Jump to content

Recommended Posts

  • Publishers
Posted

4 min read

Sols 4466-4468: Heading Into the Small Canyon

A color image from the Martian surface shows a close-up of a pale orange-tan rock sticking out above the sandy soil around it, dominating the center of the image. The right side of the rock appears lower, with rough-edged layers resembling a wide staircase rising from ground level toward the center of the rock. The upper left side of the rock appears to be higher, with pockmarks and missing areas that look smoother than the rest of the rock.
NASA’s Mars rover Curiosity produced this image from its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. This image is a combination of two MAHLI images, merged on the rover on Feb. 25, 2025 — sol 4464, or Martian day 4,464 of the Mars Science Laboratory mission — at 22:36:53 UTC.
NASA/JPL-Caltech/MSSS

Written by Susanne Schwenzer, Planetary Geologist at The Open University

Earth planning date: Wednesday, Feb. 26, 2025

The fine detail of the image above reminds us once again that geoscience — on Mars and on Earth — is an observational science. If you look at the image for a few moments, you will see that there are different areas made of different textures. You will also observe that some features appear to be more resistant to weathering than others, and as a consequence stand out from the surface or the rims of the block. Sedimentologists will study this and many other images in fine detail and compare them to similar images we have acquired along the most recent drive path. From that they put together a reconstruction of the environment billions of years in the past: Was it water or wind that laid down those rocks, and what happened next? Many of the knobbly textures might be from water-rock interaction that happened after the initial deposition of the material. We will see; the jury is out on what these details tell us, and we are looking closely at all those beautiful images and then will turn to the chemistry data to understand even more about those rocks.

In the caption of the image above it says “merged” images. This is an imaging process that happens aboard the rover — it takes two (or more) images of the same location on the same target, acquired at different focus positions, and merges them so a wider range of the rock is in focus. This is especially valuable on textures that have a high relief, such as the above shown example. The rover is quite clever, isn’t it?

In today’s plan MAHLI does not have such an elaborate task, but instead it is documenting the rock that the APXS instrument is measuring. The team decided that it is time for APXS to measure the regular bedrock again, because we are driving out of an area that is darker on the orbital image and into a lighter area. If you want, you can follow our progress on that orbital image. (But I am sure many of the regular readers of this blog know that!)

That bedrock target was named “Trippet Ranch.” ChemCam investigates the target “San Ysidro Trail,” which is a grayish-looking vein. As someone interested in water-rock interactions for my research, I always love plans that have the surrounding rock (the APXS target in this case) and the alteration features in the same location. This allows us to tease out which of the chemical components of the rock might have moved upon contact with water, and which ones have not.

As we are driving through very interesting terrain, with walls exposed on the mesas — especially Gould mesa — and lots of textures in the blocks around us, there are many Mastcam mosaics in today’s plan! The mosaics on “Lytle Creek,” “Round Valley,” “Heaton Flat,” “Los Liones,” and the single image on “Mount Pinos” all document this variety of structures, and another mosaic looks right at our workspace. It did not get a nice name as it is part of a series with a more descriptive name all called “trough.” We often do this to keep things together in logical order when it comes to imaging series. The long-distance RMIs in today’s plan are another example of this, as they are just called “Gould,” followed by the sol number they will be taken on — that’s 4466 — and a and b to distinguish the two from each other. Gould Mesa, the target of both of them, exposes many different structures and textures, and looking at such walls — geologists call them outcrops — lets us read the rock record like a history book! And it will get even better in the next few weeks as we are heading into a small canyon and will have walls on both sides. Lots of science to come in the next few downlinks, and lots of science on the ground already! I’d better get back to thinking about some of the data we have received recently, while the rover is busy exploring the ever-changing geology and mineralogy on the flanks of Mount Sharp.

Share

Details

Last Updated
Feb 26, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4493-4494: Just Looking Around
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 25, 2025 — sol 4491, or Martian day 4,491 of the Mars Science Laboratory mission — at 17:16:50 UTC. NASA/JPL-Caltech Written by Alex Innanen, atmospheric scientist at York University
      Earth planning date: Wednesday, March 26, 2025
      It’s my second shift of the week as the Environmental theme lead and keeper of the plan (a bit of a mouthful we shorten to ESTLK) and today started out feeling eerily similar to Monday. Once again, Curiosity is posing like a geologist, which means that once again we can’t unstow the arm and will be skipping contact science. The silver lining is that this means we have extra time to have a good look around.
      The plan also looks similar to Monday’s — targeted remote sensing on the first sol before driving away, and then untargeted remote sensing on the next. On sol 4493 we start our remote sensing, almost as remote as we can get, with a suprahorizon movie looking for clouds in the south. A dust-devil survey rounds out the sol’s environmental observations, and then the geology theme group can get down to the serious business of looking at rocks. For Mastcam this means observing a group of bedrock targets all called “Observatory Trail” (one of which you can see in the middle of the image above), pointing out some interesting veins in “Point Loma,” and casting their gaze out toward “Black Butte” (which I could not think of a fun pun for…). ChemCam has a LIBS observation of “Cholla,” as well as two long-distance observations of the Texoli Butte and the boxwork structures. Our second sol is a little more restrained, as untargeted sols tend to be. But Curiosity will still have plenty of energy after a good rest. We’re taking advantage of that with an extra-long dust-devil movie. Even though we’re in our cloudy season, we still sometimes see dust lifting, and having that extra time to look out for it increases our chances of catching a wind gust or a dust devil in action. Alongside that we also have a Mastcam tau observation to keep an eye on the amount of dust in the atmosphere, and wrap up with a ChemCam AEGIS activity to autonomously choose a LIBS target.
      Share








      Details
      Last Updated Mar 28, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      2 days ago
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      4 days ago
      3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4491-4492: Classic Field Geology Pose
      NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam), showing the rover’s right-front wheel perched on a small, angular block, where it ended its weekend drive of about 75 feet (23 meters). In the interest of stability, the Curiosity team prefers to have all six rover wheels on the ground before deploying its 7-foot-long robotic arm (2.1 meters), so they opted for remote sensing observations instead, then another drive higher in the canyon. Curiosity captured this image on March 23, 2025 — sol 4489, or Martian day 4,489 of the Mars Science Laboratory mission — at 15:24:49 UTC. NASA/JPL-Caltech Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
      Earth planning date: Monday, March 24, 2025
      If you’ve ever seen a geologist in the field, you may have seen a classic stance: one leg propped up on a rock, knee bent, head down looking at the rocks at their feet, and arm pointing to the distant stratigraphy. Today Curiosity decided to give us her best field geologist impression. The weekend drive went well and the rover traversed about 23 meters (about 75 feet), but ended with the right front wheel perched on an angular block. In the Front Hazcam image above, you can see the right front wheel on a small block, and the rover’s shadow with the mast staring out at all the exciting rocks to explore. Great pose, but not what we want for planning contact science! We like to have all six wheels on the ground for stability before deploying the robotic arm. So instead of planning contact science today, the team pivoted to a lot of remote sensing observations and another drive to climb higher in this canyon.
      I was on shift as Long Term Planner today, and it was fun to see the team quickly adapt to the change in plans. Today’s two-sol plan includes targeted remote sensing and a drive on the first sol, followed by an untargeted science block on the second sol.
      On Sol 4491, ChemCam will acquire a LIBS observation of a well-laminated block in our workspace named “Big Narrows,” followed by long-distance RMI observations coordinated with Mastcam to assess an interesting debris field at “Torote Bowl.” The team planned a large Mastcam mosaic to characterize the stratigraphy at Texoli butte from a different viewing geometry than we have previously captured. Mastcam will also be used to investigate active surface processes in the sandy troughs nearby, and an interesting fracture pattern at “Bronson Cave.” Then Curiosity will drive further to the south and take post-drive imaging to prepare for the next plan. On the second sol the team added an autonomously selected ChemCam AEGIS target, along with Navcam movies to monitor clouds, wind direction, and dust.
      Keep on roving Curiosity, and please watch your step!
      Share








      Details
      Last Updated Mar 26, 2025 Related Terms
      Blogs Explore More
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      2 days ago
      3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!


      Article


      5 days ago
      3 min read Shocking Spherules!


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4486-4487: Ankle-Breaking Kind of Terrain!
      NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on March 18, 2025 — sol 4484, or Martian day 4,484 of the Mars Science Laboratory mission — at 11:54:13 UTC. NASA/JPL-Caltech Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick
      Earth planning date: Wednesday, March 19, 2025 
      This terrain is a tricky drive, with rocks angled chaotically all around. One of our geologists remarked that they wouldn’t like to even walk over this without solid boots coming way up over the ankles — this is definitely the kind of terrain to result in twisted and broken ankles! So it wasn’t too unexpected that the drive we had planned on Monday cut short after 18 meters (about 59 feet). Fortunately, we ended up both at a workspace with abundant bedrock and in an orientation that allowed us to pass SRAP (our “Slip Risk Assessment Process”).  
      The rover planners were quickly able to find a spot to brush, so we have a coordinated target on “Palm Grove,” one of the laminated rocks in the lower half of the accompanying image. APXS and MAHLI will look at this target on the first sol of the plan, and then ChemCam LIBS and Mastcam will look at it on the second sol. Although the bulk of the bedrock is relatively nodule free, ChemCam will look at the nodular target “Refugio” to compare to the more dominant, nodule-poor bedrock. 
      On Monday, our workspace included some very interesting layers in the bedrock that might represent preserved sand ripples, but sadly, as Conor reported on Monday, we didn’t pass SRAP, which precluded any contact science. However, today we ended up near rocks that had similar layer geometry, and will acquire a MAHLI “Dog’s Eye” or mosaic image of these rocks at “Duna Vista” and two Mastcam 5×3 mosaics (“Bayside Trail” and “Oso Flaco”) on other examples.  
      Mastcam is taking several other images here. A 14×3 mosaic will capture the “nearfield” or area close to the rover, and a set of four further images focus on four distinct trough features, to help us better understand ongoing modification of the surface. Further afield, the “Quartz Hill” and “Pino Alto” mosaics look at areas of fragmented bedrock which may be similar to the “Humber Park” outcrop we analyzed this past weekend. Even further from the rover, ChemCam will acquire RMI (Remote Micro Imager) images of the “Boxworks” and an almost circular depression (“Torote Bowl”) whose origin is not clear. 
      The environmental theme group (ENV) planned a Mastcam tau (to look at dust in the atmosphere) and a Navcam dust-devil survey (to look for dust devils!) for the first sol of the plan. On the second sol, we fill out the movies with Navcam movies looking toward the south of the crater (suprahorizon, cloud shadow, and zenith movies) and a Mastcam sky survey.  
      In between the movies on the second sol, our drive is planned to take us another 34 meters (about 112 feet)… but we will have to see how far our intrepid rover will make it on this tricky terrain. Slow and steady will win this race!
      Share








      Details
      Last Updated Mar 21, 2025 Related Terms
      Blogs Explore More
      3 min read Shocking Spherules!


      Article


      2 hours ago
      4 min read Sols 4484-4485: Remote Sensing on a Monday


      Article


      1 day ago
      2 min read Sols 4481-4483: Humber Pie


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Sols 4484-4485: Remote Sensing on a Monday
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 17, 2025 — sol 4483, or Martian day 4,483 of the Mars Science Laboratory mission — at 09:38:17 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University
      Earth planning date: Monday, March 17, 2025
      Last week I was in Houston, Texas, at the Lunar and Planetary Science Conference. The mid-March weather in Houston is often more like mid-summer weather here in Toronto, so it has been a bit of a shock coming home to temperatures that are hovering around freezing rather than being in the upper 20s (degrees Celsius, or the low to mid 80s for those of you still using Fahrenheit). Still, Toronto is positively balmy compared to Gale Crater, where temperatures usually range between minus 80°C and minus 20°C (or minus 110°F to minus 5°F) during this part of the year. These cold temperatures and their associated higher demands on the rover’s available power for heating are continuing to motivate many of the decisions that we make during planning.
      We received the double good news this morning that the weekend’s drive completed successfully, including the mid-drive imaging of the other side of “Humber Park” that Michelle mentioned in Friday’s blog, and that our estimates of the weekend plan’s power consumption ended up being a little conservative. So we started planning exactly where we wanted to be, and with more power to play around with than we had expected. Yay!
      The weekend’s drive left us parked in front of some rocks with excellent layering and interesting ripples that we really wanted to get a closer look at with MAHLI. (See the cover image for a look at these rocks as seen by Navcam.) Sadly, we also ended up parked in such a way that presented a slip hazard if the arm was unstowed. As much as we would have loved to get close-up images of these rocks, we love keeping Curiosity’s arm safe even more, so we had to settle for a remote sensing-only plan instead.
      Both the geology and mineralogy (GEO) and the environmental science (ENV) teams took full advantage of the extra power gifted to us today to create a plan packed full of remote sensing observations. Because we’re driving on the first sol of this two-sol plan, any “targeted” observations, i.e. those where we know exactly where we want to point the rover’s cameras, must take place before the drive. The first sol is thus packed full of Mastcam and ChemCam observations, starting with a 14×3 Mastcam mosaic of the area in front of us that’s outside of today’s workspace. Individual targets then get some Mastcam love with mosaics of various ripple and layering features at “Verdugo Peak,” “Silver Moccasin Trail,” and “Jones Peak.” Mastcam and ChemCam also team up on a LIBS target, “Trancas Canyon,” and some more long-distance mosaics of Gould Mesa, a feature about 100 meters away from us (about 328 feet) that we’ll be driving to the south of as we continue to head toward the “boxwork” structures.
      After a drive, there often aren’t many activities scheduled other than the imaging of our new location that we’ll need for the next planning day. However, in this plan ENV decided to take advantage of the fact that Navcam observations can take place at the same time that the rover is talking to one of the spacecraft that orbit Mars. This is a useful trick when power is tight as it allows us to do more science without adding additional awake time (since the rover needs to be awake anyway to communicate with the orbiters). Today, it’s being used to get some extra cloud observations right before sunset, a time that we don’t often get to observe. These observations include a zenith movie that looks straight up over the rover and a “phase function sky survey,” which takes a series of nine movies that form a dome around the rover to examine the properties of the clouds’ ice crystals. 
      The second sol of this plan is much more relaxed, as post-drive sols often are because we don’t know exactly where we’ll be after a drive. Today, we’ve just got our usual ChemCam AEGIS activity, followed by a pair of Navcam cloud and cloud shadow movies to measure the altitude of clouds over Gale. As always, we’ve also got our usual set of REMS, RAD, and DAN activities throughout this plan.
      Share








      Details
      Last Updated Mar 20, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4481-4483: Humber Pie


      Article


      2 days ago
      3 min read Sols 4479-4480: What IS That Lumpy, Bumpy Rock?


      Article


      6 days ago
      3 min read Navigating a Slanted River


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4481-4483: Humber Pie
      NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on March 14, 2025 — sol 4480, or Martian day 4,480 of the Mars Science Laboratory mission — at 08:53:19 UTC. NASA/JPL-Caltech Written by Michelle Minitti, Planetary Geologist at Framework
      Earth planning date: Friday, March 14, 2025
      The rover successfully arrived at the “Humber Park” outcrop which, on this fine “Pi Day” on Earth, we could convince ourselves looked like a pie with a sandy interior and a rough and rocky crust. We can only hope our instruments are as excited to tuck into this outcrop as the Curiosity team is to eat our pizzas and favorite pies (for me, pumpkin) this afternoon and evening. 
      MAHLI gets a big serving of rock structures from the Humber Park “crust” with three separate imaging targets. One observation, at the target “Yerba Buena Ridge,” covers structures expressed across the front of the outcrop in the above image. A second target, “Sepulveda Pass,” has intriguing texture that warranted multiple flavors of stereo imaging. The final target, which MAHLI shared with APXS, was “South Fork.” It was the clearest place to put APXS down on the rough bedrock blocks. 
      ChemCam also feasted on rock chemistry from an array of targets with different textures. “Ridge Route” covered a low-lying bedrock slab with the fine layering we have seen consistently through the sulfate unit, while “Toyon Canyon” covered a lumpier portion of the Humber Park outcrop above Yerba Buena Ridge. The “Mount Lawlor” target was a mix of Ridge Route and Toyon Canyon — layered, but on a high-standing portion of the outcrop that also had some unusual chains of pits. ChemCam added two long distance mosaics on “Gould Mesa” to the menu, which captured a variety of structures on this impressive butte about 100 meters ahead of the rover. 
      Mastcam focused on covering the whole of Humber Park with a stereo mosaic but also added small mosaics across a trough in the sand and a bedrock block with potential cross bedding at “Rancho Los Feliz.” Because just imaging this side of Humber Park was not enough, Mastcam and Navcam worked closely with the rover drivers to plan a mid-drive mosaic of the other side of the outcrop so we fully capture Humber Park’s “crust.”
      Our environmental observations were not just pie in the sky but will help us monitor the chemistry of and the amount of dust in the atmosphere, and record clouds and dust devils crossing above and around us.
      Share








      Details
      Last Updated Mar 18, 2025 Related Terms
      Blogs Explore More
      3 min read Sols 4479-4480: What IS That Lumpy, Bumpy Rock?


      Article


      4 days ago
      3 min read Navigating a Slanted River


      Article


      5 days ago
      2 min read Sols 4477-4478:  Bumping Back to Business


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...