Members Can Post Anonymously On This Site
NASA Names Norman Knight as Acting Deputy Director of Johnson Space Center
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A team from University High School of Irvine, California, won the 2025 regional Science Bowl at NASA’s Jet Propulsion Laboratory on March 1. From left, co-coach Nick Brighton, sophomores Shloke Kamat and Timothy Chen, juniors Feodor Yevtushenko and Angelina Yan, senior Sara Yu, and coach David Knight.NASA/JPL-Caltech In a fast-paced competition, students showcased their knowledge across a wide range of science and math topics.
What is the molecular geometry of sulfur tetrafluoride? Which layer of the Sun is thickest? What is the average of the first 10 prime numbers? If you answered “see-saw,” “radiation zone,” and “12.9,” respectively, then you know a tiny fraction of what high school students must learn to compete successfully in the National Science Bowl.
On Saturday, March 1, students from University High School in Irvine answered enough of these kind of challenging questions correctly to earn the points to defeat 19 other high school teams, winning a regional Science Bowl competition hosted by NASA’s Jet Propulsion Laboratory in Southern California. Troy High, from Fullerton, won second place, while Arcadia High placed third.
Some 100 students gathered at JPL for the fast-paced event, which drew schools from across Los Angeles, Orange, and San Bernardino counties. Teams are composed of four students and one alternate, with a teacher serving as coach. Two teams at a time face off in a round robin tournament, followed by tie-breaker and double-elimination rounds, then final matches.
Students, coaches, and volunteers gathered on March 1 for the annual regional Science Bowl competition held at JPL, which has hosted the event since 1993.NASA/JPL-Caltech The questions — in biology, chemistry, Earth and space science, energy, mathematics, and physics — are at a college first-year level. Students spend months preparing, studying, quizzing each other, and practicing with “Jeopardy!”-style buzzers.
It was the third year in a row for a University victory at the JPL-hosted event, and the championship round with Troy was a nail-biter until the very last question. The University team only had one returning student from the previous year’s team, junior Feodor Yevtushenko. Both he and longtime team coach and science teacher David Knight said the key to success is specialization — with each student focusing on particular topic areas.
“I wake up and grind math before school,” Feodor said. “Being a jack-of-all-trades means you’re a jack-of-no-trades. You need ruthless precision and ruthless speed.”
University also won for four years in row from 2018 to 2021. The school’s victory this year enables its team to travel to Washington in late April and vie for ultimate dominance alongside other regional event winners in the national finals.
More than 10,000 students compete in some 115 regional events held across the country. Managed by the U.S. Department of Energy, the National Science Bowl was created in 1991 to make math and science fun for students, and to encourage them to pursue careers in those fields. It’s one of the largest academic competitions in the United States.
JPL’s Public Services Office coordinates the regional contest with the help of volunteers from laboratory staff and former Science Bowl participants in the local community. This year marked JPL’s 33rd hosting the event.
News Media Contact
Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov
2025-030
Share
Details
Last Updated Mar 03, 2025 Related Terms
Jet Propulsion Laboratory STEM Engagement at NASA Explore More
3 min read NASA Uses New Technology to Understand California Wildfires
Article 3 days ago 6 min read NASA’s Europa Clipper Uses Mars to Go the Distance
Article 6 days ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA’s Space X Crew-9 members pose together for a portrait.Credit: NASA Students from Ohio and Texas will have the chance to hear NASA astronauts aboard the International Space Station answer their prerecorded questions this week.
At 12:55 p.m. EST, Wednesday, March 5, NASA astronauts Suni Williams, Nick Hague, Butch Wilmore, and Don Pettit will respond to questions submitted by students from Puede Network, in partnership with The Achievery in Dallas.
At 10:30 a.m., Thursday, March 6, a separate call with NASA astronauts Williams, Hague, and Wilmore, will answer questions posed by students at Saint Ambrose Catholic School in Brunswick, Ohio.
Watch the 20-minute space-to-Earth calls on NASA+. Learn how to watch NASA content on various platforms, including social media.
The Puede Network, a Dallas-based youth organization, is collaborating with the Achievery, an online platform for connecting students with digital learning opportunities. Media interested in covering the event must RSVP by 5 p.m. Tuesday, March 4 to Rodrigo Oshiro at: rodrigo@happytogether.studio or +54 9 113068 7121.
Saint Ambrose Catholic School, part of Saint Ambrose Catholic Church, is a preschool through 8th grade school focused on science, technology, engineering, arts, and mathematics. Media interested in covering the event must RVSP by 5 p.m., Wednesday, March 5 to Breanne Logue at: BLogue@StASchool.us or 330-460-7318.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Mar 03, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
In-flight Education Downlinks For Colleges & Universities Learning Resources Outside the Classroom View the full article
-
By NASA
1 min read
An Ocean in Motion: NASA’s Mesmerizing View of Earth’s Underwater Highways
Earth (ESD) Earth Explore Explore Earth Science Climate Change Science in Action Multimedia Image Collections Videos Data For Researchers About Us This data visualization showing ocean currents around the world uses data from NASA’s ECCO model, or Estimating the Circulation and Climate of the Ocean. The model pulls data from spacecraft, buoys, and other measurements.
Original Video and Assets
Share
Details
Last Updated Mar 03, 2025 Editor Earth Science Division Editorial Team Related Terms
Oceans Earth Video Series Explore More
8 min read Going With the Flow: Visualizing Ocean Currents with ECCO
NASA scientists and collaborators built the ECCO model to be the most realistic, detailed, and…
Article
51 mins ago
2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project
Article
3 weeks ago
1 min read 2024 is the Warmest Year on Record
Earth’s average surface temperature in 2024 was the warmest on record.
Article
2 months ago
Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
Explore Earth Science
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
View the full article
-
By NASA
Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Exposes Complex Atmosphere of Starless Super-Jupiter
This artist’s concept shows what the isolated planetary-mass object SIMP 0136 could look like based on recent observations from NASA’s James Webb Space Telescope and previous observations from Hubble, Spitzer, and numerous ground-based telescopes. Credits:
NASA, ESA, CSA, and Joseph Olmsted (STScI) An international team of researchers has discovered that previously observed variations in brightness of a free-floating planetary-mass object known as SIMP 0136 must be the result of a complex combination of atmospheric factors, and cannot be explained by clouds alone.
Using NASA’s James Webb Space Telescope to monitor a broad spectrum of infrared light emitted over two full rotation periods by SIMP 0136, the team was able to detect variations in cloud layers, temperature, and carbon chemistry that were previously hidden from view.
The results provide crucial insight into the three-dimensional complexity of gas giant atmospheres within and beyond our solar system. Detailed characterization of objects like these is essential preparation for direct imaging of exoplanets, planets outside our solar system, with NASA’s Nancy Grace Roman Space Telescope, which is scheduled to begin operations in 2027.
Rapidly Rotating, Free-Floating
SIMP 0136 is a rapidly rotating, free-floating object roughly 13 times the mass of Jupiter, located in the Milky Way just 20 light-years from Earth. Although it is not classified as a gas giant exoplanet — it doesn’t orbit a star and may instead be a brown dwarf — SIMP 0136 is an ideal target for exo-meteorology: It is the brightest object of its kind in the northern sky. Because it is isolated, it can be observed with no fear of light contamination or variability caused by a host star. And its short rotation period of just 2.4 hours makes it possible to survey very efficiently.
Prior to the Webb observations, SIMP 0136 had been studied extensively using ground-based observatories and NASA’s Hubble and Spitzer space telescopes.
“We already knew that it varies in brightness, and we were confident that there are patchy cloud layers that rotate in and out of view and evolve over time,” explained Allison McCarthy, doctoral student at Boston University and lead author on a study published today in The Astrophysical Journal Letters. “We also thought there could be temperature variations, chemical reactions, and possibly some effects of auroral activity affecting the brightness, but we weren’t sure.”
To figure it out, the team needed Webb’s ability to measure very precise changes in brightness over a broad range of wavelengths.
Graphic A: Isolated Planetary-Mass Object SIMP 0136 (Artist’s Concept)
This artist’s concept shows what the isolated planetary-mass object SIMP 0136 could look like based on recent observations from NASA’s James Webb Space Telescope and previous observations from Hubble, Spitzer, and numerous ground-based telescopes. Researchers used Webb’s NIRSpec (Near-Infrared Spectrograph) and MIRI (Mid-Infrared Instrument) to measure subtle changes in the brightness of infrared light as the object completed two 2.4-hour rotations. By analyzing the change in brightness of different wavelengths over time, they were able to detect variability in cloud cover at different depths, temperature variations in the upper atmosphere, and changes in carbon chemistry as different sides of the object rotated in and out of view. This illustration is based on Webb’s spectroscopic observations. Webb has not captured a direct image of the object. NASA, ESA, CSA, and Joseph Olmsted (STScI) Charting Thousands of Infrared Rainbows
Using NIRSpec (Near-Infrared Spectrograph), Webb captured thousands of individual 0.6- to 5.3-micron spectra — one every 1.8 seconds over more than three hours as the object completed one full rotation. This was immediately followed by an observation with MIRI (Mid-Infrared Instrument), which collected hundreds of spectroscopic measurements of 5- to 14-micron light — one every 19.2 seconds, over another rotation.
The result was hundreds of detailed light curves, each showing the change in brightness of a very precise wavelength (color) as different sides of the object rotated into view.
“To see the full spectrum of this object change over the course of minutes was incredible,” said principal investigator Johanna Vos, from Trinity College Dublin. “Until now, we only had a little slice of the near-infrared spectrum from Hubble, and a few brightness measurements from Spitzer.”
The team noticed almost immediately that there were several distinct light-curve shapes. At any given time, some wavelengths were growing brighter, while others were becoming dimmer or not changing much at all. A number of different factors must be affecting the brightness variations.
“Imagine watching Earth from far away. If you were to look at each color separately, you would see different patterns that tell you something about its surface and atmosphere, even if you couldn’t make out the individual features,” explained co-author Philip Muirhead, also from Boston University. “Blue would increase as oceans rotate into view. Changes in brown and green would tell you something about soil and vegetation.”
Graphic B: Isolated Planetary-Mass Object SIMP 0136 (NIRSpec Light Curves)
These light curves show the change in brightness of three different sets of wavelengths (colors) of near-infrared light coming from the isolated planetary-mass object SIMP 0136 as it rotated. The light was captured by Webb’s NIRSpec (Near-Infrared Spectrograph), which collected a total of 5,726 spectra — one every 1.8 seconds — over the course of about 3 hours on July 23, 2023. The variations in brightness are thought to be related to different atmospheric features — deep clouds composed of iron particles, higher clouds made of tiny grains of silicate minerals, and high-altitude hot and cold spots — rotating in and out of view. The diagram at the right illustrates the possible structure of SIMP 0136’s atmosphere, with the colored arrows representing the same wavelengths of light shown in the light curves. Thick arrows represent more (brighter) light; thin arrows represent less (dimmer) light. NASA, ESA, CSA, and Joseph Olmsted (STScI) Patchy Clouds, Hot Spots, and Carbon Chemistry
To figure out what could be causing the variability on SIMP 0136, the team used atmospheric models to show where in the atmosphere each wavelength of light was originating.
“Different wavelengths provide information about different depths in the atmosphere,” explained McCarthy. “We started to realize that the wavelengths that had the most similar light-curve shapes also probed the same depths, which reinforced this idea that they must be caused by the same mechanism.”
One group of wavelengths, for example, originates deep in the atmosphere where there could be patchy clouds made of iron particles. A second group comes from higher clouds thought to be made of tiny grains of silicate minerals. The variations in both of these light curves are related to patchiness of the cloud layers.
A third group of wavelengths originates at very high altitude, far above the clouds, and seems to track temperature. Bright “hot spots” could be related to auroras that were previously detected at radio wavelengths, or to upwelling of hot gas from deeper in the atmosphere.
Some of the light curves cannot be explained by either clouds or temperature, but instead show variations related to atmospheric carbon chemistry. There could be pockets of carbon monoxide and carbon dioxide rotating in and out of view, or chemical reactions causing the atmosphere to change over time.
“We haven’t really figured out the chemistry part of the puzzle yet,” said Vos. “But these results are really exciting because they are showing us that the abundances of molecules like methane and carbon dioxide could change from place to place and over time. If we are looking at an exoplanet and can get only one measurement, we need to consider that it might not be representative of the entire planet.”
This research was conducted as part of Webb’s General Observer Program 3548.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from The Astrophysical Journal Letters.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Margaret W. Carruthers – mcarruthers@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Learn more about brown dwarf discoveries
Article: Spectroscopy 101
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Universe
Universe Stories
Exoplanets
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
To celebrate the 110th anniversary of the organization that ultimately became NASA, the agency released a new collection of videos to highlight the history of the National Advisory Committee for Aeronautics (NACA) and the ways it transformed flight over four decades.
A new video collection highlights the history and significance of NASA’s predecessor organization. Not long after the beginning of World War I, the United States Congress, concerned that America was lagging behind other countries, created a new committee to advance the nation’s flight technology development. On March 3, 1915, the NACA was founded “to supervise and direct the scientific study of the problems of flight, with a view to their practical solution.”
While the NACA began as a committee of only 12 leaders representing government, military, and industry, it rapidly expanded through World War II to develop America’s flight capabilities for defense and commercial uses. The organization became home to some of the nation’s best and brightest aeronautical engineers and world-class facilities, transforming into NASA at the dawn of the Space Age in 1958.
The new video collection highlights some of NACA’s striking historic photography and celebrates this pioneering organization with a brief history of its formation, expansion, and groundbreaking aeronautics research at four centers across the United States — the current homes of NASA’s Langley Research Center in Hampton Virginia, Ames Research Center in California’s Silicon Valley, Glenn Research Center in Cleveland, and Armstrong Flight Research Center in Edwards, California.
Related Links
The NACA’s 110th Anniversary Feature E-book: NACA to NASA to Now: The Frontiers of Air and Space in the American Century E-book: A Wartime Necessity: The National Advisory Committee for Aeronautics (NACA) and Other National Aeronautical Research Organizations’ Efforts at Innovation During World War II Share
Details
Last Updated Mar 03, 2025 EditorMichele Ostovar Related Terms
NASA History Aeronautics Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center National Advisory Committee for Aeronautics (NACA) Explore More
5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
Article 2 months ago 3 min read NASA Glenn Established in Cleveland in 1941
Article 1 year ago 9 min read From Biplanes to Supersonic Flight
Article 10 years ago Keep Exploring Discover More Topics From NASA
The National Advisory Committee for Aeronautics (NACA)
Aeronautics
NASA History
NACA Oral Histories
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.