Jump to content

Recommended Posts

  • Publishers
Posted
eo-meeting-summary-banner.png?w=1037

35 min read

Summary of the Joint NASA LCLUC–SARI Synthesis Meeting

Introduction

The NASA Land-Cover and Land-Use Change (LCLUC) is an interdisciplinary scientific program within NASA’s Earth Science program that aims to develop the capability for periodic global inventories of land use and land cover from space. The program’s goal is to develop the mapping, monitoring and modeling capabilities necessary to simulate the processes taking place and evaluate the consequences of observed and predicted changes. The South/Southeast Asia Research Initiative (SARI) has a similar goal for South/Southeast Asia, as it seeks to develop innovative regional research, education, and capacity building programs involving state-of-the-art remote sensing, natural sciences, engineering, and social sciences to enrich land use/cover change (LUCC) science in South/Southeast Asia. Thus it makes sense for these two entities to periodically meet jointly to discuss their endeavors.

The latest of these joint meetings took place January 1–February 2, 2024, in Hanoi, Vietnam. A total of 85 participants attended the three-day, in-person meeting—see Photo.  A total of 85 participants attended the three-day, in-person meeting. The attendees represented multiple international institutions, including NASA (Headquarters and Centers), the University of Maryland, College Park (UMD), other American academic institutions, the Vietnam National Space Center (VNSC, the event host), the Vietnam National University’s University of Engineering and Technology, and Ho Chi Minh University of Technology, the Japanese National Institute of Environmental Studies (NIES), Center for Environmental Sciences, and the University of Tokyo. In addition, several international programs participated, including GEO Global Agricultural Monitoring (GEOGLAM), the System for Analysis, Research and Training (START), Global Observation of Forest and Land-use Dynamics (GOFC–GOLD), and NASA Harvest.

LCLUC photo
Photo. A group picture of the meeting participants on the first day of the 2024 LCLUC SARI meeting in Hanoi, Vietnam.
Photo credit: Hotel staff (Hanoi Club Hotel, Hanoi, Vietnam)

Meeting Overview

The purpose of the 2024 NASA LCLUC–SARI Synthesis meeting was to discuss LUCC issues – with a particular focus on their impact on Southeast Asian countries. Presenters highlighted ongoing projects aimed to advance our understanding of the spatial extent, intensity, social consequences, and impacts on the environment in South/Southeast Asian countries. While presenters reported on specific science results, they also were intentional to review and synthesize work from other related projects going on in Southeast Asia. 

Meeting Goal

The meeting’s overarching goal was to create a comprehensive and holistic understanding of various LUCC issues by examining them from multiple angles, including: collating information; employing interdisciplinary approaches; integrating research; identifying key insights; and enhancing regional collaborations. The meeting sought to bring the investigators together to bridge gaps, promote collaborations, and advance knowledge regarding LUCC issues in the region. The meeting format also provided ample time between sessions for networking to promote coordination and collaboration among scientists and teams. 

Meeting and Summary Format

The meeting consisted of seven sessions that focused on various LUCC issues. The summary report that follows is organized by day and then by session. All presentations in Session I and II are summarized (i.e., with all speakers, affiliations, and appropriate titles identified). The keynote presentation(s) from Sessions III–VI are summarized similarly. The technical presentations in each of these sessions are presented as narrative summaries. Session VII consisted of topical discussions to close out the meeting and summaries of these discussions are included herein. Sessions III–VI also included panel discussions, but to keep the article length more manageable, summaries of these discussions have been omitted. Readers interested in learning more about the panel discussions or viewing any of these presentations in full can access the information on the Joint LCLUC–SARI Synthesis meeting website.

DAY ONE

The first day of the meeting included welcoming remarks from the U.S. Ambassador to Vietnam (Session I), program executives of LCLUC and SARI,  as well as from national space agencies in South and Southeast Asia (Session II), and other LCLUC-thematic/overview presentations (Session III).

Session 1: Welcoming Remarks

Garik Gutman [NASA Headquarters—LCLUC Program Manager], Vu Tuan [VNSC’s Vietnam Academy of Science and Technology (VAST)—Vice Director General], Chris Justice [University of Maryland, College Park (UMD)—LCLUC Program Scientist], Matsunaga Tsuneo [National Institute of Environmental Studies (NIES), Japan], and Krishna Vadrevu [NASA’s Marshall Space Flight Center—SARI Lead] delivered opening remarks that highlighted collaborations across air pollution, agriculture, forestry, urban development, and other LUCC research areas. While each of the speakers covered different topics, they emphasized common themes, including advancing new science algorithms, co-developing products, and fostering applications through capacity building and training.

After the opening remarks, special guest Marc Knapper [U.S. Ambassador to Vietnam] gave a presentation in which he emphasized the value of collaborative research between U.S. and Vietnamese scientists to address environmental challenges – especially climate change and LUCC issues. He expressed appreciation to the meeting organizers for promoting these collaborations and highlighted the joint initiatives between NASA and the U.S. Agency for International Development (USAID) to monitor environmental health and climate change, develop policies to reduce emissions, and support adaptation in agriculture. The U.S.–Vietnam Comprehensive Strategic Partnership emphasizes the commitment to address climate challenges and advance bilateral research. He concluded by encouraging active participation from all attendees and stressed the need for ongoing international collaboration to develop effective LUCC policies.

Session-II: Programmatic and Space Agency Presentations

NOTE: Other than Ambassador Knapper, the presenters in Session I gave welcoming remarks and programmatic and/or space agency presentations in Session II,.

Garik Gutman began the second session by presenting an overview of the LCLUC program, which aims to enhance understanding of LUCC dynamics and environmental implications by integrating diverse data sources (i.e., satellite remote sensing) with socioeconomic and ecological datasets for a comprehensive view of land-use change drivers and consequences. Over the past 25 years, LCLUC has funded over 325 projects involving more than 800 researchers, resulting in over 1500 publications. The program’s focus balances project distribution that spans detection and monitoring, and impacts and consequences, including drivers, modeling, and synthesis. Gutman highlighted examples of population growth and urban expansion in Southeast Asia, resulting in environmental and socio-economic impacts. Urbanization accelerates deforestation, shifts farming practices to higher-value crops, and contributes to the loss of wetlands. This transformation alters the carbon cycle, degrades air quality, and increases flooding risks due to reduced rainwater absorption. Multi-source remote sensing data and social dimensions are essential in addressing LUCC issues, and the program aims to foster international collaborations and capacity building in land-change science through partnerships and training initiatives. (To learn more about the recent activities of the LCLUC Science Team, see Summary of the 2024 Land Cover Land Use Change Science Team Meeting.)

Krishna Vadrevu explained how SARI connects regional and national projects with researchers from the U.S. and local institutions to advance LUCC mapping, monitoring, and impact assessments through shared methodologies and data. The initiative has spurred extensive activities, including meetings, training sessions, publications, collaborations, and fieldwork. To date, the LCLUC program has funded 35 SARI projects and helped build collaborations with space agencies, universities, and decision-makers worldwide. SARI Principal Investigators have documented notable land-cover and land-use transformations, observing shifts in land conversion practices across Asia. For example, the transition from traditional slash-and-burn practices for subsistence agriculture to industrial oil palm and rubber plantations in Southeast Asia. Rapid urbanization has also reshaped several South and Southeast Asian regions, expanding both horizontally in rural areas and vertically in urban centers. The current SARI solicitation funds three projects across Asia, integrating the latest remote sensing data and methods to map, monitor, and assess LUCC drivers and impacts to support policy-making.

Vu Tuan provided a comprehensive overview of Vietnam’s advances in satellite technology and Earth observation capabilities, particularly through the LOTUSat-1 satellite (name derived from the “Lotus” flower), which is equipped with an advanced X-band Synthetic Aperture Radar (SAR) sensor capable of providing high-resolution imagery [ranging from 1–16 m (3–52 ft)]. This satellite is integral to Vietnam’s efforts to enhance disaster management and climate change mitigation, as well as to support a range of applications in topography, agriculture, forestry, and water management, as well as in oceanography and environmental monitoring. The VNSC’s efforts are part of a broader strategy to build national expertise and self-reliance in satellite technology, such as developing a range of small satellites (e.g., NanoDragon, PicoDragon, and MicroDragon) that progress in size and capability. Alongside satellite development, the VNSC has established key infrastructure, facilities, and capacity building in Hanoi, Nha Trang, and Ho Chi Minh City to support satellite assembly, integration, testing, and operation. Tuan showcased the application of remotely sensed LUCC data to map and monitor urban expansion in Ha Long city from 2000–2023 and the policies needed to manage these changes sustainably – see Figure 1.

LCLUC figure 1
Figure 1. Urban expansion area in Ha Long City, Vietnam from 2000–2023 from multidate Landsat satellite imagery.
Figure credit: Vu Tuan [VNSC]

Tsuneo Matsunaga provided a detailed overview of Japan’s Greenhouse Gases Observing Satellite (GOSAT) series of satellites, data from which provide valuable insights into global greenhouse gas (GHG) trends and support international climate agreements, including the Paris Agreement.

Matsunaga reviewed the first two satellites in the series: GOSAT and GOSAT-2, then previewed the next satellite in the series: GOSAT-GW, which is scheduled to launch in 2025. GOSAT-GW will fly the Total Anthropogenic and Natural Emissions Mapping Observatory–3 (TANSO-3) – an improved version of TANSO-2, which flies on GOSAT-2. TANSO-3 includes a Fourier Transform Spectrometer (FTS-3) that has improved spatial resolution [10.5 km (6.5 mi)] over TANSO-FTS-2 and precision that matches or exceeds that of its predecessor. TANSO-FTS-3 will allow estimates with precision better than 1 ppm for carbon dioxide (CO2) and 10 ppb for methane (CH4), as well as enabling nitrogen dioxide (NO2) measurements. GOSAT–GW will also fly the Advanced Microwave Scanning Radiometer (AMSR3) that will monitor water cycle components (e.g., precipitation, soil moisture) and ocean surface winds. AMSR3 builds on the heritage of three previous AMSR instruments that have flown on NASA and Japan Aerospace Exploration Agency (JAXA) missions.

Matsunaga also highlighted the importance of ground-based validation networks, such as the Total Carbon Column Observing Network, COllaborative Carbon Column Observing Network, and the Pandora Global Network, to ensure satellite data accuracy.

Son Nghiem [NASA/Jet Propulsion Laboratory (JPL)] addressed dynamic LUCC in Cambodia, Laos, Thailand, Vietnam, and Malaysia. The synthesis study examined the factors that evolve along the rural–urban continuum (RUC). Nghiem showcased this effort using Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 mission to map a typical RUC in Bac Lieu, Vietnam – see Figure 2.

LCLUC figure 2
Figure 2. Land cover map of Bae Lieu, Vietnam, and surrounding rural areas. The image shows persistent building structures (red), agricultural areas (light green), aquacultural (light blue), tree cover (dark green), and water bodies (dark blue). Land-use classes used on this map are derived from Sentinel-1 Synthetic Aperture Radar (SAR) for the rural urban continuum around Bac Lieu.
Figure credit: Son Nghiem [JPL]

Nghiem described the study, which examined the role of rapid urbanization, agricultural conversion, climate change, and environment–human feedback processes in causing non-stationary and unpredictable impacts. This work illustrates how traditional trend analysis is insufficient for future planning. The study also examined whether slower or more gradual changes could inform policy development. To test these hypotheses, his research will integrate high-resolution radar and hyperspectral data with socioeconomic analyses. The study highlights the need for policies that are flexible and responsive to the unique challenges of different areas, particularly in “hot-spot” regions experiencing rapid changes.

Peilei Fan [Tufts University] presented a study that synthesizes the complex patterns of LUCC, identifying both the spatial and temporal dynamics that characterize transitions in urban systems. The study explores key drivers, including economic development, population growth, urbanization, agricultural expansion, and policy shifts. She emphasized the importance of understanding these drivers for sustainable land management and urban planning. For example, the Yangon region of Myanmar has undergone rapid urbanization – see Figure 3. Her work reveals the need for integrated approaches that consider both urban and rural perspectives to manage land resources effectively and mitigate negative environmental and social impacts. Through a combination of case studies, statistical analysis, and policy review, Fan and her team aim to provide a nuanced understanding of the interactions between human activities and environmental changes occurring in the rapidly transforming landscapes of Southeast Asia.

LCLUC figure 3
Figure 3. Landsat data can be used to track land cover change over time. For example, Thematic Mapper data have been used to track urban expansion around Yangon, Myanmar. The data show that the built-up area expanded from 161 km2 (62 mi2) in 1990 to 739 km2 (285 mi2) in 2020.
Figure credit: Peleli Fan [Tufts University]

Session III: Land Cover/Land Use Change Studies

Tanapat Tanaratkaittikul [Geo-Informatics and Space Technology Development Agency (GISTDA), Thailand] highlighted GISTDA activities, which play a crucial role in advancing Thailand’s technological capabilities and addressing both national and global challenges, including Thailand Earth Observation System (THEOS) and its successors: THEOS-2 and THEOS-2A. THEOS-1, which launched in 2008, provides 2-m (6-ft) panchromatic and 15-m (45-ft) multispectral resolution with a 26-day revisit cycle, which can be reduced to 3 days with off-nadir pointing. Launched in 2023, THEOS-2 includes two satellites – THEOS-2A [a very high-resolution satellite with 0.5-m (1.5-ft) panchromatic and 2-m (6-ft) multispectral imagery] and THEOS-2B [a high-resolution satellite with 4-m (12-ft) multispectral resolution] – with a five-day revisit cycle. GISTDA also develops geospatial applications for drought assessment, flood prediction, and carbon credit calculations to support government decision-making and climate initiatives. GISTDA partners with international collaborators on regional projects, such as the Lancang-Mekong Cooperation Special Fund Project.

Eric Vermote [NASA’s Goddard Space Flight Center] presented a keynote that focused on atmospheric correction of land remote sensing data and related algorithm updates. He highlighted the necessity of correcting surface imaging for atmospheric effects, such as molecular scattering, aerosol scattering, and gaseous absorption, which can significantly distort the satellite spectral signals and lead to potential errors in applications, such as land cover mapping, vegetation monitoring, and climate change studies.

Vermote explained that the surface reflectance algorithm uses precise vector radiative transfer modeling to improve accuracy by incorporating atmospheric parameter inversion. It also adjusts for various atmospheric conditions and aerosol types – enhancing corrections across regions and seasons. He explained that SkyCam – a network of ground-based cameras – provides real-time assessments of cloud cover that can be used to validate cloud masks, while the Cloud and Aerosol Measurement System (CAMSIS) offers additional ground validation by measuring atmospheric conditions. He said that together, SkyCam and CAMSIS improve satellite-derived cloud masks, supporting more accurate climate models and environmental monitoring. Vermote’s work highlights the ongoing advancement of atmospheric correction methods in remote sensing.

Other presentations in this session included one in which the speaker described how Yangon, the capital city in Myanmar, is undergoing rapid urbanization and industrial growth. From 1990–2020, the urban area expanded by over 225% – largely at the expense of agricultural and green lands. Twenty-nine industrial zones cover about 10.92% of the city, which have attracted significant foreign direct investment, particularly in labor-intensive sectors. This growth has led to challenges with land confiscations, inadequate infrastructure, and environmental issues (e.g., air pollution). Additionally, rural migration for employment has resulted in informal settlements, emphasizing the need for comprehensive urban planning that balances economic development with social equity and sustainability.

Another presentation highlighted varying LUCC trends across Vietnam. In the Northern and Central Coastal Uplands, for example, swidden systems are shifting toward permanent tree crops, such as rubber and coffee. Meanwhile, the Red River Delta is seeing urban densification and consolidation of farmland – transitioning from rice to mixed farming with increased fruit and flower production. Similarly, the Central Coastal Lowlands and Southeastern regions are experiencing urban growth and a shift from coastal agriculture – in this case, to shrimp farming – leading to mangrove loss. The Central Highlands is moving from swidden to tree crops, particularly fruit trees, while the Mekong River Delta is increasing rice cropping and aquaculture. These changes contribute to urbanization, altered farming practices, and biodiversity loss. Advanced algorithms (e.g., the Time-Feature Convolutional Neural Network model) are being used to effectively map these varied LUCC changes in Vietnam.

Another presenter explained how 10-m (33-ft) resolution spatially gridded population datasets are essential to address LUCC in environmental and socio-demographic research. There was also a demonstration of PopGrid, which is a collaborative initiative that provides access to various global-gridded population databases, which are valuable for regional LUCC studies and can support informed decision-making and policy development.

DAY TWO

The second day’s presentations centered around urban LUCC (Session IV) as well as interconnections between agriculture and water resources. (Session V).

Session IV: Urban Land Cover/Land Use Change

Gay Perez [Philippines Remote Sensing Agency (PhilSA)] presented a keynote focused on PhilSA’s mission to advance Philippines as a space-capable country by developing indigenous satellite and launch technologies. He explained that PhilSA provides satellite data in various categories, including sovereign, commercial, open-access, and disaster-activated. He noted that the ground infrastructure – which includes three stations and a new facility in Quezon – supports efficient data processing. For example, Perez stated that in 2023, PhilSA produced over 10,000 maps for disaster relief, agricultural assessments, and conservation planning.

Perez reviewed PhilSA’s Diwata-2 mission, which launched in 2018 and operates in a Sun-synchronous orbit around 620 km (385 mi) above Earth. With a 10-day revisit capability, it features a high-precision telescope [4.7 m (15ft) resolution], a multispectral imager with four bands, an enhanced resolution camera, and a wide-field camera. Since launch, Diwata-2 has captured over 100,000 global images, covering 95% of the Philippines. Looking to the near future, Perez reported that PhilSA’s launch of the Multispectral Unit for Land Assessment (MULA) satellite is planned for 2025. He explained that MULA will capture images with a 5-m (~16-ft) resolution and 10–20-day revisit time, featuring 10 spectral bands for vegetation, water, and urban analysis.

Perez also described the Drought and Crop Assessment and Forecasting project, which addresses drought risks and mapping ground motion in areas, e.g., Baguio City and Pangasinan. Through partnerships in the Pan-Asia Partnership for Geospatial Air Pollution Information (PAPGAPI) and the Pandora Asia Network, PhilSA monitors air quality across key locations, tracking urban pollution and cross-border particulate transport. PhilSA continues to strengthen Southeast Asian partnerships to drive sustainable development in the region.

Jiquan Chen [Michigan State University] presented the second keynote address, which focused on the Urban Rural Continuum (URC). Chen emphasized the importance of synthesizing studies that explore factors such as population dynamics, living standards, and economic development in the URC. Key considerations include differentiating between two- and three-dimensional infrastructures and understanding constraints from historical contexts. Chen highlighted critical variables from his analysis including net primary productivity, household income, and essential infrastructure elements, such as transportation and healthcare systems. He advocated for integrated models that combine mechanistic and empirical approaches to grasp the dynamics of URC changes, stressing their implications for urban planning, environmental sustainability, and social equity. He concluded with a call for collaboration to enhance these models and tackle challenges arising from the changing urban–rural landscape.

Tep Makathy [Cambodian Institute For Urban Studies] discussed urbanization in Phnom Penh, Cambodia. He explained that significant LUCC and infrastructure developments have been fueled by direct foreign investment; however, this development has resulted in environmental degradation, urban flooding, and infrastructure strain. Tackling pollution, congestion, preservation of green spaces, and preserving the historical heritage of the city will require sustainable urban planning efforts.

Nguyen Thi Thuy Hang [Vietnam Japan University, Vietnam National University, Hanoi] explained how flooding poses a significant annual threat to infrastructure and livelihoods in Can Tho, Vietnam. Therefore, it is essential to incorporate climate change considerations into land-use planning by enhancing the accuracy of vegetation layer classifications. Doing so will improve the representation of land-cover dynamics in models that decision-makers use when planning urban development. In addition, Hang reported that a more comprehensive survey of dyke systems will improve flood protection and identify areas needing reinforcement or redesign. These studies could also explore salinity intrusion in coastal agricultural areas that could impact crop yields and endanger food security.

In this session, two presenters highlighted how SAR data, which uses high backscatter to enhance the radar signal, is being used to assist with mapping urban areas in their respective countries. The phase stability and orientation of building structures across SAR images aid in consistent monitoring and backscatter, producing distinct image textures specific to urban settings. Researchers can use this heterogeneity and texture to map urban footprints, enabling automated discrimination between urban and non-urban areas. The first presenters showed how Interferometric Synthetic Aperture Radar techniques, such as Small Baseline Subset (SBAS) and Persistent Scatterer (PS) have been highly effective for mapping and monitoring land subsidence in coastal and urban areas in Vietnam. This approach has been applied to areas along the Saigon River as well as in Ho Chi Minh, Vietnam. The second presenter described an approach (using SAR data with multitemporal coherence and the K-means classification method) that has been used effectively to study urban growth in the Denpasar Greater Area of Indonesia between 2016 and 2022. The technique identified the conversion of 4376 km2 (1690 mi2) of rural to built-up areas, averaging 72.9 hectares (0.3 mi2) per year. Urban sprawl was predominantly observed in the North Kuta District, where the shift from agricultural to built-up land use has been accompanied by severe traffic congestion and other environmental issues.

Another presenter showed how data from the QuikSCAT instrument, which flew on the Quick Scatterometer satellite, and from the Sentinel-1 C-band SAR can be combined to measure and analyze urban built-up volume, specifically focusing on the vertical growth of buildings across various cities. By integrating these datasets, researchers can assess urban expansion, monitor the development of high-rise buildings, and evaluate the impact of urbanization on infrastructure and land use. This information is essential for urban planning, helping city planners and policymakers make informed decisions to accommodate growing populations and enhance sustainable urban development.

Session V – LUCC, Agriculture, and Water Resources

Chris Justice presented the keynote for this session, in which he addressed the GEOGLAM initiative and the NASA Harvest program. GEOGLAM, initiated by the G20 Agriculture Ministers in 2011, focuses on agriculture and food security to increase market transparency and improve food security. These efforts leverage satellite-based Earth observations to produce and disseminate timely, relevant, and actionable information about agricultural conditions at national, regional, and global scales to support agricultural markets and provide early warnings for proactive responses to emerging food emergencies. NASA Harvest uses satellite Earth observations to benefit global food security, sustainability, and agriculture for disaster response, climate risk assessments, and policy support. Justice also emphasized the use of open science and open data principles, promoting the integration of Earth observation data into national and international agricultural monitoring systems. He also discussed the development and application of essential agricultural variables, in situ data requirements, and the need for comprehensive and accurate satellite data products.

During this session, another presentation focused on how VNSC is engaged in several agricultural projects, including mapping rice crops, estimating yields, and assessing environmental impacts. VNSC has created high-accuracy rice maps for different seasons that the Vietnamese government uses to monitor and manage agricultural production. Current initiatives involve using satellite data to estimate CH4 emissions from rice paddies, biomass mapping, and monitoring rice straw burning. For example, in the Mekong Delta, numerous environmental factors, including climate change-induced stress (e.g., sea-level rise), flooding, drought, land subsidence, and saltwater intrusion, along with human activities like dam construction, sand mining, and groundwater extraction, threaten the sustainability of rice farming and farmer livelihoods. To address these challenges, sustainable agricultural practices are essential to improving rice quality, diversify farming systems, adopt low-carbon techniques, and enhance water management.

Presentations highlighted the importance of both optical and SAR data for LUCC studies, particularly in mapping agricultural areas. A study using Landsat time-series data demonstrated its value in monitoring agricultural LUCC in Houa Phan Province, Laos, and Son La Province, Vietnam. Land cover types were classified through spectral pattern analysis, identifying distinct classes based on Landsat reflectance values. The findings revealed significant natural forest loss alongside increases in cropland and forest plantations due to agricultural expansion. High-resolution imagery validated these results, indicating the scalability of this approach for broader regional and global land-cover monitoring. Another study showcased the effectiveness of SAR data from the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on the Japanese Advanced Land Observing Satellite-2 (ALOS-2) for mapping and monitoring agricultural land use in Suphanburi, Thailand. This data proved particularly useful for capturing seasonal variations and diverse agricultural practices. Supervised machine learning methods, such as Random Forest classifiers, combined with innovative spatial averaging techniques, achieved high accuracy in distinguishing various agricultural conditions.

In the session, presenters also discussed the use of Sentinel-1 SAR data for mapping submerged and non-submerged paddy soils was highlighted, demonstrating its effectiveness in understanding water management issues see – Figure 4. Additionally, large-scale remote sensing data and cloud computing were shown to provide unprecedented opportunities for tracking agricultural land-use changes in greater detail. Case studies from India and China illustrated key challenges, such as groundwater depletion in irrigated agriculture across the Indo-Ganges region and the impacts on food, water, and air quality in both countries.

LCLUC figure 4
Figure 4. Series of Sentinel-1 radar data images showing submerged paddy soil (blue) and non-submerged paddy soil (red) in the Mekong Delta, Vietnam.
Figure credit: Hiranori Arai [International Rice Research Institute]

The session also focused on Water–Energy–Food (WEF) issues related to the Mekong River Basin’s extensive network of hydroelectric dams, which present both benefits and challenges. While these dams support sectors such as irrigated agriculture and hydropower, they also disrupt vital ecosystem services, including fish habitats and biodiversity. Collaborative studies integrating satellite and ground data, hydrological models, and socio-economic frameworks highlight the need to balance these benefits with ecological and social costs. Achieving sustainable management requires cross-sectoral and cross-border cooperation, as well as the incorporation of traditional knowledge to address WEF trade-offs and governance challenges in the region.

DAY THREE

The third day included a session that explored the impacts of fire, GHG emissions, and pollution (Session VI) as well as a summary discussion on synthesis (Session VII).

Session VI: Fires, Greenhouse Gas Emissions, and Pollution

Chris Elvidge [Colorado School of Mines] presented a keynote on the capabilities and applications of the Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire [VNF] system, an advanced satellite-based tool developed by the Earth Observation Group. VIIRS Nightfire uses four near- and short-wave infrared channels, initially designed for daytime imaging, to detect and monitor infrared emissions at night. The system identifies various combustion sources, including both flaming and non-flaming activities (e.g., biomass burning, gas flaring, and industrial processes). It calculates the temperature, source area, and radiant heat of detected infrared emitters using physical laws to enable precise monitoring of combustion events and provide insight into exothermic and endothermic processes.

Elvidge explained that VNF has been vital for near-real-time data in Southeast Asia. The system has been used to issue daily alerts for Vietnam, Thailand, and Indonesia. Recent updates in Version 4 (V4) include atmospheric corrections and testing for secondary emitters with algorithmic improvements – with a 50% success rate in identifying additional heat sources. The Earth Observation Group maintains a multiyear catalog of over 20,000 industrial infrared emitters available through the Global Infrared Emitter Explorer (GIREE) web-map service. With VIIRS sensors expected to operate until about 2040 on the Joint Polar Satellite System (JPSS) platforms, this system ensures long-term, robust monitoring and analysis of global combustion events, proving essential for tracking the environmental impacts of industrial activities and natural combustion processes on the atmosphere and ecosystems.

Toshimasa Ohara [Center for Environmental Science, Japan—Research Director] continued with the second keynote and provided an in-depth analysis of long-term trends in anthropogenic emissions across Asia. The regional mission inventory in Asia encompasses a range of pollutants and offers detailed emissions data from 1950–2020 at high spatial and temporal resolutions. The study employs both bottom-up and top-down approaches for estimating emissions, integrating satellite observations to validate data and address uncertainties. Notably, emissions from China, India, and Japan have shown signs of stabilization or reduction, attributed to stricter emission control policies and technological advancements. Ohara also highlighted Japan’s effective air pollution measures and the importance of extensive observational data in corroborating emission trends. His presentation emphasized the need for improved methodologies in emission inventory development and validation across Asia, aiming to enhance policymaking and environmental management in rapidly industrializing regions.

Several presenters during this session focused on innovative approaches to understand and mitigate GHG emissions and air pollution. One presenter showed how NO2 data from the TROPOspheric Monitoring Instrument (TROPOMI) on the European Sentinel-5 Precursor have been validated against ground-based observations from Pandora stations in Japan, highlighting the influence of atmospheric conditions on measurement accuracy. Another presenter described an innovative system that GISTDA used to combine satellite remote sensing data with Artificial Intelligence (AI). This system was used to monitor and analyze the concentration of fine particulate matter (PM) in the atmosphere in Thailand. (In this context fine is defined as particles with diameters ≤ 2.5 µm, or PM2.5.) These applications, which are accessible through online, cloud-based platforms and mobile applications for iOS and Android devices, allow users, including citizens, government officers, and policymakers, to access PM2.5 data in real-time through web and mobile interfaces.

A project under the United Nations Economic and Social Commission for Asia and the Pacific in Thailand is focused on improving air quality monitoring across the Asia–Pacific region by integrating satellite and ground-based data. At the core of this effort, the Pandora Asia Network, which includes 30 ground-based instruments measuring pollutants such as NO₂ and sulfur dioxide (SO₂), is complemented by high-resolution observations from the Geostationary Environment Monitoring Spectrometer (GEMS) aboard South Korea’s GEO-KOMPSAT-2B (GK-2B) satellite. The initiative also provides training sessions to strengthen regional expertise in remote sensing technologies for air quality management and develops decision support systems for evidence-based policymaking, particularly for monitoring pollution sources and transboundary effects like volcanic eruptions. Future plans include expanding the Pandora network and enhancing data integration to support local environmental management practices.

PM2.5 levels in Vietnam are influenced by both local emissions and long-range pollutant transport, particularly in urban areas.The Vietnam University of Engineering and Technology, in conjunction with VNSC, continues to map and monitor PM2.5 using satellites and machine learning while addressing data quality issues that stem from missing satellite data and limited ground monitoring stations – see Figure 5.

In addition to mapping and monitoring pollutants, another presentater explained that significant research is underway to address their health impacts. In Hanoi, exposure to pollutants ( e.g., PM2.5, PM10, and NO2) has led to increased rates of respiratory diseases (e.g., pneumonia, bronchitis, and asthma) among children,  as well as elevated instances of cardiovascular diseases among adults. A substantial mortality burden is attributable to fine particulate matter – particularly in densely populated areas like Hanoi. Compliance with stricter air quality guidelines could potentially prevent thousands of premature deaths. For example, preventive measures enacted during the COVID-19 pandemic resulted in reduced pollution levels that were associated with a decrease in avoidable mortality rates. In response to these challenges, Vietnam has implemented air quality management policies, including national technical regulations and action plans aimed at controlling emissions and enhancing monitoring; however, current national standards still fall short of the more stringent guidelines recommended by the World Health Organization. Improved air quality standards and effective policy interventions are needed to mitigate the health risks associated with air pollution in Vietnam.

LCLUC figure 5
Figure 5. Map of particulate matter (PM 2.5) variations observed across Vietnam, using multisatellite aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectrogradiometer (MODIS) on NASA’s Aqua and Terra platforms, and from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA–NOAA Suomi NPP platform, combined with ground-based AOD and meteorological data.
Figure credit: Thanh Nguyen [Vietnam National University of Engineering and Technology, Vietnam]

Another presenter explained how food production in Southeast Asia contributes about 40% of the region’s total GHG emissions – with rice and beef production identified as the largest contributors for plant-based and animal-based emissions, respectively. Another presentation focused on a study that examined GHG emissions from agricultural activities, which suggests that animal-based food production – particularly beef – generates substantially higher GHG emissions per kg of food produced compared to plant-based foods, such as wheat and rice. Beef has an emission intensity of about 69 kg of CO2 equivalent-per-kg, compared to 2 to 3 kg of CO2 equivalent-per-kg for plant-based foods. The study points to mitigation strategies (e.g., changing dietary patterns, improving agricultural practices) and adopting sustainable land management. Participants agreed that a comprehensive policy framework is needed to address the environmental impacts of food production and reduce GHG emissions in the agricultural sector.

In another presentation, the speaker highlighted the fact that Southeast Asian countries need an advanced monitoring, reporting, and verification system to track GHG emissions – particularly within high-carbon reservoirs like rice paddies. To achieve this, cutting-edge technologies (e.g., satellite remote sensing, low-cost unmanned aerial vehicles, and Internet of Things devices) can be beneficial in creating sophisticated digital twin technology for sustainable rice production and GHG mitigation.

Another presentation featured a discussion about pollution resulting from forest and peatland fires in Indonesia, which is significantly impacting air quality. Indonesia’s tropical peatlands – among the world’s largest and most diverse – face significant threats from frequent fires. Repeated burning has transformed forests into shrubs and secondary vegetation regions, with fires particularly affecting forest edges and contributing to a further retreat of intact forest areas. High-resolution data is essential to map and monitor changes in forest cover, including pollution impacts.

Another speaker described a web-based Geographic Information Systems (GIS) application that has been developed to support carbon offsetting efforts in Laos – to address significant environmental challenges, e.g., deforestation and climate change. Advanced technologies (e.g., remote sensing, GIS, and Global Navigation Satellite Systems) are used to monitor land-use changes, carbon sequestration, and ecosystem health. By integrating various spatial datasets, the web GIS app enhances data collection precision, streamlines monitoring processes, and provides real-time information to stakeholders for informed decision-making. This initiative fosters collaboration among local communities, government agencies, and international partners, while emphasizing the importance of government support and international partnerships. Ultimately, the web GIS application represents a significant advancement in Laos’s commitment to environmental sustainability, economic growth, and the creation of a greener future.

Session VII. Discussion Session on Synthesis

The meeting concluded with a comprehensive discussion on synthesizing themes related to LUCC. The session focused on three themes: LUCC, agriculture, and air pollution. The session focused on trends and projections as well as the resulting impacts in the coming years. It also highlighted research related to these topics to inform more sustainable land use policies. A panel of experts from different Southeast Asian countries addressed these topics. A summary of the key points shared by the panelists for each theme during the discussion is provided below.

LUCC Discussions

This discussion focused on the challenges of balancing economic development with environmental sustainability in Southeast Asian countries, e.g., mining in Myanmar, agriculture in Vietnam, and rising land prices in Thailand. More LUCC research is needed to inform decision-making and improve land-use planning during transitions from agriculture to industrialization while ensuring food security. The panelists also discussed urban sprawl and infrastructure development along main roads in several Southeast Asian countries, highlighting the social and environmental challenges arising from uncoordinated growth. It was noted that urban infrastructure lags behind population increases, resulting in traffic congestion, pollution, and social inequality. Cambodia, for example, has increased foreign investments, which presents similar dilemmas of economic growth accompanied by significant environmental degradation. Indonesia is another example of a Southeast Asian nation facing rapid urbanization and inadequate spatial planning, leading to flooding, groundwater depletion, and pollution. These issues further highlight the need for integrated satellite monitoring to inform land-use policies. Finally, recognizing the importance of public infrastructure in growth management, it was reported that the Thai government is already using technology to manage urban development alongside green spaces.

Panelists agreed that LUCC research is critical for guiding policymakers toward sustainable land-use practices – emphasizing the necessity for improved communication between researchers and policymakers. While the integration of technologies (e.g., GIS and remote sensing) is beginning to influence policy decisions, room for improvement remains. In summary, the discussions stressed the importance of better planning, technology integration, and policy-informed research to reconcile economic growth with sustainability. Participants also highlighted the need to engage policymakers, non-government organizations, and the private sector in using scientific evidence for sustainable development. Capacity building in Laos, Cambodia, and Myanmar, where GIS and remote sensing technologies are still developing, is crucial. Community involvement is essential for translating research findings into actionable policies to address real-world challenges and social equity.

Agriculture Discussions

These discussions explored the intricate relationships between agricultural practices, economic growth, and environmental sustainability in Southeast Asia. As an example, despite national policies to manage the land transition in Vietnam, rapid conversions from forest to agricultural land and further to residential and industrial continue. While it is recognized that strict land management plans may hinder future adaptability, further regulation is needed. These rapid shifts in land use have increased land for economic development – especially in industrial and residential sectors – and contribute to environmental degradation, e.g., pollution and soil erosion. In Thailand, land is distributed among agriculture (50%), forest (30%), and urban (20%) areas. Despite a long history of agricultural practices, Vietnam faces new challenges from climate change and extreme weather.

Thailand, meanwhile, is exploring carbon credits to incentivize sustainable farming practices – although this requires significant investment and time. The nation is well-equipped with a robust water supply system, and ongoing efforts to enhance crop yields on Vietnam’s Mekong Delta, salinity levels, and flooding intensity have increased as a result of the rise in incidents of extreme weather, prompting advancements in rice farming mechanization to be implemented that are modeled after practices that have been successfully used in the Philippines.

Despite these advances, issues (e.g., over-application of rice seeds) remain. The dominant land cover type in Malaysia is tropical rainforest, although agriculture – particularly oil palm plantations – also plays a significant role in land use. While stable, it shares environmental concerns with Indonesia. The country is integrating solar energy initiatives, placing solar panels on former agricultural lands and recreational areas, which raises coastal environmental concerns. In Taiwan, substantial land use changes have stemmed from solar panel installations to support green energy goals but have led to increased temperatures and altered wind patterns.

All panelists agreed that remote sensing technologies are vital to inform agricultural policy across the region. They emphasized the need to transition from academic research to actionable insights that directly inform policy. Panelists also discussed the challenge of securing funding for actionable research – underlining the importance of recognizing the transition required for research to inform operational use. Some countries (e.g., Thailand) have established operational crop monitoring systems, while others (e.g., Vietnam) primarily depend on research projects. Despite progress in Malaysia’s monitoring of oil palm plantations, a comprehensive operational monitoring system is still lacking in many areas. The participants concluded that increased efforts are needed to promote the wider adoption of remote sensing technologies for agricultural and environmental monitoring, with emphasis on developing operational systems that can be integrated into policy and decision-making processes.

Air Pollution Discussions

The discussion on air pollution focused on various sources in Southeast Asia, which included both local and transboundary factors. Panelists highlighted that motor vehicles, industrial activities, and power plants are major contributors to pollutants, such as PM2.5, NO2, ozone (O3), and carbon monoxide (CO). Forest fires in Indonesia – particularly from South Sumatra and Riau provinces – are significantly impacting neighboring countries, e.g., Malaysia. A study found that most PM2.5 pollution in Kuala Lumpur originates from Indonesia. During the COVID-19 pandemic, pollution levels dropped sharply due to reduced economic activity; however, data from 2018–2023 shows that PM2.5 levels have returned to pre-pandemic conditions.

The Indonesian government is actively working to reduce deforestation and emissions, aiming for a 29% reduction by 2030. Indonesia is also participating in carbon markets and receiving international payments for emission reductions. Indonesia’s emissions also stem from energy production, industrial activities, and land-use changes, including peat fires. The Indonesian government reports anthropogenic sources – particularly from the energy sector and industrial activities, forest and peat fires, waste, and agriculture – continue to escalate. While Indonesia is addressing these issues, growing population and energy demands continue to drive pollution levels higher.

Vietnam and Laos are facing similar challenges related to air pollution – particularly from agricultural residue burning. Both governments are working on expanding air quality monitoring, regulating waste burning, and developing policies to mitigate pollution. Vietnam has been developing provincial air quality management plans and expanding its monitoring network. Laos has seen increased awareness of pollution, accompanied by government measures aimed at restricting burning and improving waste management practices.

The panelists agreed that collaborative efforts for regional cooperation are essential to address air pollution. This will require collaboration in research and data sharing to inform policy decisions. There is a growing interest in leveraging satellite technology and modeling approaches to enhance air quality forecasting and management. To ensure that research translates into effective policy, communication of scientific findings to policymakers is essential – particularly by clearly communicating complex research concepts in accessible formats. All panelists agreed on the importance of improving governance, transparency, and scientific communication to better translate research into policy actions, highlighting collaborations with international organizations – including NASA – to address air quality issues. While significant challenges related to air pollution persist in Southeast Asia, noteworthy efforts are underway to improve awareness, research, and collaborative governance aimed at enhancing air quality and reducing emissions.

Conclusion

The LCLUC–SARI Synthesis meeting fostered collaboration among researchers and provided valuable updates on recent developments in LUCC research, exchange of ideas, integration of new data products, and discussions on emerging science directions. This structured dialogue (particularly the discussions in each session) helped the attendees identify priorities and needs within the LUCC community. All panelists and meeting participants commended the SARI leadership for their proactive role in facilitating collaborations and discussions that promote capacity-building activities across the region. SARI activities have significantly contributed to enhancing the collective ability of countries in South and Southeast Asia to address pressing environmental challenges. The meeting participants emphasized the importance of maintaining and expanding these collaborative efforts, which are crucial for fostering partnerships among governments, research institutions, and local communities. They urged SARI to continue organizing workshops, training sessions, and knowledge-sharing platforms that can equip stakeholders with the necessary skills and resources to tackle environmental issues such as air pollution, deforestation, climate change, and sustainable land management.

Krishna Vadrevu
NASA’s Marshall Space Flight Center
krishna.p.vadrevu@nasa.gov

Vu Tuan
Vietnam National Science Center, Vietnam
vatuan@vnsc.org.vn

Than Nguyen
Vietnam National University Engineering and Technology, Vietnam
thanhntn@vnu.edu.vn

Son Nghiem
Jet Propulsion Laboratory
son.v.nghiem@jpl.nasa.gov

Tsuneo Matsunaga
National Institute of Environmental Studies, Japan
matsunag@nies.go.jp

Garik Gutman
NASA Headquarters
ggutman@nasa.gov

Christopher Justice
University of Maryland College Park
cjustice@umd.edu

Share

Details

Last Updated
Feb 20, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice Read this story in English here.
      El equipo detrás del X-59 de la NASA completó en marzo otra prueba crítica en tierra, garantizando que el silencioso avión supersónico será capaz de mantener una velocidad específica durante su funcionamiento. Esta prueba, conocida como mantenimiento automático de velocidad del motor, es el más reciente marcador de progreso a medida que el X-59 se acerca a su primer vuelo este año. 
      “El mantenimiento automático de la velocidad del motor es básicamente la versión de control de crucero de la aeronave,” explicó Paul Dees, jefe adjunto de propulsión de la NASA del X-59 en el Centro de Investigación de Vuelo Armstrong de la agencia en Edwards, California. “El piloto activa el control de velocidad a su velocidad actual y luego puede aumentarla o ajustarla gradualmente según sea necesario.” 
      El equipo del X-59 ya había realizado una prueba similar en el motor, pero sólo como un sistema aislado. La prueba de marzo verificó que la retención de velocidad funciona correctamente tras su integración en la aviónica de la aeronave. 
      “Necesitábamos verificar que el mantenimiento automático de velocidad funcionara no sólo dentro del propio motor, sino como parte de todo el sistema del avión,” explicó Dees. “Esta prueba confirmó que todos los componentes – software, enlaces mecánicos y leyes de control – funcionan juntos según lo previsto.” 
      El éxito de la prueba confirmó la habilidad de la aeronave para controlar la velocidad con precisión, lo cual será muy invaluable durante el vuelo. Esta capacidad aumentará la seguridad de los pilotos, permitiéndoles enfocarse en otros aspectos críticos de la operación de vuelo. 
      “El piloto va a estar muy ocupado durante el primer vuelo, asegurándose de que la aeronave sea estable y controlable,” dijo Dees. “Al tener la función del mantenimiento automático de velocidad, de reduce parte de esa carga de trabajo, lo que hace que el primer vuelo sea mucho más seguro.” 
      Inicialmente el equipo tenía planeado comprobar el mantenimiento automático de velocidad como parte de una próxima serie de pruebas en tierra donde alimentarían la aeronave con un sólido conjunto de datos para verificar su funcionalidad tanto en condiciones normales como de fallo, conocidas como pruebas de pájaro de aluminio (una estructura que se utiliza para probar los sistemas de una aeronave en un laboratorio, simulando un vuelo real). Sin embargo, el equipo se dio cuenta que había una oportunidad de probarlo antes. 
      “Fue un objetivo de oportunidad,” dijo Dees. “Nos dimos cuenta de que estábamos listos para probar el mantenimiento automático de velocidad del motor por separado mientras otros sistemas continuaban con la finalización de su software. Si podemos aprender algo antes, siempre es mejor.” 
      Con cada prueba exitosa, el equipo integrado de la NASA y Lockheed Martin acerca el X-59 al primer vuelo, y hacer historia en la aviación a través de su tecnología supersónica silenciosa. 
      Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated Mar 31, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronáutica NASA en español Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA logo. NASA has awarded SpaceX of Starbase, Texas, a modification under the NASA Launch Services (NLS) II contract to add Starship to their existing Falcon 9 and Falcon Heavy launch service offerings.
      The NLS II contracts provide a broad range of commercial launch services for NASA’s planetary, Earth-observing, exploration, and scientific satellites. These high-priority, low and medium risk tolerant missions have full NASA technical oversight and mission assurance, resulting in the highest probability of launch success.
      The NLS II contracts are multiple award, indefinite-delivery/indefinite-quantity, with an ordering period through June 2030 and an overall period of performance through December 2032. The contracts include an on-ramp provision that provides an opportunity annually for new launch service providers to add their launch service on an NLS II contract and compete for future missions and allows existing contractors to introduce launch services not currently on their NLS II contracts.
      The contracts support the goals and objectives of the agency’s Science Mission Directorate, Space Operations Mission Directorate, Explorations Systems Development Mission Directorate, and the Space Technology Mission Directorate. Under the contracts, NASA also can provide launch services to other federal government agencies.
      NASA’s Launch Services Program Office at the agency’s Kennedy Space Center in Florida manages the NLS II contracts. For more information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle / Joshua Finch
      Headquarters, Washington
      202-358-1600 / 202-358-1100
      tiernan.doyle@.nasa.gov / joshua.a.finch@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated Mar 28, 2025 LocationNASA Headquarters Related Terms
      NASA Directorates Space Operations Mission Directorate View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Eric Garza, an engineering technician in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, cuts plywood to size for temporary floorboards for the X-66 experimental demonstrator aircraft on Aug. 26, 2024.NASA/Steve Freeman NASA designed temporary floorboards for the MD-90 aircraft to use while it is transformed into the X-66 experimental demonstrator aircraft. These floorboards will protect the original flooring and streamline the modification process.
      Supporting the agency’s Sustainable Flight Demonstrator project, a small team in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, built temporary floorboards to save the project time and resources. Repeated removal and installation of the original flooring during the modification process was time-consuming. Using temporary panels also ensures the original floorboards are protected and remain flightworthy for when modifications are complete, and the original flooring is reinstalled.
      “The task of creating the temporary floorboards for the MD-90 involves a meticulous process aimed at facilitating modifications while maintaining safety and efficiency. The need for these temporary floorboards arises from the detailed procedure required to remove and reinstall the Original Equipment Manufacturer (OEM) floorboards,” said Jason Nelson, experimental fabrication lead. He is one of two members of the fabrication team – one engineering technician and one inspector – manufacturing about 50 temporary floorboards, which range in size from 20 inches by 36 inches to 42 inches by 75 inches.
      A wood router cuts precise holes in plywood for temporary floorboards on Aug. 26, 2024, in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California. The flooring was designed for the X-66 experimental demonstrator aircraft. NASA/Steve Freeman Nelson continued, “Since these OEM boards will be removed and reinstalled multiple times to accommodate necessary modifications, the temporary floorboards will save the team valuable time and resources. They will also provide the same level of safety and strength as the OEM boards, ensuring that the process runs smoothly without compromising quality.”
      Designing and prototyping the flooring was a meticulous process, but the temporary solution plays a crucial role in optimizing time and resources as NASA works to advance safe and efficient air travel. The agency’s Sustainable Flight Demonstrator project seeks to inform the next generation of single-aisle airliners, the most common aircraft in commercial aviation fleets around the world. NASA partnered with Boeing to develop the X-66 experimental demonstrator aircraft.
      NASA Armstrong’s Experimental Fabrication Shop carries out modifications and repair work on aircraft, ranging from the creation of something as small as an aluminum bracket to modifying wing spars, fuselage ribs, control surfaces, and other tasks to support missions.
      Eric Garza, an engineering technician in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, observes a wood router cut holes for temporary floorboards on Aug. 26, 2024. The flooring was designed for the X-66 experimental demonstrator aircraft.  NASA/Steve Freeman Share
      Details
      Last Updated Mar 28, 2025 EditorDede DiniusContactSarah Mannsarah.mann@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Green Aviation Tech Sustainable Flight Demonstrator Explore More
      2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 2 days ago 5 min read NASA Demonstrates New Wildland Fire Airspace Management System
      Article 3 days ago 3 min read New Aircraft Wing Undergoes Crucial NASA Icing Testing
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Rebecca Mataya is a budget analyst at NASA’s Stennis Space Center. “Whether you are an engineer, analyst, lawyer, technician, communicator or innovator, there is a place for you here at NASA,” she said. “Every skill contributes to the greater mission of pushing the boundaries of exploration, discovery, and progress. If you have a passion, determination, and willingness to learn, NASA is a place where you can grow and leave a lasting impact on the future of space.”NASA/Stennis A career path can unfold in unexpected ways. Ask NASA’s Rebecca Mataya.
      The journey to NASA’s Stennis Space Center near Bay St. Louis, Mississippi, was not planned but “meant to be,” she said.
      While working for a local business, the Picayune, Mississippi, native frequently delivered items to NASA Stennis. While making a delivery, Mataya noticed a construction worker who needed directions while waiting to receive a NASA Stennis visitor’s badge.
      “I stepped in by offering a map and highlighting the way,” Mataya said.
      This small moment of initiative caught the attention of the receptionist, who mentioned an opening at NASA Stennis. She noted that Mataya’s approach to the situation displayed the NASA Stennis culture of hospitality and a can-do attitude.
      “The rest is history,” she said. “Looking back, it was not just about finding a job – it was about NASA Stennis finding me, and me discovering a place where I would build a fulfilling career.”
      Since the first day of work when Mataya walked into NASA Stennis “in complete awe,” she has felt like every day is a learning experience filled with “wow” moments, like seeing a test stand up close and meeting rocket engineers. 
      The Carriere, Mississippi, resident worked as a support contractor from 2008 to 2022, filling various roles from lead security support specialist to technical writer and program manager.
      Her career path has progressed, where each role built upon the previous.
      As a budget analyst in the NASA Stennis Office of the Chief Financial Officer since 2022, Mataya oversees the planning, programing, budgeting, and execution of funds for all Office of Strategic Infrastructure work within the NASA Stennis Center Operations Directorate. She also manages budgets for the NASA Stennis Construction of Facilities projects, and the congressionally approved Supplemental Funding portfolio.
      “It is a role that requires adaptability, strategic thinking, and financial oversight,” she said. “I have cultivated these skills through years of experience, but more than that, it is a role that allows me to contribute something meaningful to the future of NASA and space exploration.”
      Mataya will complete a master’s degree in Business Administration from Mississippi State University in May. She previously earned her bachelor’s degree from Mississippi State and an associate degree from Pearl River Community College. 
      “My career has been shaped by growth and achievement, but the greatest highlight has always been the incredible people I have had the privilege of working with,” she said. “Walking the halls of NASA, where top leaders recognize me by name, is a testament to the trust and relationships I have built over the years.”
      Mataya said supervisors have consistently entrusted her with more complex projects, confident in her ability to rise to the challenge and deliver results. As a result, she has had opportunities to mentor interns and early-career professionals, guiding them as others once guided her.
      “Seeing my colleagues succeed and knowing they have reached their goals, and championing their progress along the way, remains one of the most rewarding aspects of my career,” she said.
      Mataya knows from experience that NASA Stennis offers opportunity and a supportive environment, not only for employees looking for career growth, but to customers seeking world-class testing facilities. “NASA Stennis is a place where collaboration thrives,” she said. “It is where NASA, tenants, and commercial partners come together as one cohesive community with a culture of mutual respect, support, and an unwavering commitment to excellence. As America’s largest rocket propulsion test site, NASA Stennis is evolving, and I look forward to seeing how our technological advancements attract new commercial partners and expand NASA’s capabilities.”
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 13 min read
      The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science
      Introduction
      Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a workhorse in NASA’s Airborne Science Program (ASP)—see Photo 1. The aircraft, located at NASA’s Armstrong Flight Research Center (AFRC) in California, flew countless missions as a science laboratory, producing science data that supports projects serving the world’s scientific community, particularly the NASA Earth science community. NASA recently decided to retire the venerable DC-8 aircraft, which made its last science flight in April 2024. The DC-8 is being replaced with a similarly refurbished Boeing 777 aircraft, which will be even more capable than the DC-8.
      Photo 1. NASA’s DC-8 flying laboratory flew Earth science missions for NASA’s. Airborne Science Program (ASP) from 1987–2024. The versatile aircraft was used to conduct a variety of research experiments that spanned all seven continents. Photo credit: Lori Losey [NASA’s Armstrong Flight Research Center (AFRC)] More information is available about the full history of ASP, its primary objectives, and its many achievements in an archived article: see “Flying in the ‘Gap’ Between Earth and Space: NASA’s Airborne Science Program” [The Earth Observer, September–October 2020, 32:5, 4–14].
      Workshop Overview
      The NASA History Office and NASA Earth Science Division cohosted a workshop, titled “Contributions of the DC-8 to Earth System Science at NASA,” on October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC – see Photo 2.
      The agenda included not just the DC-8’s contributions to Earth Science at NASA, but also its role supporting the Aeronautics Research Mission Directorate and work in space science. Many DC-8 veterans – including several who are now retired – attended the event in person or online. The program consisted of six panels and roundtables, each calling attention to a unique aspect of the DC-8 story.
      Photo 2. Group photo of the in person and remote participants of the workshop on “Contributions of the DC-8 to Earth System Science at NASA,” which took place October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC. Photo credit: Rafael Luis Méndez Peña [NASA’s Ames Research Center, Earth Science Program Office] The event featured 38 individuals (speakers, panelists, and moderators) from NASA HQ, five NASA centers, eight universities, the Search for Extraterrestrial Intelligence Institute, and the National Oceanic and Atmospheric Administration. In addition, Spanish filmmaker Rafael Luis Méndez Peña debuted a trailer for his documentary film, NASA-817, on October 24 and took photographs during the workshop. The ??? agenda a workshop recording ???, and other related materials are available through the NASA History Office.
      The Tale of the NASA DC-8
      The article follows the outline of the workshop that places the DC-8 in the context of the overall history of NASA aircraft observations, science campaigns, community, and international collaboration, education and outreach activities.
      A History in Context: the DC-8 and NASA’s Airborne Science Program
      NASA’s involvement in airborne science extends to the agency’s inception. The National Aeronautics and Space Act of 1958 states that NASA’s first objective shall be “the expansion of human knowledge of phenomena in the atmosphere and space.” Subsequent legislation expanded NASA’s role in atmospheric and Earth system science. To fulfill this objective, NASA maintains a fleet of airborne platforms through ASP – see Figure –to study the environment, develop new technologies, verify satellite data, and monitor space vehicle activity.
      Figure. The DC-8 was but one aircraft is NASA’s sizeable Airborne Science Fleet – which is maintained and operated by ASP. Note that in addition to a variety of piloted aircraft operating at different altitudes shown in this drawing, NASA also operates uncrewed aircraft systems and even uses kites to conduct Earth observations. Figure credit: NASA Science Suborbital Platforms, NASA’s Goddard Space Flight Center, Science Support Office NASA operated two large flying laboratories prior to the DC-8 Airborne Science Laboratory. Both aircraft were converted Convair (CV) 990s. Regrettably, both aircraft succumbed to catastrophic accidents. The first, known as Galileo, collided with a U.S. Navy P-3 Orion near Moffett Field, CA, in April 1973, killing 11 NASA personnel. Its replacement, Galileo II, crashed on takeoff at March Air Force Base in July 1985. While there were no fatalities in the second accident, the ensuing fire consumed the aircraft and its instruments. The loss of Galileo II left a gaping hole in NASA’s ability to conduct essential scientific and engineering research.
      In January 1986, after months of bureaucratic scrambling, NASA finalized the purchase of former commercial airliner (DC-8-72) for $24 million, which included costs to modify the aircraft to carry a science payload and crew. The modified DC-8 Airborne Science Laboratory—shown in Photo 2— arrived at NASA Ames Research Center during the Summer of 1987.
      Overview Presentations on Airborne Science
      Jack Kaye [NASA Headquarters—Associate Director for Research of the Earth Science Division] gave the meeting’s opening remarks, where he placed the DC-8’s activities in a larger perspective. He noted that one of the features that makes airborne science so unique at NASA is the combination of platforms, sensors, systems, people, and opportunities. The DC-8 was able to carry a large number of people as well as instruments to carry out long-range operations under diverse conditions.
      “[The DC-8 offered] a really versatile, flexible platform that’s allowed for lots of science,” said Kaye.
      Later in the meeting, Karen St. Germain [NASA Headquarters—Director of the Earth Science Division] built upon Kaye’s comments. She noted that while NASA’s satellite missions receive most of the public’s attention, airborne science is an essential part of the NASA mission.
      “This is the grassroots of science,” she stressed. “It’s where a lot of the great ideas are born. It’s where a lot of the fledgling sensor technologies are demonstrated.”
      First Flight for the DC-8
      NASA routinely conducts field campaigns – where ground observations are timed and coordinated with aircraft flights (often at more than one altitude) and with satellite overpasses to gain a comprehensive (multilayered, multiscale) picture of the atmosphere over a certain area. A more detailed account of two NASA field campaigns from the 1980s and 1990s, and their follow-up missions, is available in an archived article: see “Reflections on FIFE and BOREAS: Historical Perspective and Meeting Summary” [The Earth Observer, January–February 2017, 29:1, 6–23]. The article illustrates scaled observations as they were conducted during FIFE and BOREAS.
      Researchers first used the DC-8 Airborne Science Laboratory on a high-profile interagency field campaign – Antarctic Airborne Ozone Expedition (AAOE), the first airborne experiment to study the chemistry and dynamics of the Antarctic ozone hole. The scientific data collected during AAOE produced unequivocable evidence that human-made chemicals were involved in the destruction of ozone over the Antarctic. This data served as a major impetus toward the enactment of amendments to the Montreal Protocol, which banned the manufacture of chlorofluorocarbons.
      Estelle Condon [NASA’s Ames Research Center (ARC), emeritus] was a program manager for AAOE. During the meeting, she shared her memories of the hectic days leading up to the DC-8’s first mission.
      “There was an enormous task in front of [the aircraft team] – just a huge task – to get all the relay racks, all the wiring, all the ports for the windows designed and built so that when the scientists finally came, all that instrumentation could actually be put on the aircraft,” said Condon. She added that the ARC staff worked day and night and every weekend to make the plane ready.
      “It’s a miracle that they were able to put everything together and get it to the tip of South America in time for the mission,” she said.
      Other Noteworthy Field Campaigns Involving the DC-8
      The DC-8 would go on to be used in many other field campaigns throughout its 37-year history
      and was central to several of NASA’s research disciplines. For example, Michael Kurylo [NASA Headquarters—Atmospheric Composition Program Scientist] was the manager of NASA’s Upper Atmosphere Research Program, where he developed, promoted, and implemented an extramural research program in stratospheric and upper tropospheric composition and directed its advanced planning at a national and international level. Kurylo summarized the DC-8’s many flights to study stratospheric chemistry beyond the AAOE missions.
      Kurylo also discussed the DC-8’s role in tropospheric chemistry investigations, especially through the many field campaigns that were conducted as part of the Global Troposphere Experiment (GTE). He also touched on the culture of NASA airborne science and the dynamic that existed between scientists and those who operated and maintained the aircraft.  “The scientists were always referred to [by NASA pilots and groundcrew] as ‘coneheads’…. Too much college, not enough high school,” Kurylo explained. But he and his colleagues have such fond memories of their time spent working together onboard the DC-8. 
      James Crawford [NASA’s Langley Research Center], a project scientist for many of the GTE campaigns, explained that from 1983–2001 16 GTE aircraft-based missions, each with its own name and location, took place. Each mission collected a rich set of data records of atmospheric observations and on many occasions the data were used as baselines for subsequent campaigns. The DC-8 was one of several NASA aircraft involved, the others being the Corvair-990, Electra, and P-3B.
      Joshua Schwarz [NOAA’s Chemical Sciencc Laboratory] discussed the airplane’s role in global atmospheric monitoring.  He recall thinking, after his first experience with the DC-8 that this flying airborne laboratory, “…was going to make things possible that wouldn’t otherwise be possible,” Schwarz concluded after his first encounter with the DC-8.
      Other workshop participants went on to describe how – for nearly four decades – investigators used data collected by instruments on the DC-8 to conduct research and write papers on important scientific and engineering topics.
      The People Behind the Aircraft: The DC-8 Community
      The DC-8 was a large and durable aircraft capable of long-range flights, which made it ideal for conducting scientific research. Around these research efforts a strong community emerged. Over three decades, the DC-8 accommodated many investigators from NASA, interagency offices, U.S. universities, and international organizations on extended global missions. Agency officials also moved the DC-8 base of operations several times between 1986 and 2024, thereby demanding tremendous cross-center cooperation.
      “Looking around the room, it’s clear that what brought us together [for the workshop] is more than just an aircraft,” said Nickelle Reid [NASA’s Armstrong Flight Research Center]. “It’s been a shared commitment, decades of passion and dedication from scientists, yes, but also mechanics, technicians, integration engineers, project managers, mission planners, operations engineers, flight engineers, mission directors, mission managers, logistics technicians and, of course, pilots. This village of people has been the beating heart of the DC-8 program.”
      This DC-8 community was well represented at this workshop and played a key role in its success.
      The DC-8 as a Means of International Engagement
      The DC-8 community expanded beyond the U.S., opening unique opportunities for international engagement. The campaigns of the DC-8 Airborne Science Laboratory routinely involved foreign students, institutions, and governments. For example, the Korea–U.S. Air Quality (KORUS-AQ) campaign, an international cooperative air quality field study in Korea, took place in 2016. For more information about this campaign, see the archived Earth Observer article, “Flying in the ‘Gap’ Between Earth and Space: NASA’s Airborne Science Program” [The Earth Observer, September–October 2022, 32:5, 4–14].
      Yunling Lou [NASA/Jet Propulsion Laboratory] spoke to the workshop audience about the value of international collaboration.
      “I think [international collaboration] really helped – not just doing the collaboration [to accomplish a specific mission] but doing the training, the capacity building in these countries to build the community of global scientists and engineers,” said Lou.
      Trina Dryal [LaRC—Deputy Director] continued that the DC-8 and NASA’s other airborne assets are more than just science laboratories.
      “[They] are opportunities for science, diplomacy, international collaboration, cross learning, educational inspiration, and goodwill,” said Dryal—see Photo 3.
      Photo 3. International collaborations included educational endeavors.  Here, Walter Klein [AFRC—DC-8 Mission Manager] poses with a group of Chilean students onboard the DC-8 Airborne Science Laboratory in Punta Arenas, Chile, March 2004. Photo credit: Jim Closs [NASA’s Langley Research Center] Student Investigations on the DC-8
      Closer to home, the flying scientific laboratory affected the lives of many U.S. students and early career professionals. NASA’s Student Airborne Research Program (SARP), is an eight-week summer internship for rising-senior undergraduates that takes place annually on the East and West coasts of the U.S – see Photo 4. During the program, students gain hands-on experience conducting all aspects of a scientific campaign. They conduct field research, analyze the data, and gain access to one or more of NASA’s ASP flying science laboratories.  Since 2009, this program alone has provided hands on experience in conducting NASA Earth science research to XXXX students.
      Berry Lefer [NASA Headquarters—Tropospheric Composition Program Manager] pointed out that SARP helped to integrate American students into DC-8 scientific missions.
      “I want to make sure the NASA historians understand that the DC-8 is the premier flying laboratory on the planet, bar none,” said Lefer. “You’ve seen over the whole three-decade life of the DC-8 that education and outreach, student involvement has been a hallmark of the DC-8 [program].”
      Yaitza Luna-Cruz [NASA Headquarters—Program Executive] was one among several SARP alumni who delivered testimony on the impact of the SARP program at the workshop.
      “SARP unleashed my potential in ways that I cannot even describe,” said Luna-Cruz. “You never know what a single opportunity could do to shape the career of a student or early career researcher.
      Luna-Cruz hopes these efforts continue with the coming of NASA’s new Boeing 777 airborne laboratory.
      Photo 4. One of the most popular student investigations flown on the DC-8 (and other ASP aircraft) was (is) the Student Airborne Research Program (SARP), in which upper-level undergraduate students can gain valuable hands-on experience conducting field research.  Students taking part in SARP and their mentors posed with the DC-8 at AFRC in 2019 [top] and in 2022 [bottom]. The 2022 SARP group flew flights over California’s Central Valley to study air quality. Photo credit: [Top] NASA; [bottom] Lauren Hughes [ARC] Final Flight and Retirement of the DC-8
      The DC-8 Airborne Science Laboratory flew its last science flight during the international Airborne and Satellite Investigation of Asian Air Quality mission (ASIA-AQ) in April 2024. Since its final flight, the aircraft has been retired to Idaho State University (ISU). Today, students in ISU’s aircraft maintenance program work on the airplane to develop real-world technical skills – continuing the DC-8’s mission as an educational platform. According to Gerald Anhorn [ISU—Dean of College of Technology], ISU students have a unique opportuning to gain experience working on a legendary research aircraft.
      “Our students have that opportunity because of [NASA’s] donation” to the school, said Auborn.
      Conclusion: Flying Toward the Future – From DC-8 to Boeing 777
      While the DC-8 is retiring from active service, airborne observations continue to be a vital part of NASA’s mission. The agency recently acquired a Boeing 777and will modify it to support its ongoing airborne scientific research efforts. This new addition expands beyond the capacity of the DC-8 by allowing for even longer flights with larger payloads and more researchers to gather data. Several members of the Boeing 777 team from NASA’s Langley Research Center (LaRC) attended the workshop.
       “I mentioned I was in charge of the ‘replacement’ for the DC-8,” said Martin Nowicki [LaRC—Boeing 777 Lead]. “Over the last two days, here, it’s become pretty apparent that there’s no ‘replacing’ the DC-8. It’s carved out its own place in history. It’s just done so much.”
      Nowicki looks forward to working with workshop participants to identify useful lessons of the past for future operators. He concluded that the Boeing 777 will carry the legacy of the DC-8 and continue with capturing the amazing science of ASP.
      Acknowledgments
      The authors wish to thank Jack Kaye [NASA HQ—Associate Director of Research for the Earth Science Division] for his helpful reviews of the article draft.  The first author also wishes to thank Lisa Frazier [NASA Headquarters—Strategic Events and Engagement Lead] for providing support and assistance throughout for the in-person workshop participants. and to the Earth Science Project Office team from NASA’s Ames Research Center, who performed essential conference tasks, such as website construction, audio-visual support, and food service management. This article is an enhanced version of the first author’s summary, which appeared in the Spring 2025 issue of News & Notes – The NASA History Office’s newsletter.
      Bradley L. Coleman
      NASA’s Marshall Space Flight Center, NASA History Office
      bradley.l.coleman@nasa.gov
      Alan B. Ward
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
      alan.b.ward@nasa.gov
      Share








      Details
      Last Updated Mar 11, 2025 Related Terms
      Earth Science View the full article
  • Check out these Videos

×
×
  • Create New...