Members Can Post Anonymously On This Site
Artemis II Rocket Booster Stacking Complete
-
Similar Topics
-
By NASA
Explore This Section Science Science Activation An Afternoon of Family Science… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read
An Afternoon of Family Science and Rocket Exploration in Alaska
On Tuesday, January 28th, Fairbanks BEST Homeschool joined the Geophysical Institute for an afternoon of rocket exploration, hands-on activities, and stargazing inside a planetarium. This event was free and open to the public. Despite their frigid winter weather, 200 attendees were curious about the scientific endeavors of Alaska-based researchers alongside cutting-edge investigations conducted by NASA rocket scientists.
Families and friends in attendance learned about two NASA rocket missions that would study the flickering and vanishing auroras: Ground Imaging to Rocket investigation of Auroral Fast Features (GIRAFF) and Black and Diffuse Aurora Science Surveyor (BaDASS). Visitors had an opportunity to sign up for text notifications related to the launch window. The planetarium presentations touch on Heliophysics Big Ideas that align with the three questions that drive NASA’s heliophysics research:
What are the impacts of the changing sun on humanity? How do Earth, the solar system, and the heliosphere respond to changes on the sun? What causes the sun to vary? The event also offered sun-related hands-on activities provided by the University of Alaska Museum of the North.
This event was offered to the community in association with the Science For Alaska Lecture Series and the 2025 NASA Sounding Rocket campaign. Every attendee left with something inspiring to think about. Parents and educators interested in learning more about auroras and do participatory science may check out NASA’s Aurorasaurus citizen science project.
The Geophysical Institute at the University of Alaska Fairbanks is a Co-Investigating team for the NASA Heliophysics Education Activation Team (NASA HEAT), which is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Aurora Educational Resource List by Aurorasaurus
Families constructed and decorated their paper rockets. Katelin Avery It was so much fun! We are receiving rave reviews from our families and the surrounding community. THANK YOU AGAIN FOR COLLABORATING WITH US!
Fairbanks BEST Homeschool
Share
Details
Last Updated Feb 14, 2025 Editor Earth Science Division Editorial Team Related Terms
Science Activation Citizen Science Heliophysics Explore More
3 min read Tribal Library Co-Design STEM Space Workshop
Article
1 day ago
2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project
Article
4 days ago
5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Article
1 week ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
NASA’s Artemis campaign will send astronauts, payloads, and science experiments into deep space on NASA’s SLS (Space Launch System) super heavy-lift Moon rocket. Starting with Artemis IV, the Orion spacecraft and its astronauts will be joined by other payloads atop an upgraded version of the SLS, called Block 1B. SLS Block 1B will deliver initial elements of a lunar space station designed to enable long term exploration of the lunar surface and pave the way for future journeys to Mars. To fly these advanced payloads, engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are building a cone-shaped adapter that is key to SLS Block 1B.
At NASA Marshall, the PLA engineering development unit is installed into the 4697-test stand for structural testing. It was then attached to the large cylindrical structure which simulates the Exploration Upper Stage interface. Load lines were then connected to the top of the PLA. The testing demonstrated that it can handle up to three times the expected load.NASA/Samuel Lott The payload adapter, nestled within the universal stage adapter sitting atop the SLS Block 1B’s exploration upper stage, acts as a connecting point to secure a large payload that is co-manifested – or flying along with – the Orion spacecraft. The adapter consists of eight composite panels with an aluminum honeycomb core and two aluminum rings.
Beginning with the Artemis IV mission, SLS Block 1B will feature a new, more powerful upper stage that provides a substantial increase in payload mass, volume, and energy over the first variant of the rocket that is launching Artemis missions I through III. SLS Block 1B can send 84,000 pounds of payload – including both a crewed Orion spacecraft and a 10-metric ton (22,046 lbs.) co-manifested payload riding in a separate cargo compartment – to the Moon in a single launch.
Artemis IV’s co-manifested payload will be the Lunar I-Hab, one of the initial elements of the Gateway lunar space station. Built by ESA (European Space Agency), the Lunar I-Hab provides expanded capability for astronauts to live, work, conduct science experiments, and prepare for their missions to the lunar surface.
Before the Artemis IV mission structure was finalized, NASA engineers needed to design and test the new payload adapter.
“With SLS, there’s an intent to have as much commonality between flights as possible,” says Brent Gaddes, Lead for the Orion Stage Adapter and Payload Adapter in the SLS Spacecraft/Payload Integration & Evolution Office at NASA Marshall.
However, with those payloads changing typically every flight, the connecting payload adapter must change as well.
“We knew there needed to be a lot of flexibility to the payload adapter, and that we needed to be able to respond quickly in-house once the payloads were finalized,” says Gaddes.
Working alongside the robots, NASA’s next generation of engineers are learning from experts with decades of manufacturing expertise as they prepare the metal honeycomb structure substrate. During production, the fingerprints of the engineers are imprinted where metal meets composite. Even after the finishing touches are applied, the right light at the right angle reveals the harmless prints of the adapter’s makers as it launches payloads on SLS that will enable countless discoveries.NASA/Samuel Lott A Flexible Approach
The required flexibility was not going to be satisfied with a one-size-fits-all approach, according to Gaddes.
Since different size payload adapters could be needed, Marshall is using a flexible approach to assemble the payload adapter that eliminates the need for heavy and expensive tooling used to hold the parts in place during assembly. A computer model of each completed part is created using a process called structured light scanning. The computer model provides the precise locations where holes need to be drilled to hold the parts together so that the completed payload adapter will be exactly the right size.
“Structured light has helped us reduce costs and increase flexibility on the payload adapter and allows us to pivot,” says Gaddes. “If the call came down to build a cargo version of SLS to launch 40 metric tons, for example, we can use our same tooling with the structured light approach to adapt to different sizes, whether that’s for an adapter with a larger diameter that’s shorter, or one with a smaller diameter that’s longer. It’s faster and cheaper.”
NASA Marshall engineers use an automated placement robot to manufacture eight lightweight composite panels from a graphite epoxy material. The robot performs fast, accurate lamination following preprogrammed paths, its high speed and precision resulting in lower cost and significantly faster production than other manufacturing methods.
At NASA Marshall, an engineering development unit of the payload has been successfully tested which demonstrated that it can handle up to three times the expected load. Another test version currently in development, called the qualification unit, will also be tested to NASA standards for composite structures to ensure that the flight unit will perform as expected.
“The payload adapter is shaped like a cone, and historically, most of the development work on structures like this has been on cylinders, so that’s one of the many reasons why testing it is so important,” says Gaddes. “NASA will test as high a load as possible to learn what produces structural failure. Any information we learn here will feed directly into the body of information NASA has pulled together over the years on how to analyze structures like this, and of course that’s something that’s shared with industry as well. It’s a win for everybody.”
With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
News Media Contact
Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
jonathan.e.deal@nasa.gov
Explore More
2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
A key element of the Gateway lunar space station has entered the cleanroom for final…
Article 3 hours ago 3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions
Article 20 hours ago 4 min read NASA’s Mini Rover Team Is Packed for Lunar Journey
Article 2 days ago Keep Exploring Discover More Topics From NASA
Space Launch System (SLS)
Humans in Space
Orion Spacecraft
Solar System
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Technicians at Thales Alenia Space in Turin, Italy, lower Gateway’s HALO (Habitation and Logistics Outpost) onto a stand in the cleanroom.Thales Alenia Space When NASA’s Artemis IV astronauts journey to the Moon, they will make the inaugural visit to Gateway, humanity’s first space station in lunar orbit. Shown here, technicians carefully guide HALO (Habitation and Logistics Outpost)—a foundational element of Gateway—onto a stand in the cleanroom at Thales Alenia Space in Turin, Italy. The element’s intricate structure, designed to support astronauts and science in lunar orbit, has entered the cleanroom after successfully completing a series of rigorous environmental stress tests.
In the cleanroom, technicians will make final installations before preparing the module for transport to the United States, a key milestone on its path to launch. This process includes installing and testing valves and hatches, performing leak checks, and integrating external secondary structures. Once these steps are finished, the module will be packaged for shipment to Gilbert, Arizona, where Northrop Grumman will complete its outfitting.
Technicians at Thales Alenia Space in Turin, Italy, oversee the HALO module’s transfer to the cleanroom.Thales Alenia Space As one of Gateway’s four pressurized modules, HALO will provide Artemis astronauts with space to live, work, conduct scientific research, and prepare for missions to the lunar surface. The module will also support internal and external science payloads, including a space weather instrument suite attached via a Canadian Space Agency Small Orbital Replacement Unit Robotic Interface, host the Lunar Link communications system developed by European Space Agency, and offer docking ports for visiting vehicles, including lunar landers and NASA’s Orion spacecraft.
Developed in collaboration with industry and international partners, Gateway is a cornerstone of NASA’s Artemis campaign to advance science and exploration on and around the Moon in preparation for the next giant leap: the first human missions to Mars.
Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
Details
Last Updated Feb 13, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Humans in Space Johnson Space Center Explore More
2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
Article 3 weeks ago 2 min read Gateway Tops Off
Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
Article 3 months ago 2 min read Gateway: Life in a Lunar Module
Article 4 months ago Keep Exploring Discover More Topics From NASA
Humans In Space
Orion Spacecraft
Human Landing System
Extravehicular Activity and Human Surface Mobility
View the full article
-
By NASA
A massive crane lifts NASA’s Orion spacecraft out of the Final Assembly and System Testing cell and moves it to the altitude chamber to complete further testing on Thursday, Nov. 7, 2024, inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. The altitude chamber simulates deep space vacuum conditions, and the testing will provide additional data to augment data gained during testing earlier this summer. Credit: NASA/Kim Shiflett Media are invited to visit NASA’s Kennedy Space Center in Florida, to capture imagery of the agency’s Artemis II Orion spacecraft and twin SLS (Space Launch System) solid rocket boosters for the first crewed Artemis mission around the Moon. The event is targeted for Friday, March 7.
Subject matter experts from NASA and industry partners will be available for interviews.
Space is limited for this event. The deadline for foreign national media to apply is 11:59 p.m. EST, Thursday, Feb. 13. The deadline for U.S. citizens is 11:59 p.m. EST, Thursday, Feb. 20.
All accreditation requests must be submitted online at:
https://media.ksc.nasa.gov
Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation, or to request logistical support, email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA’s Kennedy Space Center newsroom at: 321-867-2468.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitor entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
Learn more about NASA’s Artemis campaign:
https://www.nasa.gov/artemis
-end-
Rachel Kraft
Headquarters, Washington
202-358-1600
rachel.h.kraft@nasa.gov
Tiffany Fairley/Allison Tankersley
Kennedy Space Center, Florida
321-747-8306/ 321-412-7237
tiffany.l.fairley@nasa.gov / allison.p.tankersley@nasa.gov
Share
Details
Last Updated Feb 11, 2025 LocationNASA Headquarters Related Terms
Artemis 2 Common Exploration Systems Development Division Exploration Systems Development Mission Directorate Kennedy Space Center Space Launch System (SLS) View the full article
-
By NASA
You would not expect to see NASA at a car show—but that’s exactly where Johnson Space Center employees were from Jan. 29 to Feb. 2, 2025, driving the future of space exploration forward.
At the Houston AutoBoative Show, a fusion of the auto and boat show, NASA rolled out its Artemis exhibit at NRG Center for the first time, introducing motor enthusiasts to the technologies NASA and commercial partners will use to explore more of the lunar surface than ever before.
Johnson Space Center employees present the Artemis exhibit at the 2025 Houston AutoBoative Show at NRG Center.NASA/Robert Markowitz The Artemis exhibit stood alongside some of the world’s most advanced cars and boats, offering visitors an up-close look at lunar terrain vehicle mockups from Astrolab, Intuitive Machines, and Lunar Outpost. Later this year, NASA will select the rover that will fly to the Moon as humanity prepares for the next giant leap.
In addition to the rovers, the exhibit featured a mockup of JAXA’s (Japan Aerospace Exploration Agency) pressurized rover, designed as a mobile habitat for astronauts, and Axiom Space’s lunar spacesuit, developed for Artemis III astronauts.
These capabilities will allow astronauts to explore, conduct science research, and live and work on the lunar surface.
Strategic Communications Manager for NASA’s Extravehicular Activity and Human Surface Mobility Program Tim Hall (right) shows Johnson Director Vanessa Wyche and Johnson External Relations Office Director Arturo Sanchez the Artemis booth. NASA/Robert Markowitz Johnson Director Vanessa Wyche visited the Artemis exhibit to highlight the importance of these technologies in advancing lunar exploration. Every lesson learned on the Moon will help scientists and engineers develop the strategies, technologies, and experience needed to send astronauts to Mars.
“By bringing the excitement of lunar exploration to the AutoBoative Show, NASA aims to inspire the next generation of explorers to dream bigger, push farther, and help shape humanity’s future in space,” Wyche said.
NASA’s Artemis campaign is setting the stage for long-term human exploration, working with commercial and international partners to establish a sustained presence on the Moon before progressing to Mars.
To make this vision a reality, NASA is developing rockets, spacecraft, landing systems, spacesuits, rovers, habitats, and more.
Vanessa Wyche views Axiom Space’s lunar spacesuit at the exhibit. NASA/Robert Markowitz Some of the key elements on display at the show included:
The Orion spacecraft – Designed to take astronauts farther into deep space. Orion will launch atop NASA’s Space Launch System (SLS) rocket, carrying the crew to the Moon on Artemis missions and safely returning them to Earth. Lunar terrain vehicles – Developed to transport astronauts across the rugged lunar surface or be remotely operated. NASA recently put these rover mockups to the test at Johnson, where astronauts and engineers, wearing spacesuits, ran through critical maneuvers, tasks, and emergency drills—including a simulated crew rescue. Next-gen spacesuits and tools – Through Johnson’s Extravehicular Activity and Human Surface Mobility Program, astronauts’ gear and equipment are designed to ensure safety and efficiency while working on the Moon’s surface. NASA’s Orion Program Strategic Communications Manager Radislav Sinyak (left) and Orion Communications Strategist Erika Peters guide Vanessa Wyche through navigating the Orion spacecraft to dock with the lunar space station Gateway.NASA/Robert Markowitz Guests had the chance to step into the role of an astronaut with interactive experiences like:
Driving a lunar rover simulator – Testing their skills at the wheel of a virtual Moon rover. Practicing a simulated Orion docking – Experiencing the precision needed to connect to Gateway in lunar orbit. Exploring Artemis II and III mission roadmaps – Learning about NASA’s upcoming missions and goals.
Attendees also discovered how American companies are delivering science and technology to the Moon through NASA’s Commercial Lunar Payload Services initiative.
Johnson employees from the Orion program showcase the Orion simulator at the exhibit. From left: Orion Crew and Service Module Office Crew Systems Manager Paul Boehm, Lead Admin Dee Maher, and Orion Crew and Service Module Integration Lead Mark Cavanaugh. From right: Vanessa Wyche, Erika Peters, and Radislav Sinyak.NASA/Robert Markowitz “Everyone can relate to exploration, so it was great to teach people the importance lunar rovers will have on astronauts’ abilities to explore more of the lunar surface while conducting science,” said Victoria Ugalde, communications strategist for the Extravehicular Activity and Human Surface Mobility Program, who coordinated the lunar rovers’ appearance at the show.
Check out the rovers contracted to develop lunar terrain vehicle capabilities below.
Vanessa Wyche explores Intuitive Machines’ Moon RACER rover mockup. NASA/Robert Markowitz Vanessa Wyche explores Lunar Outpost’s Eagle rover mockup. NASA/Robert Markowitz Vanessa Wyche explores Astrolab’s FLEX rover mockup. NASA/Robert Markowitz View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.