Jump to content

Sharing PLANETS Curriculum with Out-of-School Time Educators


Recommended Posts

  • Publishers
Posted

2 min read

Sharing PLANETS Curriculum with Out-of-School Time Educators

Out of school time (OST) educators work with youth in afterschool, community, and camp programs. Science, Technology, Engineering, and Mathematics (STEM) learning in OST can be challenging for multiple reasons, including lack of materials and support for educators. The NASA Science Activation program’s PLANETS project – Planetary Learning that Advances the Nexus of Engineering, Technology, and Science – led by Northern Arizona University in Flagstaff, AZ, provides both written curriculum and virtual educator support on planetary science and engineering.

PLANETS offers three curriculum units focused on themes from NASA’s strategic priorities and mission directives in planetary science over the next decade:

  1. Space Hazards for learners in grades 3-5,
  2. Water in Extreme Environments, and
  3. Remote Sensing for learners in grades 6-8.

PLANETS recently exhibited at two national conferences for educators to share these free NASA partner resources: the Space Exploration Educators Conference at Space Center Houston in Houston, TX on Feb 6-8, 2025 and the Beyond School Hours conference in Orlando, FL on Feb 13-16, 2025. Approximately 500 educators interacted with PLANETS team members to learn about the curriculum and to share their needs for OST learners. Some educators shared how they are already using PLANETS and how much their learners enjoy the lessons. In addition to sharing PLANETS resources, the team also had QR codes and flyers providing information about all the other Science Activation project teams, making sure educators grow in awareness of all that NASA’s Science Mission Directorate does to engage the public.

OST educators appreciate the integrity and quality of NASA-funded resources. One educator shared, “Free resources are always critical to youth-serving organizations. PLANETS also has everyday materials and educator dialogue on how to deliver, making it easy to pick up and use.”

Another OST educator said, “There are programs out there, like PLANETS, that truly help people of all backgrounds,” and yet another expressed, “I love the activities, and could see our youth engaging with it in a fun way.” Disseminating these types of NASA Science Activation program resources at regional and national venues is vital.

The PLANETS project is supported by NASA under cooperative agreement award number NNX16AC53A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

Two team members with the PLANETS project standing behind a booth exhibit table at the Space Exploration Educators Conference in Houston, TX.
Members of the PLANETS team exhibiting at the Space Exploration Educators Conference in Houston, TX.

Share

Details

Last Updated
Feb 25, 2025
Editor
NASA Science Editorial Team

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Science Activation Connected Learning Ecosystems:… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   5 min read
      Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves
      Many educators would agree that despite working and communicating with dozens, even hundreds, of people each year, the role can feel isolating. Learners come and go, leaving educators to question: Was anything retained? Will they take this knowledge home? Will they share it at their after-school activities? How will it ultimately impact their lives and perspectives? What some educators may not fully realize is that they are not alone in their efforts. Their classroom or alternate education space is but one step along a learning pathway that winds through an entire network of educators. Learning pathways take many forms, but are most effective when each stop along the path builds upon what a learner has experienced during previous stops. These networks of educators, known as Connected Learning Ecosystems (CLEs), exist wherever learning takes place. Simply put, CLEs are made up of all the people involved at any point in a youth’s learning journey.
      With this in mind, the NASA Science Activation Program’s Learning Ecosystems Northeast (LENE) project has been working to connect and support the regional networks found throughout Maine and the Northeastern United States, with a shared focus on Science, Technology, Education, and Mathematics (STEM) education. This inspiring community includes classroom teachers, librarians, 4-H staff, and land trust educators, to name a few, all collaborating to advance education about our changing planet and improve data literacy across a variety of learning environments.
      In support of these regional networks, LENE hosts a Connected Learning Ecosystems Gathering twice each year, a multi-day event designed to unite educators who have these shared STEM education goals. These gatherings provide opportunities to reflect on past successes and plan future projects, ultimately benefiting not just the educators, but every learner they reach. They also help strengthen and amplify the lasting and positive impact these educators have on the lives of the youth they support.
      This year’s Gathering took place in late February in Orono, ME at the University of Maine (a LENE project partner). The event featured hands-on science activities adaptable to various learning spaces, dedicated reflection time for educators, and collaborative planning sessions to design cross-context learning opportunities for local youth. Participants engaged with NASA’s Global Learning and Observations to Benefit the Environment (GLOBE) Program, supported by Jen Bourgeault (GLOBE US Country Coordinator) and Haley Wicklein (GLOBE Assistant US Country Coordinator), who facilitated field data collection and program exploration. NASA Subject Matter Expert Shawn Laatsch from UMaine’s Versant Planetarium led an immersive evening show on the molecular world inside the human body and also previewed other potential field trip shows for students. One highlight of the Gathering was a presentation on climate science and ice core collection by experts Sean Birkel and Daniel Dixon from UMaine’s Climate Change Institute. Educators also participated in a hands-on activity using model ice cores designed by project partner UMaine 4-H. Rounding out the two-day event were deep-dive sessions into various connected learning projects, where educators shared their insights, from idea formation to project execution and reflection.
      One educator shared about their experience: “I just want the leadership team to know how grateful I am to be part of this community. As a veteran teacher of 28 years, this is by far the BEST workshop I have ever attended. The passion for evidence-based science among this group is incredible. I feel seen and connected in ways that other workshops have never made possible. I will definitely be a lifelong member and will be bringing more people to CLE workshops. Thank you for making this meaningful and valuable.”
      Another educator shared, “During the gathering, I had the opportunity to strengthen existing relationships and make new connections within [my region]. I engaged in insightful conversations with several individuals, discussing shared interests in environmental education, science literacy, and place-based learning…. From these connections, I hope to foster new collaborations that enhance environmental literacy opportunities for students and communities. By working together, I believe we can create interdisciplinary programs that bridge science, sustainability, and civic engagement in meaningful ways.”
      Despite the support of regional groups, feelings of isolation persist, particularly in rural areas. These biannual gatherings serve as powerful reminders that this work is happening statewide, and that Connected Learning Ecosystems help establish and strengthen a network to bridge the distance between educators.
      These Gatherings are part of ongoing programming organized by Learning Ecosystems Northeast, based at the Gulf of Maine Research Institute, that fosters peer communities across the Northeast through which teachers, librarians, and out-of-school educators can collaborate to expand opportunities for youth to engage in data-driven climate investigations and integrate in- and out-of-school learning.
      The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about Learning Ecosystems Northeast: https://www.learningecosystemsnortheast.org/
      The whole group discussing their findings after a GLOBE fieldwork activity. Share








      Details
      Last Updated Apr 07, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Earth Science Opportunities For Educators to Get Involved Explore More
      3 min read NSTA Hyperwall Schedule


      Article


      2 weeks ago
      11 min read The Earth Observer Editor’s Corner: January–March 2025


      Article


      3 weeks ago
      5 min read Celebrating 25 Years of Terra


      Article


      3 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By Space Force
      128 Air Force Reserve Professionals who will transfer into the Space Force in a full-time capacity.
      View the full article
    • By NASA
      Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP This artist’s concept pictures the planets orbiting Barnard’s Star, as seen from close to the surface of one of them. Image credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld The Discovery
      Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest to ours after the three-star Alpha Centauri system. Barnard’s is the nearest single star.
      Key Facts
      Barnard’s Star, six light-years away, is notorious among astronomers for a history of false planet detections. But with the help of high-precision technology, the latest discovery — a family of four — appears to be solidly confirmed. The tiny size of the planets is also remarkable: Capturing evidence of small worlds at great distance is a tall order, even using state-of-the-art instruments and observational techniques.
      Details
      Watching for wobbles in the light from a star is one of the leading methods for detecting exoplanets — planets orbiting other stars. This “radial velocity” technique tracks subtle shifts in the spectrum of starlight caused by the gravity of a planet pulling its star back and forth as the planet orbits. But tiny planets pose a major challenge: the smaller the planet, the smaller the pull. These four are each between about a fifth and a third as massive as Earth. Stars also are known to jitter and quake, creating background “noise” that potentially could swamp the comparatively quiet signals from smaller, orbiting worlds.
      Astronomers measure the back-and-forth shifting of starlight in meters per second; in this case the radial velocity signals from all four planets amount to faint whispers — from 0.2 to 0.5 meters per second (a person walks at about 1 meter per second). But the noise from stellar activity is nearly 10 times larger at roughly 2 meters per second.
      How to separate planet signals from stellar noise? The astronomers made detailed mathematical models of Barnard’s Star’s quakes and jitters, allowing them to recognize and remove those signals from the data collected from the star.
      The new paper confirming the four tiny worlds — labeled b, c, d, and e — relies on data from MAROON-X, an “extreme precision” radial velocity instrument attached to the Gemini Telescope on the Maunakea mountaintop in Hawaii. It confirms the detection of the “b” planet, made with previous data from ESPRESSO, a radial velocity instrument attached to the Very Large Telescope in Chile. And the new work reveals three new sibling planets in the same system.
      Fun Facts
      These planets orbit their red-dwarf star much too closely to be habitable. The closest planet’s “year” lasts a little more than two days; for the farthest planet, it’s is just shy of seven days. That likely makes them too hot to support life. Yet their detection bodes well in the search for life beyond Earth. Scientists say small, rocky planets like ours are probably the best places to look for evidence of life as we know it. But so far they’ve been the most difficult to detect and characterize. High-precision radial velocity measurements, combined with more sharply focused techniques for extracting data, could open new windows into habitable, potentially life-bearing worlds.
      Barnard’s star was discovered in 1916 by Edward Emerson Barnard, a pioneering astrophotographer.
      The Discoverers
      An international team of scientists led by Ritvik Basant of the University of Chicago published their paper on the discovery, “Four Sub-Earth Planets Orbiting Barnard’s Star from MAROON-X and ESPRESSO,” in the science journal, “The Astrophysical Journal Letters,” in March 2025. The planets were entered into the NASA Exoplanet Archive on March 13, 2025.
      Share








      Details
      Last Updated Apr 01, 2025 Related Terms
      Exoplanets Radial Velocity Terrestrial Exoplanets Keep Exploring Discover More Topics From NASA
      Universe



      Exoplanets



      Search for Life



      Exoplanet Catalog


      This exoplanet encyclopedia — continuously updated, with more than 5,600 entries — combines interactive 3D models and detailed data on…

      View the full article
    • By NASA
      6 Min Read NASA’s Webb Captures Neptune’s Auroras For First Time
      At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. Credits:
      NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) Long-sought auroral glow finally emerges under Webb’s powerful gaze
      For the first time, NASA’s James Webb Space Telescope has captured bright auroral activity on Neptune. Auroras occur when energetic particles, often originating from the Sun, become trapped in a planet’s magnetic field and eventually strike the upper atmosphere. The energy released during these collisions creates the signature glow.
      In the past, astronomers have seen tantalizing hints of auroral activity on Neptune, for example, in the flyby of NASA’s Voyager 2 in 1989. However, imaging and confirming the auroras on Neptune has long evaded astronomers despite successful detections on Jupiter, Saturn, and Uranus. Neptune was the missing piece of the puzzle when it came to detecting auroras on the giant planets of our solar system.
      “Turns out, actually imaging the auroral activity on Neptune was only possible with Webb’s near-infrared sensitivity,” said lead author Henrik Melin of Northumbria University, who conducted the research while at the University of Leicester. “It was so stunning to not just see the auroras, but the detail and clarity of the signature really shocked me.”
      The data was obtained in June 2023 using Webb’s Near-Infrared Spectrograph. In addition to the image of the planet, astronomers obtained a spectrum to characterize the composition and measure the temperature of the planet’s upper atmosphere (the ionosphere). For the first time, they found an extremely prominent emission line signifying the presence of the trihydrogen cation (H3+), which can be created in auroras. In the Webb images of Neptune, the glowing aurora appears as splotches represented in cyan.
      Image A:
      Neptune’s Auroras – Hubble and Webb
      At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. The cyan splotches, which represent auroral activity, and white clouds, are data from Webb’s Near-Infrared Spectrograph (NIRSpec), overlayed on top of the full image of the planet from Hubble’s Wide Field Camera 3. NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) “H3+ has a been a clear signifier on all the gas giants — Jupiter, Saturn, and Uranus — of auroral activity, and we expected to see the same on Neptune as we investigated the planet over the years with the best ground-based facilities available,” explained Heidi Hammel of the Association of Universities for Research in Astronomy, Webb interdisciplinary scientist and leader of the Guaranteed Time Observation program for the Solar System in which the data were obtained. “Only with a machine like Webb have we finally gotten that confirmation.”
      The auroral activity seen on Neptune is also noticeably different from what we are accustomed to seeing here on Earth, or even Jupiter or Saturn. Instead of being confined to the planet’s northern and southern poles, Neptune’s auroras are located at the planet’s geographic mid-latitudes — think where South America is located on Earth.
      This is due to the strange nature of Neptune’s magnetic field, originally discovered by Voyager 2 in 1989 which is tilted by 47 degrees from the planet’s rotation axis. Since auroral activity is based where the magnetic fields converge into the planet’s atmosphere, Neptune’s auroras are far from its rotational poles.
      The ground-breaking detection of Neptune’s auroras will help us understand how Neptune’s magnetic field interacts with particles that stream out from the Sun to the distant reaches of our solar system, a totally new window in ice giant atmospheric science.
      From the Webb observations, the team also measured the temperature of the top of Neptune’s atmosphere for the first time since Voyager 2’s flyby. The results hint at why Neptune’s auroras remained hidden from astronomers for so long.
      “I was astonished — Neptune’s upper atmosphere has cooled by several hundreds of degrees,” Melin said. “In fact, the temperature in 2023 was just over half of that in 1989.” 
      Through the years, astronomers have predicted the intensity of Neptune’s auroras based on the temperature recorded by Voyager 2. A substantially colder temperature would result in much fainter auroras. This cold temperature is likely the reason that Neptune’s auroras have remained undetected for so long. The dramatic cooling also suggests that this region of the atmosphere can change greatly even though the planet sits over 30 times farther from the Sun compared to Earth.
      Equipped with these new findings, astronomers now hope to study Neptune with Webb over a full solar cycle, an 11-year period of activity driven by the Sun’s magnetic field. Results could provide insights into the origin of Neptune’s bizarre magnetic field, and even explain why it’s so tilted.
      “As we look ahead and dream of future missions to Uranus and Neptune, we now know how important it will be to have instruments tuned to the wavelengths of infrared light to continue to study the auroras,” added Leigh Fletcher of Leicester University, co-author on the paper. “This observatory has finally opened the window onto this last, previously hidden ionosphere of the giant planets.”
      These observations, led by Fletcher, were taken as part of Hammel’s Guaranteed Time Observation program 1249. The team’s results have been published in Nature Astronomy.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Read the research results published in Nature Astronomy.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun- hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Maryland
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science
      Henrik Melin (Northumbria University)
      Related Information
      View more: Webb images of Neptune
      Watch: Visualization of Neptune’s tilted magnetic axis
      Learn more : about Neptune
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      About Neptune
      About the Solar System
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Neptune



      Neptune Stories



      Our Solar System


      Share








      Details
      Last Updated Mar 25, 2025 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Neptune Planetary Science Planets Science & Research The Solar System View the full article
    • By European Space Agency
      Image: ESA's Atomic Clock Ensemble in Space at NASA's Kennedy Space Center View the full article
  • Check out these Videos

×
×
  • Create New...