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta.
The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).
“PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.”
The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington.
By Abbey Interrante
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Header Image:
An artist’s concept showing the four PUNCH satellites orbiting Earth.
Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
Share
Details
Last Updated Feb 21, 2025 Related Terms
Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
2 min read Hubble Spies a Spiral That May Be Hiding an Imposter
Article
3 hours ago
3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
Article
3 days ago
2 min read NASA Science: Being Responsive to Executive Orders
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
“I do evolutionary programming,” said NASA Goddard oceanographer Dr. John Moisan. “I see a lot of possibility in using evolutionary programming to solve many large problems we are trying to solve. How did life start and evolve? Can these processes be used to evolve intelligence or sentience?”Courtesy of John Moisan Name: John Moisan
Formal Job Classification: Research oceanographer
Organization: Ocean Ecology Laboratory, Hydrosphere, Biosphere, Geophysics (HBG), Earth Science Directorate (Code 616) – duty station at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
I develop ecosystem models and satellite algorithms to understand how the ocean’s ecology works. My work has evolved over time from when I coded ocean ecosystem models to the present where I now use artificial intelligence to evolve the ocean ecosystem models.
How did you become an oceanographer?
As a child, I watched a TV series called “Sea Hunt,” which involved looking for treasure in the ocean. It inspired me to want to spend my life scuba diving.
I got a Bachelor of Science in marine biology from the University of New England in Biddeford, Maine, and later got a Ph.D. from the Center for Coastal Physical Oceanography at Old Dominion University in Norfolk, Virginia.
Initially, I just wanted to do marine biology which to me meant doing lots of scuba diving, maybe living on a sailboat. Later, when I was starting my graduate schoolwork, I found a book about mathematical biology and a great professor who helped open my eyes to the world of numerical modeling. I found out that instead of scuba diving, I needed instead to spend my days behind a computer, learning how to craft ideas into equations and then code these into a computer to run simulations on ocean ecosystems.
I put myself through my initial education. I went to school fulltime, but I lived at home and hitchhiked to college on a daily basis. When I started my graduate school, I worked to support myself. I was in school during the normal work week, but from Friday evening through Sunday night, I worked 40 hours at a medical center cleaning and sterilizing the operating room instrument carts. This was during the height of the AIDS epidemic.
What was most exciting about your two field trips to the Antarctic?
In 1987, I joined a six-week research expedition to an Antarctic research station to explore how the ozone hole was impacting phytoplankton. These are single-celled algae that are responsible for making half the oxygen we breathe. Traveling to Antarctica is like visiting another planet. There are more types of blue than I’ve ever seen. It is an amazingly beautiful place to visit, with wild landscapes, glaciers, mountains, sea ice, and a wide range of wildlife. After my first trip I returned home and went back in a few months later as a biologist on a joint Polish–U.S. (National Oceanic and Atmospheric Administration) expedition to carry out a biological survey and measure how much fast the phytoplankton was growing in different areas of the Southern Ocean. We used nets to measure the amounts of fish and shrimp and took water samples to measure salinity, the amount of algae and their growth rates. We ate well, for example the Polish cook made up a large batch of smoked ice fish.
What other field work have you done?
While a graduate student, I helped do some benthic work in the Gulf of Maine. This study was focused on understanding the rates of respiration in the muds on the bottom of the ocean and on understanding how much biomass was in the muds. The project lowered a benthic grab device to the bottom where it would push a box core device into the sediments to return it to the surface. This process is sort of like doing a biopsy of the ocean bottom.
What is your goal as a research oceanographer at Goddard?
Ocean scientists measure the amount and variability of chlorophyll a, a pigment in algae, in the ocean because it is an analogue to the amount of algae or phytoplankton in the ocean. Chlorophyll a is used to capture solar energy to make sugars, which the algae use for growth. Generally, areas of the ocean that have more chlorophyll are also areas where growth or primary production is higher. So, by estimating how much chlorophyll is in the ocean we can study how these processes are changing with an aim in understanding why. NASA uses the color of the ocean using satellites to estimate chlorophyll a because chlorophyll absorbs sunlight and changes the color of the ocean. Algae have other kinds of pigments, each of which absorbs light at different wavelengths. Because different groups of algae have different levels of pigments, they are like fingerprints that can reveal the type of algae in the water. Some of my research aims at trying to use artificial intelligence and mathematical techniques to create new ways to measure these pigments from space to understand how ocean ecosystems change.
In 2024, NASA plans to launch the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite, which will measure the color of the ocean at many different wavelengths. The data from this satellite can be used with results from my work on genetic programs and inverse modeling to estimate concentrations of different pigments and possibly concentrations of different types of algae in the ocean.
You have been at Goddard over 22 years. What is most memorable to you?
I develop ecosystem models. But ecosystems do not have laws in the same way that physics has laws. Equations need to be created so that the ecosystem models represent what is observed in the real world. Satellites have been a great source for those observations, but without a lot of other types of observations that are collected in the field, the ocean, it is difficult to develop these equations. In my time at NASA, I have only been able to develop models because of the great but often tedious work that ocean scientists around the world have been doing when they go on ocean expeditions to measure various ocean features, be it simple temperature or the more complicated measurements of algal growth rates. My experience with their willingness to collaborate and share data is especially memorable. This experience is also what I enjoyed with numerous scientists at NASA who have always been willing to support new ideas and point me in the right direction. It has made working at NASA a phenomenal experience.
What are the philosophical implications of your work?
The human capacity to think rapidly, to test and change our opinions based on what we learn, is slow compared to that of a computer. Computers can help us adapt more quickly. I can put 1,000 students in a room developing ecosystem model models. But I know that this process of developing ecosystem models is slow when compared what a computer can do using an artificial intelligence approach called genetic programming, it is a much faster way to generate ecosystem model solutions.
Philosophically, there is no real ecosystem model that is the best. Life and ecosystems on Earth change and adapt at rates too fast for any present-day model to resolve, especially considering climate change. The only real ecosystem model is the reality itself. No computer model can perfectly simulate ecosystems. By utilizing the fast adaptability that evolutionary computer modeling techniques provide, simulating and ultimately predicting ecosystems can be improved greatly.
How does your work have implications for scientists in general?
I do evolutionary programming. I see a lot of possibility in using evolutionary programming to solve many large problems we are trying to solve. How did life start and evolve? Can these processes be used to evolve intelligence or sentience?
The artificial intelligence (AI) work answers questions, but you need to identify the questions. This is the greater problem when it comes to working with AI. You cannot answer the question of how to create a sentient life if you do not know how to define it. If I cannot measure life, how can I model it? I do not know how to write that equation. How does life evolve? How did the evolutionary process start? These are big questions I enjoy discussing with friends. It can be as frustrating as contemplating “nothing.”
Who inspires you?
Many of the scientists that I was fortunate to work with at various research institutes, such as Scripps Institution of Oceanography at the University of California, San Diego. These are groups of scientists are open to always willing to share their ideas. These are individuals who enjoy doing science. I will always be indebted to them for their kindness in sharing of ideas and data.
Do you still scuba dive?
Yes, I wish I could dive daily, it is a very calming experience. I’m trying to get my kids to join me.
What else do you do for fun?
My wife and I bike and travel. Our next big bike trip will hopefully be to Shangri-La City in China. I also enjoy sailing and trying to grow tropical plants. But, most of all, I enjoy helping raise my children to be resilient, empathic, and intelligent beings.
What are your words to live by?
Life. So much to see. So little time.
Conversations With Goddard is a collection of question and answer profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Feb 10, 2025 EditorJessica EvansContactRob Garnerrob.garner@nasa.gov Related Terms
Goddard Space Flight Center Artificial Intelligence (AI) People of Goddard Wallops Flight Facility Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.