Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Today we mark the International Day of Women and Girls in Science. Join us in a journey around Europe with EIROforum organisations to discover the brilliant talents who are shaping the future of science and technology, and dive deeper into the story of a European Space Agency young professional making her way in space. 
      View the full article
    • By Space Force
      The DAF released guidance on defending women from gender ideology extremism and restoring biological truth to the federal government.
      View the full article
    • By NASA
      Jan. 24, 2025
      NASA’s NICER Continues Science Operations Post Repair
      NASA crew aboard the International Space Station installed patches to the agency’s NICER (Neutron star Interior Composition Explorer) mission during a spacewalk on Jan. 16. NICER, an X-ray telescope perched near the station’s starboard solar array, resumed science operations later the same day.
      The patches cover areas of NICER’s thermal shields where damage was discovered in May 2023. These thin filters block sunlight while allowing X-rays to pass through. After the discovery, the NICER team restricted their observations during the station’s daytime to avoid overwhelming the mission’s sensitive detectors. Nighttime observations were unaffected, and the team was able to continue collecting data for the science community to make groundbreaking measurements using the instrument’s full capabilities.
      The repair went according to plan. Data since collected shows the detectors behind the patched areas are performing better than before during station night, and the overall level of sunlight inside NICER during the daytime is reduced substantially.
      While NICER experiences less interference from sunlight than before, after analyzing initial data, the team has determined the telescope still experiences more interference than expected. The installed patches cover areas of known damage identified using astronomical observations and from photos taken by both external robotic cameras and astronauts inside the space station. Measurements collected since the repair and close-up, high-resolution photos obtained during the spacewalk are providing new information that may point the way toward further daytime data collection.
      In the meantime, NICER continues operations with its full measurement capabilities during orbit night to enable further trailblazing discoveries in time domain and multimessenger astrophysics.
      Media contact: Alise Fisher, NASA Headquarters / Claire Andreoli, NASA Goddard
      June 8, 2023
      Sunlight ‘Leak’ Impacting NASA’s NICER Telescope, Science Continues
      On Tuesday, May 22, NASA’s NICER (Neutron Star Interior Composition Explorer), an X-ray telescope on the International Space Station, developed a “light leak,” in which unwanted sunlight enters the instrument. While analyzing incoming data since then, the team identified an impact to daytime observations. Nighttime observations seem to be unaffected.
      The team suspects that at least one of the thin thermal shields on NICER’s 56 X-ray Concentrators has been damaged, allowing sunlight to reach its sensitive detectors.
      To mitigate the effects on measurements, the NICER team has limited daytime observations to objects far away from the Sun’s position in the sky. The team has also updated commands to NICER that automatically lower its sensitivity during the orbital day to reduce the effects from sunlight contamination. The team is evaluating these changes and assessing additional measures to reduce the impact on science observations.
      To date, more than 300 scientific papers have used NICER observations, and the team is confident that NICER will continue to produce world-class science.
      Media contact: Alise Fisher, NASA Headquarters / Claire Andreoli, NASA Goddard
      Share
      Details
      Last Updated Jan 24, 2025 Related Terms
      Active Galaxies Astrophysics Black Holes Galaxies Galaxies, Stars, & Black Holes Research Goddard Space Flight Center International Space Station (ISS) Neutron Stars NICER (Neutron star Interior Composition Explorer) Pulsars Science & Research Stars The Universe View the full article
    • By NASA
      Learn Home Astronomy Activation… STEM Engagement at NASA Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Astronomy Activation Ambassadors: A New Era
      The NASA Science Activation Program’s Astronomy Activation Ambassadors (AAA) project aims to measurably enhance student Science, Technology, Engineering, and Mathematics (STEM) engagement via middle school, high school, and community college science teacher professional development.
      In 2024, AAA transitioned its focus to the development of an Astronomy Academy with varying levels of extent and intensity available to more than 300 teachers per year. Participants draw on NASA resources and Subject Matter Experts (SME) to enhance their teaching and help share their excitement about astronomy with their students. The three strands that comprise the Astronomy Academy are:
      webinars regarding NASA astrophysics and planetary science content and facilities, curriculum workshops enabling classroom use of an electromagnetic spectrum and multi-wavelength astronomy (EMS/MWA) curriculum, and STEM immersion experiences including guided visits to working observatories. The first two of the AAA program’s new type of STEM immersion experiences took place in June and September, 2024. During the weekend of June 22-23, 19 teachers gathered in San Jose, California for a full agenda, including:
      NASA SME presentations regarding planetary protection and exoplanet detection, a journey to the University of California’s Lick Observatory on nearby Mt. Hamilton for an in-depth guided tour of the observatory’s astronomy research facilities, which included engagement with the astronomers using the 3-meter Shane telescope, and a 4-hour hands-on EMS/MWA curriculum teaching workshop. A similar STEM immersion sequence was offered September 14-15 to 23 AAA teachers who attended a curriculum teaching workshop, learned about current infrared astronomy research from NASA Jet Propulsion Laboratory scientists, and received guided visits to the Keck Observatory’s remote observing facility on the Caltech campus and the Mt. Wilson Observatory, including a half-night’s reserved use of the historic Mt. Wilson 60-inch telescope. The teachers were invited to submit a list of objects to be observed with the Mt. Wilson telescope and viewed a wonderful array of star clusters, colorful double stars, and galaxies, with a grand finale view of Saturn and its rings.
      Teacher participant, Domina Stamas (Westlake Charter School, Sacramento, California), had this to say: “My students and I are already benefiting greatly from the combination of NASA resources, science content, and curricular materials we have received from the AAA project. The evening at Lick Observatory talking with the astronomers who were using the research telescopes watching the laser guide star setup in action was a rich experience. I can convey to my students how scientists actually practice their craft.”
      The Astronomy Activation Ambassador project’s efforts to improve student STEM learning and engagement via science teacher professional development are detailed at: https://www.seti.org/aaa
      Educator enrollment is still open via the participant registration form:
      https://forms.gle/G34vCzz63ko5RRrM8
      The AAA project, led by the SETI Institute, is supported by NASA under cooperative agreement award number NNX16AC51A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      June 2024 teacher participants in front of the Lick Observatory’s historic 36-inch refracting telescope. SETI Institute/C. Clark Share








      Details
      Last Updated Dec 31, 2024 Editor NASA Science Editorial Team Location Jet Propulsion Laboratory Related Terms
      Astronomy Astrophysics Grades 9-12 for Educators Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation STEM Engagement at NASA Explore More
      5 min read NASA Study Shows Ferns Facilitate Recovery from Environmental Disaster 
      NASA-supported scientists have shown how ferns might help ecosystems recover from disasters.


      Article


      2 weeks ago
      2 min read Hubble Spies a Cosmic Eye


      Article


      2 weeks ago
      7 min read Very Cold Detectors Reveal the Very Hot Universe and Kick Off a New Era in X-ray Astronomy


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      X-rays are radiated by matter hotter than one million Kelvin, and high-resolution X-ray spectroscopy can tell us about the composition of the matter and how fast and in what direction it is moving. Quantum calorimeters are opening this new window on the Universe. First promised four decades ago, the quantum-calorimeter era of X-ray astronomy has finally dawned.
      Photo of the XRISM/Resolve quantum-calorimeter array in its storage container prior to integration into the instrument. The 6×6 array, 5 mm on a side, consists of independent detectors – each one a thermally isolated silicon thermistor with a HgTe absorber. The spectrometer consisting of this detector and other essential technologies separates astrophysical X-ray spectra into about 2400 resolution elements, which can be thought of as X-ray colors.NASA GSFC A quantum calorimeter is a device that makes precise measurements of energy quanta by measuring the temperature change that occurs when a quantum of energy is deposited in an absorber with low heat capacity. The absorber is attached to a thermometer that is somewhat decoupled from a heat sink so that the sensor can heat up and then cool back down again. To reduce thermodynamic noise and the heat capacity of the sensor, operation at temperatures less than 0.1 K is required. 
      The idea for thermal measurement of small amounts of energy occurred in several places in the world independently when scientists observed pulses in the readout of low-temperature thermometers and infrared detectors. They attributed these spurious signals to passing cosmic-ray particles, and considered optimizing detectors for sensitive measurement of the energy of particles and photons.
      The idea to develop such sensors for X-ray astronomy was conceived at Goddard Space Flight Center in 1982 when X-ray astronomers were considering instruments to propose for NASA’s planned Advanced X-ray Astrophysics Facility (AXAF). In a fateful conversation, infrared astronomer Harvey Moseley suggested thermal detection could offer substantial improvement over existing solid-state detectors. Using Goddard internal research and development funding, development advanced sufficiently to justify, just two years later, proposing a quantum-calorimeter X-ray Spectrometer (XRS) for inclusion on AXAF. Despite its technical immaturity at the time, the revolutionary potential of the XRS was acknowledged, and the proposal was accepted.
      The AXAF design evolved over the subsequent years, however, and the XRS was eliminated from its complement of instruments. After discussions between NASA and the Japanese Institute of Space and Astronautical Science (ISAS), a new XRS was included in the instrument suite of the Japanese Astro-E X-ray observatory. Astro-E launched in 2000 but did not reach orbit due to an anomaly in the first stage of the rocket. Astro-E2, a rebuild of Astro-E, was successfully placed in orbit in 2005 and renamed Suzaku, but the XRS instrument ceased operation before observations started due to loss of the liquid helium, an essential part of the detector cooling system, caused by a faulty storage system.
      A redesigned mission, Astro-H, that included a quantum-calorimeter instrument with a redundant cooling system was successfully launched in 2016 and renamed Hitomi. Hitomi’s Soft X-ray Spectrometer (SXS) obtained high resolution spectra of the Perseus cluster of galaxies and a few other sources before a problem with the attitude control system caused the mission to be lost roughly one month after launch. Even so, Hitomi was the first orbiting observatory to obtain a scientific result using X-ray quantum calorimeters. The spectacular Perseus spectrum generated by the SXS motivated yet another attempt to implement a spaceborne quantum-calorimeter spectrometer.
      The X-ray Imaging and Spectroscopy Mission (XRISM) was launched in September 2023, with the spectrometer aboard renamed Resolve to represent not only its function but also the resolve of the U.S./Japan collaboration to study the Universe through the window of this new capability. XRISM has been operating well in orbit for over a year.  
      Development of the Sensor Technology
      Development of the sensor technology employed in Resolve began four decades ago. Note that an X-ray quantum-calorimeter spectrometer requires more than the sensor technology. Other technologies, such as the coolers that provide a
      The sensors used from XRS through Resolve were all based on silicon-thermistor thermometers and mercury telluride (HgTe) X-ray absorbers. They used arrays consisting of 32 to 36 pixels, each of which was an independent quantum calorimeter.  Between Astro-E and Astro-E2, a new method of making the thermistor was developed that significantly reduced its low-frequency noise. Other fabrication advances made it possible to make reproducible connections between absorbers and thermistors and to fit each thermistor and its thermal isolation under its X-ray absorber, making square arrays feasible.
      Through a Small Business Innovation Research (SBIR) contract executed after the Astro-E2 mission, EPIR Technologies Inc. reduced the specific heat of the HgTe absorbers. Additional improvements made to the cooler of the detector heat sink allowed operation at a lower temperature, which further reduced the specific heat. Together, these changes enabled the pixel width to be increased from 0.64 mm to 0.83 mm while still achieving a lower heat capacity, and thus improving the energy resolution. From Astro-E through Astro-H, the energy resolution for X-rays of energy around 6000 eV improved from 11 eV, to 5.5 eV, to 4 eV. No changes to the array design were made between Astro-H and XRISM.
      Resolve detector scientist Caroline Kilbourne installing the flight Resolve quantum-calorimeter array into the assembly that provides its electrical, thermal, and mechanical interfaces.NASA GSFC Over the same period, other approaches to quantum-calorimeter arrays optimized for the needs of future missions were developed. The use of superconducting transition-edge sensors (TES) instead of silicon (Si) thermistors led to improved energy resolution, more pixels per array, and multiplexing (a technique that allows multiple signals to be carried on a single wire). Quantum-calorimeter arrays with thousands of pixels are now standard, such as in the NASA contribution to the future European New Advanced Telescope for High-ENergy Astrophysics (newAthena) mission. And quantum calorimeters using paramagnetic thermometers — which unlike TES and Si thermistors require no dissipation of heat in the thermometer for it to be read out — combined with high-density wiring are a promising route for realizing even larger arrays. (See Astrophysics Technology Highlight on these latest developments.)
      The Resolve instrument aboard XRISM (X-ray Imaging and Spectroscopy Mission) captured data from the center of galaxy NGC 4151, where a supermassive black hole is slowly consuming material from the surrounding accretion disk. The resulting spectrum reveals the presence of iron in the peak around 6.5 keV and the dips around 7 keV, light thousands of times more energetic that what our eyes can see. Background: An image of NGC 4151 constructed from a combination of X-ray, optical, and radio light.Spectrum: JAXA/NASA/XRISM Resolve. Background: X-rays, NASA/CXC/CfA/J.Wang et al.; optical, Isaac Newton Group of Telescopes, La Palma/Jacobus Kapteyn Telescope; radio, NSF/NRAO/VLA Results from Resolve
      So, what is Resolve revealing about the Universe? Through spectroscopy alone, Resolve allows us to construct images of complex environments where collections of gas and dust with various attributes exist, emitting and absorbing X-rays at energies characteristic of their various compositions, velocities, and temperatures. For example, in the middle of the galaxy known as NCG 4151 (see figure above), matter spiraling into the central massive black hole forms a circular structure that is flat near the black hole, more donut-shaped further out, and, according to the Resolve data, a bit lumpy. Matter near the black hole is heated up to X-ray-emitting temperatures and irradiates the matter in the circular structure. The Resolve spectrum has a bright narrow emission line (peak) from neutral iron atoms that must be coming from colder matter in the circular structure, because hotter material would be ionized, and would have a different emission signature. Nonetheless, the shape of the iron line needs three components to describe it, each coming from a different lump in the circular structure. The presence of absorption lines (dips) in the spectrum provides further detail about the structure of the infalling matter.
      A second example is the detection of X-ray emission by Resolve from the debris of stars that have exploded, such as N132D (see figure below), that will improve our understanding of the explosion mechanism and how the elements produced in stars get distributed, and allow us to infer the type of star each was before ending in a supernova. Elements are identified by their characteristic emission lines, and shifts of those lines via the Doppler effect tell us how fast the material is moving.
      XRISM’s Resolve instrument captured data from supernova remnant N132D in the Large Magellanic Cloud to create the most detailed X-ray spectrum of the object ever made. The spectrum reveals peaks associated with silicon, sulfur, argon, calcium, and iron. Inset at right is an image of N132D captured by XRISM’s Xtend instrument.JAXA/NASA/XRISM Resolve and Xtend These results are just the beginning. The rich Resolve data sets are identifying complex velocity structures, rare elements, and multiple temperature components in a diverse ensemble of cosmic objects. Welcome to the quantum calorimeter era! Stay tuned for more revelations!
      Project Leads: Dr. Caroline Kilbourne, NASA Goddard Space Flight Center (GSFC), for silicon-thermistor quantum calorimeter development from Astro-E2 through XRISM and early TES development. Foundational and other essential leadership provided by Dr. Harvey Moseley, Dr. John Mather, Dr. Richard Kelley, Dr. Andrew Szymkowiak, Mr. Brent Mott, Dr. F. Scott Porter, Ms. Christine Jhabvala, Dr. James Chervenak (GSFC at the time of the work) and Dr. Dan McCammon (U. Wisconsin).
      Sponsoring Organizations and Programs:  The NASA Headquarters Astrophysics Division sponsored the projects, missions, and other efforts that culminated in the development of the Resolve instrument.
      Explore More
      7 min read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
      Article 1 day ago 5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
      NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…
      Article 1 day ago 2 min read Hubble Images a Grand Spiral
      Article 4 days ago View the full article
  • Check out these Videos

×
×
  • Create New...