Jump to content

Recommended Posts

  • Publishers
Posted
eo-meeting-summary-banner.png?w=1037

35 min read

Summary of the Joint NASA LCLUC–SARI Synthesis Meeting

Introduction

The NASA Land-Cover and Land-Use Change (LCLUC) is an interdisciplinary scientific program within NASA’s Earth Science program that aims to develop the capability for periodic global inventories of land use and land cover from space. The program’s goal is to develop the mapping, monitoring and modeling capabilities necessary to simulate the processes taking place and evaluate the consequences of observed and predicted changes. The South/Southeast Asia Research Initiative (SARI) has a similar goal for South/Southeast Asia, as it seeks to develop innovative regional research, education, and capacity building programs involving state-of-the-art remote sensing, natural sciences, engineering, and social sciences to enrich land use/cover change (LUCC) science in South/Southeast Asia. Thus it makes sense for these two entities to periodically meet jointly to discuss their endeavors.

The latest of these joint meetings took place January 1–February 2, 2024, in Hanoi, Vietnam. A total of 85 participants attended the three-day, in-person meeting—see Photo.  A total of 85 participants attended the three-day, in-person meeting. The attendees represented multiple international institutions, including NASA (Headquarters and Centers), the University of Maryland, College Park (UMD), other American academic institutions, the Vietnam National Space Center (VNSC, the event host), the Vietnam National University’s University of Engineering and Technology, and Ho Chi Minh University of Technology, the Japanese National Institute of Environmental Studies (NIES), Center for Environmental Sciences, and the University of Tokyo. In addition, several international programs participated, including GEO Global Agricultural Monitoring (GEOGLAM), the System for Analysis, Research and Training (START), Global Observation of Forest and Land-use Dynamics (GOFC–GOLD), and NASA Harvest.

LCLUC photo
Photo. A group picture of the meeting participants on the first day of the 2024 LCLUC SARI meeting in Hanoi, Vietnam.
Photo credit: Hotel staff (Hanoi Club Hotel, Hanoi, Vietnam)

Meeting Overview

The purpose of the 2024 NASA LCLUC–SARI Synthesis meeting was to discuss LUCC issues – with a particular focus on their impact on Southeast Asian countries. Presenters highlighted ongoing projects aimed to advance our understanding of the spatial extent, intensity, social consequences, and impacts on the environment in South/Southeast Asian countries. While presenters reported on specific science results, they also were intentional to review and synthesize work from other related projects going on in Southeast Asia. 

Meeting Goal

The meeting’s overarching goal was to create a comprehensive and holistic understanding of various LUCC issues by examining them from multiple angles, including: collating information; employing interdisciplinary approaches; integrating research; identifying key insights; and enhancing regional collaborations. The meeting sought to bring the investigators together to bridge gaps, promote collaborations, and advance knowledge regarding LUCC issues in the region. The meeting format also provided ample time between sessions for networking to promote coordination and collaboration among scientists and teams. 

Meeting and Summary Format

The meeting consisted of seven sessions that focused on various LUCC issues. The summary report that follows is organized by day and then by session. All presentations in Session I and II are summarized (i.e., with all speakers, affiliations, and appropriate titles identified). The keynote presentation(s) from Sessions III–VI are summarized similarly. The technical presentations in each of these sessions are presented as narrative summaries. Session VII consisted of topical discussions to close out the meeting and summaries of these discussions are included herein. Sessions III–VI also included panel discussions, but to keep the article length more manageable, summaries of these discussions have been omitted. Readers interested in learning more about the panel discussions or viewing any of these presentations in full can access the information on the Joint LCLUC–SARI Synthesis meeting website.

DAY ONE

The first day of the meeting included welcoming remarks from the U.S. Ambassador to Vietnam (Session I), program executives of LCLUC and SARI,  as well as from national space agencies in South and Southeast Asia (Session II), and other LCLUC-thematic/overview presentations (Session III).

Session 1: Welcoming Remarks

Garik Gutman [NASA Headquarters—LCLUC Program Manager], Vu Tuan [VNSC’s Vietnam Academy of Science and Technology (VAST)—Vice Director General], Chris Justice [University of Maryland, College Park (UMD)—LCLUC Program Scientist], Matsunaga Tsuneo [National Institute of Environmental Studies (NIES), Japan], and Krishna Vadrevu [NASA’s Marshall Space Flight Center—SARI Lead] delivered opening remarks that highlighted collaborations across air pollution, agriculture, forestry, urban development, and other LUCC research areas. While each of the speakers covered different topics, they emphasized common themes, including advancing new science algorithms, co-developing products, and fostering applications through capacity building and training.

After the opening remarks, special guest Marc Knapper [U.S. Ambassador to Vietnam] gave a presentation in which he emphasized the value of collaborative research between U.S. and Vietnamese scientists to address environmental challenges – especially climate change and LUCC issues. He expressed appreciation to the meeting organizers for promoting these collaborations and highlighted the joint initiatives between NASA and the U.S. Agency for International Development (USAID) to monitor environmental health and climate change, develop policies to reduce emissions, and support adaptation in agriculture. The U.S.–Vietnam Comprehensive Strategic Partnership emphasizes the commitment to address climate challenges and advance bilateral research. He concluded by encouraging active participation from all attendees and stressed the need for ongoing international collaboration to develop effective LUCC policies.

Session-II: Programmatic and Space Agency Presentations

NOTE: Other than Ambassador Knapper, the presenters in Session I gave welcoming remarks and programmatic and/or space agency presentations in Session II,.

Garik Gutman began the second session by presenting an overview of the LCLUC program, which aims to enhance understanding of LUCC dynamics and environmental implications by integrating diverse data sources (i.e., satellite remote sensing) with socioeconomic and ecological datasets for a comprehensive view of land-use change drivers and consequences. Over the past 25 years, LCLUC has funded over 325 projects involving more than 800 researchers, resulting in over 1500 publications. The program’s focus balances project distribution that spans detection and monitoring, and impacts and consequences, including drivers, modeling, and synthesis. Gutman highlighted examples of population growth and urban expansion in Southeast Asia, resulting in environmental and socio-economic impacts. Urbanization accelerates deforestation, shifts farming practices to higher-value crops, and contributes to the loss of wetlands. This transformation alters the carbon cycle, degrades air quality, and increases flooding risks due to reduced rainwater absorption. Multi-source remote sensing data and social dimensions are essential in addressing LUCC issues, and the program aims to foster international collaborations and capacity building in land-change science through partnerships and training initiatives. (To learn more about the recent activities of the LCLUC Science Team, see Summary of the 2024 Land Cover Land Use Change Science Team Meeting.)

Krishna Vadrevu explained how SARI connects regional and national projects with researchers from the U.S. and local institutions to advance LUCC mapping, monitoring, and impact assessments through shared methodologies and data. The initiative has spurred extensive activities, including meetings, training sessions, publications, collaborations, and fieldwork. To date, the LCLUC program has funded 35 SARI projects and helped build collaborations with space agencies, universities, and decision-makers worldwide. SARI Principal Investigators have documented notable land-cover and land-use transformations, observing shifts in land conversion practices across Asia. For example, the transition from traditional slash-and-burn practices for subsistence agriculture to industrial oil palm and rubber plantations in Southeast Asia. Rapid urbanization has also reshaped several South and Southeast Asian regions, expanding both horizontally in rural areas and vertically in urban centers. The current SARI solicitation funds three projects across Asia, integrating the latest remote sensing data and methods to map, monitor, and assess LUCC drivers and impacts to support policy-making.

Vu Tuan provided a comprehensive overview of Vietnam’s advances in satellite technology and Earth observation capabilities, particularly through the LOTUSat-1 satellite (name derived from the “Lotus” flower), which is equipped with an advanced X-band Synthetic Aperture Radar (SAR) sensor capable of providing high-resolution imagery [ranging from 1–16 m (3–52 ft)]. This satellite is integral to Vietnam’s efforts to enhance disaster management and climate change mitigation, as well as to support a range of applications in topography, agriculture, forestry, and water management, as well as in oceanography and environmental monitoring. The VNSC’s efforts are part of a broader strategy to build national expertise and self-reliance in satellite technology, such as developing a range of small satellites (e.g., NanoDragon, PicoDragon, and MicroDragon) that progress in size and capability. Alongside satellite development, the VNSC has established key infrastructure, facilities, and capacity building in Hanoi, Nha Trang, and Ho Chi Minh City to support satellite assembly, integration, testing, and operation. Tuan showcased the application of remotely sensed LUCC data to map and monitor urban expansion in Ha Long city from 2000–2023 and the policies needed to manage these changes sustainably – see Figure 1.

LCLUC figure 1
Figure 1. Urban expansion area in Ha Long City, Vietnam from 2000–2023 from multidate Landsat satellite imagery.
Figure credit: Vu Tuan [VNSC]

Tsuneo Matsunaga provided a detailed overview of Japan’s Greenhouse Gases Observing Satellite (GOSAT) series of satellites, data from which provide valuable insights into global greenhouse gas (GHG) trends and support international climate agreements, including the Paris Agreement.

Matsunaga reviewed the first two satellites in the series: GOSAT and GOSAT-2, then previewed the next satellite in the series: GOSAT-GW, which is scheduled to launch in 2025. GOSAT-GW will fly the Total Anthropogenic and Natural Emissions Mapping Observatory–3 (TANSO-3) – an improved version of TANSO-2, which flies on GOSAT-2. TANSO-3 includes a Fourier Transform Spectrometer (FTS-3) that has improved spatial resolution [10.5 km (6.5 mi)] over TANSO-FTS-2 and precision that matches or exceeds that of its predecessor. TANSO-FTS-3 will allow estimates with precision better than 1 ppm for carbon dioxide (CO2) and 10 ppb for methane (CH4), as well as enabling nitrogen dioxide (NO2) measurements. GOSAT–GW will also fly the Advanced Microwave Scanning Radiometer (AMSR3) that will monitor water cycle components (e.g., precipitation, soil moisture) and ocean surface winds. AMSR3 builds on the heritage of three previous AMSR instruments that have flown on NASA and Japan Aerospace Exploration Agency (JAXA) missions.

Matsunaga also highlighted the importance of ground-based validation networks, such as the Total Carbon Column Observing Network, COllaborative Carbon Column Observing Network, and the Pandora Global Network, to ensure satellite data accuracy.

Son Nghiem [NASA/Jet Propulsion Laboratory (JPL)] addressed dynamic LUCC in Cambodia, Laos, Thailand, Vietnam, and Malaysia. The synthesis study examined the factors that evolve along the rural–urban continuum (RUC). Nghiem showcased this effort using Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 mission to map a typical RUC in Bac Lieu, Vietnam – see Figure 2.

LCLUC figure 2
Figure 2. Land cover map of Bae Lieu, Vietnam, and surrounding rural areas. The image shows persistent building structures (red), agricultural areas (light green), aquacultural (light blue), tree cover (dark green), and water bodies (dark blue). Land-use classes used on this map are derived from Sentinel-1 Synthetic Aperture Radar (SAR) for the rural urban continuum around Bac Lieu.
Figure credit: Son Nghiem [JPL]

Nghiem described the study, which examined the role of rapid urbanization, agricultural conversion, climate change, and environment–human feedback processes in causing non-stationary and unpredictable impacts. This work illustrates how traditional trend analysis is insufficient for future planning. The study also examined whether slower or more gradual changes could inform policy development. To test these hypotheses, his research will integrate high-resolution radar and hyperspectral data with socioeconomic analyses. The study highlights the need for policies that are flexible and responsive to the unique challenges of different areas, particularly in “hot-spot” regions experiencing rapid changes.

Peilei Fan [Tufts University] presented a study that synthesizes the complex patterns of LUCC, identifying both the spatial and temporal dynamics that characterize transitions in urban systems. The study explores key drivers, including economic development, population growth, urbanization, agricultural expansion, and policy shifts. She emphasized the importance of understanding these drivers for sustainable land management and urban planning. For example, the Yangon region of Myanmar has undergone rapid urbanization – see Figure 3. Her work reveals the need for integrated approaches that consider both urban and rural perspectives to manage land resources effectively and mitigate negative environmental and social impacts. Through a combination of case studies, statistical analysis, and policy review, Fan and her team aim to provide a nuanced understanding of the interactions between human activities and environmental changes occurring in the rapidly transforming landscapes of Southeast Asia.

LCLUC figure 3
Figure 3. Landsat data can be used to track land cover change over time. For example, Thematic Mapper data have been used to track urban expansion around Yangon, Myanmar. The data show that the built-up area expanded from 161 km2 (62 mi2) in 1990 to 739 km2 (285 mi2) in 2020.
Figure credit: Peleli Fan [Tufts University]

Session III: Land Cover/Land Use Change Studies

Tanapat Tanaratkaittikul [Geo-Informatics and Space Technology Development Agency (GISTDA), Thailand] highlighted GISTDA activities, which play a crucial role in advancing Thailand’s technological capabilities and addressing both national and global challenges, including Thailand Earth Observation System (THEOS) and its successors: THEOS-2 and THEOS-2A. THEOS-1, which launched in 2008, provides 2-m (6-ft) panchromatic and 15-m (45-ft) multispectral resolution with a 26-day revisit cycle, which can be reduced to 3 days with off-nadir pointing. Launched in 2023, THEOS-2 includes two satellites – THEOS-2A [a very high-resolution satellite with 0.5-m (1.5-ft) panchromatic and 2-m (6-ft) multispectral imagery] and THEOS-2B [a high-resolution satellite with 4-m (12-ft) multispectral resolution] – with a five-day revisit cycle. GISTDA also develops geospatial applications for drought assessment, flood prediction, and carbon credit calculations to support government decision-making and climate initiatives. GISTDA partners with international collaborators on regional projects, such as the Lancang-Mekong Cooperation Special Fund Project.

Eric Vermote [NASA’s Goddard Space Flight Center] presented a keynote that focused on atmospheric correction of land remote sensing data and related algorithm updates. He highlighted the necessity of correcting surface imaging for atmospheric effects, such as molecular scattering, aerosol scattering, and gaseous absorption, which can significantly distort the satellite spectral signals and lead to potential errors in applications, such as land cover mapping, vegetation monitoring, and climate change studies.

Vermote explained that the surface reflectance algorithm uses precise vector radiative transfer modeling to improve accuracy by incorporating atmospheric parameter inversion. It also adjusts for various atmospheric conditions and aerosol types – enhancing corrections across regions and seasons. He explained that SkyCam – a network of ground-based cameras – provides real-time assessments of cloud cover that can be used to validate cloud masks, while the Cloud and Aerosol Measurement System (CAMSIS) offers additional ground validation by measuring atmospheric conditions. He said that together, SkyCam and CAMSIS improve satellite-derived cloud masks, supporting more accurate climate models and environmental monitoring. Vermote’s work highlights the ongoing advancement of atmospheric correction methods in remote sensing.

Other presentations in this session included one in which the speaker described how Yangon, the capital city in Myanmar, is undergoing rapid urbanization and industrial growth. From 1990–2020, the urban area expanded by over 225% – largely at the expense of agricultural and green lands. Twenty-nine industrial zones cover about 10.92% of the city, which have attracted significant foreign direct investment, particularly in labor-intensive sectors. This growth has led to challenges with land confiscations, inadequate infrastructure, and environmental issues (e.g., air pollution). Additionally, rural migration for employment has resulted in informal settlements, emphasizing the need for comprehensive urban planning that balances economic development with social equity and sustainability.

Another presentation highlighted varying LUCC trends across Vietnam. In the Northern and Central Coastal Uplands, for example, swidden systems are shifting toward permanent tree crops, such as rubber and coffee. Meanwhile, the Red River Delta is seeing urban densification and consolidation of farmland – transitioning from rice to mixed farming with increased fruit and flower production. Similarly, the Central Coastal Lowlands and Southeastern regions are experiencing urban growth and a shift from coastal agriculture – in this case, to shrimp farming – leading to mangrove loss. The Central Highlands is moving from swidden to tree crops, particularly fruit trees, while the Mekong River Delta is increasing rice cropping and aquaculture. These changes contribute to urbanization, altered farming practices, and biodiversity loss. Advanced algorithms (e.g., the Time-Feature Convolutional Neural Network model) are being used to effectively map these varied LUCC changes in Vietnam.

Another presenter explained how 10-m (33-ft) resolution spatially gridded population datasets are essential to address LUCC in environmental and socio-demographic research. There was also a demonstration of PopGrid, which is a collaborative initiative that provides access to various global-gridded population databases, which are valuable for regional LUCC studies and can support informed decision-making and policy development.

DAY TWO

The second day’s presentations centered around urban LUCC (Session IV) as well as interconnections between agriculture and water resources. (Session V).

Session IV: Urban Land Cover/Land Use Change

Gay Perez [Philippines Remote Sensing Agency (PhilSA)] presented a keynote focused on PhilSA’s mission to advance Philippines as a space-capable country by developing indigenous satellite and launch technologies. He explained that PhilSA provides satellite data in various categories, including sovereign, commercial, open-access, and disaster-activated. He noted that the ground infrastructure – which includes three stations and a new facility in Quezon – supports efficient data processing. For example, Perez stated that in 2023, PhilSA produced over 10,000 maps for disaster relief, agricultural assessments, and conservation planning.

Perez reviewed PhilSA’s Diwata-2 mission, which launched in 2018 and operates in a Sun-synchronous orbit around 620 km (385 mi) above Earth. With a 10-day revisit capability, it features a high-precision telescope [4.7 m (15ft) resolution], a multispectral imager with four bands, an enhanced resolution camera, and a wide-field camera. Since launch, Diwata-2 has captured over 100,000 global images, covering 95% of the Philippines. Looking to the near future, Perez reported that PhilSA’s launch of the Multispectral Unit for Land Assessment (MULA) satellite is planned for 2025. He explained that MULA will capture images with a 5-m (~16-ft) resolution and 10–20-day revisit time, featuring 10 spectral bands for vegetation, water, and urban analysis.

Perez also described the Drought and Crop Assessment and Forecasting project, which addresses drought risks and mapping ground motion in areas, e.g., Baguio City and Pangasinan. Through partnerships in the Pan-Asia Partnership for Geospatial Air Pollution Information (PAPGAPI) and the Pandora Asia Network, PhilSA monitors air quality across key locations, tracking urban pollution and cross-border particulate transport. PhilSA continues to strengthen Southeast Asian partnerships to drive sustainable development in the region.

Jiquan Chen [Michigan State University] presented the second keynote address, which focused on the Urban Rural Continuum (URC). Chen emphasized the importance of synthesizing studies that explore factors such as population dynamics, living standards, and economic development in the URC. Key considerations include differentiating between two- and three-dimensional infrastructures and understanding constraints from historical contexts. Chen highlighted critical variables from his analysis including net primary productivity, household income, and essential infrastructure elements, such as transportation and healthcare systems. He advocated for integrated models that combine mechanistic and empirical approaches to grasp the dynamics of URC changes, stressing their implications for urban planning, environmental sustainability, and social equity. He concluded with a call for collaboration to enhance these models and tackle challenges arising from the changing urban–rural landscape.

Tep Makathy [Cambodian Institute For Urban Studies] discussed urbanization in Phnom Penh, Cambodia. He explained that significant LUCC and infrastructure developments have been fueled by direct foreign investment; however, this development has resulted in environmental degradation, urban flooding, and infrastructure strain. Tackling pollution, congestion, preservation of green spaces, and preserving the historical heritage of the city will require sustainable urban planning efforts.

Nguyen Thi Thuy Hang [Vietnam Japan University, Vietnam National University, Hanoi] explained how flooding poses a significant annual threat to infrastructure and livelihoods in Can Tho, Vietnam. Therefore, it is essential to incorporate climate change considerations into land-use planning by enhancing the accuracy of vegetation layer classifications. Doing so will improve the representation of land-cover dynamics in models that decision-makers use when planning urban development. In addition, Hang reported that a more comprehensive survey of dyke systems will improve flood protection and identify areas needing reinforcement or redesign. These studies could also explore salinity intrusion in coastal agricultural areas that could impact crop yields and endanger food security.

In this session, two presenters highlighted how SAR data, which uses high backscatter to enhance the radar signal, is being used to assist with mapping urban areas in their respective countries. The phase stability and orientation of building structures across SAR images aid in consistent monitoring and backscatter, producing distinct image textures specific to urban settings. Researchers can use this heterogeneity and texture to map urban footprints, enabling automated discrimination between urban and non-urban areas. The first presenters showed how Interferometric Synthetic Aperture Radar techniques, such as Small Baseline Subset (SBAS) and Persistent Scatterer (PS) have been highly effective for mapping and monitoring land subsidence in coastal and urban areas in Vietnam. This approach has been applied to areas along the Saigon River as well as in Ho Chi Minh, Vietnam. The second presenter described an approach (using SAR data with multitemporal coherence and the K-means classification method) that has been used effectively to study urban growth in the Denpasar Greater Area of Indonesia between 2016 and 2022. The technique identified the conversion of 4376 km2 (1690 mi2) of rural to built-up areas, averaging 72.9 hectares (0.3 mi2) per year. Urban sprawl was predominantly observed in the North Kuta District, where the shift from agricultural to built-up land use has been accompanied by severe traffic congestion and other environmental issues.

Another presenter showed how data from the QuikSCAT instrument, which flew on the Quick Scatterometer satellite, and from the Sentinel-1 C-band SAR can be combined to measure and analyze urban built-up volume, specifically focusing on the vertical growth of buildings across various cities. By integrating these datasets, researchers can assess urban expansion, monitor the development of high-rise buildings, and evaluate the impact of urbanization on infrastructure and land use. This information is essential for urban planning, helping city planners and policymakers make informed decisions to accommodate growing populations and enhance sustainable urban development.

Session V – LUCC, Agriculture, and Water Resources

Chris Justice presented the keynote for this session, in which he addressed the GEOGLAM initiative and the NASA Harvest program. GEOGLAM, initiated by the G20 Agriculture Ministers in 2011, focuses on agriculture and food security to increase market transparency and improve food security. These efforts leverage satellite-based Earth observations to produce and disseminate timely, relevant, and actionable information about agricultural conditions at national, regional, and global scales to support agricultural markets and provide early warnings for proactive responses to emerging food emergencies. NASA Harvest uses satellite Earth observations to benefit global food security, sustainability, and agriculture for disaster response, climate risk assessments, and policy support. Justice also emphasized the use of open science and open data principles, promoting the integration of Earth observation data into national and international agricultural monitoring systems. He also discussed the development and application of essential agricultural variables, in situ data requirements, and the need for comprehensive and accurate satellite data products.

During this session, another presentation focused on how VNSC is engaged in several agricultural projects, including mapping rice crops, estimating yields, and assessing environmental impacts. VNSC has created high-accuracy rice maps for different seasons that the Vietnamese government uses to monitor and manage agricultural production. Current initiatives involve using satellite data to estimate CH4 emissions from rice paddies, biomass mapping, and monitoring rice straw burning. For example, in the Mekong Delta, numerous environmental factors, including climate change-induced stress (e.g., sea-level rise), flooding, drought, land subsidence, and saltwater intrusion, along with human activities like dam construction, sand mining, and groundwater extraction, threaten the sustainability of rice farming and farmer livelihoods. To address these challenges, sustainable agricultural practices are essential to improving rice quality, diversify farming systems, adopt low-carbon techniques, and enhance water management.

Presentations highlighted the importance of both optical and SAR data for LUCC studies, particularly in mapping agricultural areas. A study using Landsat time-series data demonstrated its value in monitoring agricultural LUCC in Houa Phan Province, Laos, and Son La Province, Vietnam. Land cover types were classified through spectral pattern analysis, identifying distinct classes based on Landsat reflectance values. The findings revealed significant natural forest loss alongside increases in cropland and forest plantations due to agricultural expansion. High-resolution imagery validated these results, indicating the scalability of this approach for broader regional and global land-cover monitoring. Another study showcased the effectiveness of SAR data from the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on the Japanese Advanced Land Observing Satellite-2 (ALOS-2) for mapping and monitoring agricultural land use in Suphanburi, Thailand. This data proved particularly useful for capturing seasonal variations and diverse agricultural practices. Supervised machine learning methods, such as Random Forest classifiers, combined with innovative spatial averaging techniques, achieved high accuracy in distinguishing various agricultural conditions.

In the session, presenters also discussed the use of Sentinel-1 SAR data for mapping submerged and non-submerged paddy soils was highlighted, demonstrating its effectiveness in understanding water management issues see – Figure 4. Additionally, large-scale remote sensing data and cloud computing were shown to provide unprecedented opportunities for tracking agricultural land-use changes in greater detail. Case studies from India and China illustrated key challenges, such as groundwater depletion in irrigated agriculture across the Indo-Ganges region and the impacts on food, water, and air quality in both countries.

LCLUC figure 4
Figure 4. Series of Sentinel-1 radar data images showing submerged paddy soil (blue) and non-submerged paddy soil (red) in the Mekong Delta, Vietnam.
Figure credit: Hiranori Arai [International Rice Research Institute]

The session also focused on Water–Energy–Food (WEF) issues related to the Mekong River Basin’s extensive network of hydroelectric dams, which present both benefits and challenges. While these dams support sectors such as irrigated agriculture and hydropower, they also disrupt vital ecosystem services, including fish habitats and biodiversity. Collaborative studies integrating satellite and ground data, hydrological models, and socio-economic frameworks highlight the need to balance these benefits with ecological and social costs. Achieving sustainable management requires cross-sectoral and cross-border cooperation, as well as the incorporation of traditional knowledge to address WEF trade-offs and governance challenges in the region.

DAY THREE

The third day included a session that explored the impacts of fire, GHG emissions, and pollution (Session VI) as well as a summary discussion on synthesis (Session VII).

Session VI: Fires, Greenhouse Gas Emissions, and Pollution

Chris Elvidge [Colorado School of Mines] presented a keynote on the capabilities and applications of the Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire [VNF] system, an advanced satellite-based tool developed by the Earth Observation Group. VIIRS Nightfire uses four near- and short-wave infrared channels, initially designed for daytime imaging, to detect and monitor infrared emissions at night. The system identifies various combustion sources, including both flaming and non-flaming activities (e.g., biomass burning, gas flaring, and industrial processes). It calculates the temperature, source area, and radiant heat of detected infrared emitters using physical laws to enable precise monitoring of combustion events and provide insight into exothermic and endothermic processes.

Elvidge explained that VNF has been vital for near-real-time data in Southeast Asia. The system has been used to issue daily alerts for Vietnam, Thailand, and Indonesia. Recent updates in Version 4 (V4) include atmospheric corrections and testing for secondary emitters with algorithmic improvements – with a 50% success rate in identifying additional heat sources. The Earth Observation Group maintains a multiyear catalog of over 20,000 industrial infrared emitters available through the Global Infrared Emitter Explorer (GIREE) web-map service. With VIIRS sensors expected to operate until about 2040 on the Joint Polar Satellite System (JPSS) platforms, this system ensures long-term, robust monitoring and analysis of global combustion events, proving essential for tracking the environmental impacts of industrial activities and natural combustion processes on the atmosphere and ecosystems.

Toshimasa Ohara [Center for Environmental Science, Japan—Research Director] continued with the second keynote and provided an in-depth analysis of long-term trends in anthropogenic emissions across Asia. The regional mission inventory in Asia encompasses a range of pollutants and offers detailed emissions data from 1950–2020 at high spatial and temporal resolutions. The study employs both bottom-up and top-down approaches for estimating emissions, integrating satellite observations to validate data and address uncertainties. Notably, emissions from China, India, and Japan have shown signs of stabilization or reduction, attributed to stricter emission control policies and technological advancements. Ohara also highlighted Japan’s effective air pollution measures and the importance of extensive observational data in corroborating emission trends. His presentation emphasized the need for improved methodologies in emission inventory development and validation across Asia, aiming to enhance policymaking and environmental management in rapidly industrializing regions.

Several presenters during this session focused on innovative approaches to understand and mitigate GHG emissions and air pollution. One presenter showed how NO2 data from the TROPOspheric Monitoring Instrument (TROPOMI) on the European Sentinel-5 Precursor have been validated against ground-based observations from Pandora stations in Japan, highlighting the influence of atmospheric conditions on measurement accuracy. Another presenter described an innovative system that GISTDA used to combine satellite remote sensing data with Artificial Intelligence (AI). This system was used to monitor and analyze the concentration of fine particulate matter (PM) in the atmosphere in Thailand. (In this context fine is defined as particles with diameters ≤ 2.5 µm, or PM2.5.) These applications, which are accessible through online, cloud-based platforms and mobile applications for iOS and Android devices, allow users, including citizens, government officers, and policymakers, to access PM2.5 data in real-time through web and mobile interfaces.

A project under the United Nations Economic and Social Commission for Asia and the Pacific in Thailand is focused on improving air quality monitoring across the Asia–Pacific region by integrating satellite and ground-based data. At the core of this effort, the Pandora Asia Network, which includes 30 ground-based instruments measuring pollutants such as NO₂ and sulfur dioxide (SO₂), is complemented by high-resolution observations from the Geostationary Environment Monitoring Spectrometer (GEMS) aboard South Korea’s GEO-KOMPSAT-2B (GK-2B) satellite. The initiative also provides training sessions to strengthen regional expertise in remote sensing technologies for air quality management and develops decision support systems for evidence-based policymaking, particularly for monitoring pollution sources and transboundary effects like volcanic eruptions. Future plans include expanding the Pandora network and enhancing data integration to support local environmental management practices.

PM2.5 levels in Vietnam are influenced by both local emissions and long-range pollutant transport, particularly in urban areas.The Vietnam University of Engineering and Technology, in conjunction with VNSC, continues to map and monitor PM2.5 using satellites and machine learning while addressing data quality issues that stem from missing satellite data and limited ground monitoring stations – see Figure 5.

In addition to mapping and monitoring pollutants, another presentater explained that significant research is underway to address their health impacts. In Hanoi, exposure to pollutants ( e.g., PM2.5, PM10, and NO2) has led to increased rates of respiratory diseases (e.g., pneumonia, bronchitis, and asthma) among children,  as well as elevated instances of cardiovascular diseases among adults. A substantial mortality burden is attributable to fine particulate matter – particularly in densely populated areas like Hanoi. Compliance with stricter air quality guidelines could potentially prevent thousands of premature deaths. For example, preventive measures enacted during the COVID-19 pandemic resulted in reduced pollution levels that were associated with a decrease in avoidable mortality rates. In response to these challenges, Vietnam has implemented air quality management policies, including national technical regulations and action plans aimed at controlling emissions and enhancing monitoring; however, current national standards still fall short of the more stringent guidelines recommended by the World Health Organization. Improved air quality standards and effective policy interventions are needed to mitigate the health risks associated with air pollution in Vietnam.

LCLUC figure 5
Figure 5. Map of particulate matter (PM 2.5) variations observed across Vietnam, using multisatellite aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectrogradiometer (MODIS) on NASA’s Aqua and Terra platforms, and from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA–NOAA Suomi NPP platform, combined with ground-based AOD and meteorological data.
Figure credit: Thanh Nguyen [Vietnam National University of Engineering and Technology, Vietnam]

Another presenter explained how food production in Southeast Asia contributes about 40% of the region’s total GHG emissions – with rice and beef production identified as the largest contributors for plant-based and animal-based emissions, respectively. Another presentation focused on a study that examined GHG emissions from agricultural activities, which suggests that animal-based food production – particularly beef – generates substantially higher GHG emissions per kg of food produced compared to plant-based foods, such as wheat and rice. Beef has an emission intensity of about 69 kg of CO2 equivalent-per-kg, compared to 2 to 3 kg of CO2 equivalent-per-kg for plant-based foods. The study points to mitigation strategies (e.g., changing dietary patterns, improving agricultural practices) and adopting sustainable land management. Participants agreed that a comprehensive policy framework is needed to address the environmental impacts of food production and reduce GHG emissions in the agricultural sector.

In another presentation, the speaker highlighted the fact that Southeast Asian countries need an advanced monitoring, reporting, and verification system to track GHG emissions – particularly within high-carbon reservoirs like rice paddies. To achieve this, cutting-edge technologies (e.g., satellite remote sensing, low-cost unmanned aerial vehicles, and Internet of Things devices) can be beneficial in creating sophisticated digital twin technology for sustainable rice production and GHG mitigation.

Another presentation featured a discussion about pollution resulting from forest and peatland fires in Indonesia, which is significantly impacting air quality. Indonesia’s tropical peatlands – among the world’s largest and most diverse – face significant threats from frequent fires. Repeated burning has transformed forests into shrubs and secondary vegetation regions, with fires particularly affecting forest edges and contributing to a further retreat of intact forest areas. High-resolution data is essential to map and monitor changes in forest cover, including pollution impacts.

Another speaker described a web-based Geographic Information Systems (GIS) application that has been developed to support carbon offsetting efforts in Laos – to address significant environmental challenges, e.g., deforestation and climate change. Advanced technologies (e.g., remote sensing, GIS, and Global Navigation Satellite Systems) are used to monitor land-use changes, carbon sequestration, and ecosystem health. By integrating various spatial datasets, the web GIS app enhances data collection precision, streamlines monitoring processes, and provides real-time information to stakeholders for informed decision-making. This initiative fosters collaboration among local communities, government agencies, and international partners, while emphasizing the importance of government support and international partnerships. Ultimately, the web GIS application represents a significant advancement in Laos’s commitment to environmental sustainability, economic growth, and the creation of a greener future.

Session VII. Discussion Session on Synthesis

The meeting concluded with a comprehensive discussion on synthesizing themes related to LUCC. The session focused on three themes: LUCC, agriculture, and air pollution. The session focused on trends and projections as well as the resulting impacts in the coming years. It also highlighted research related to these topics to inform more sustainable land use policies. A panel of experts from different Southeast Asian countries addressed these topics. A summary of the key points shared by the panelists for each theme during the discussion is provided below.

LUCC Discussions

This discussion focused on the challenges of balancing economic development with environmental sustainability in Southeast Asian countries, e.g., mining in Myanmar, agriculture in Vietnam, and rising land prices in Thailand. More LUCC research is needed to inform decision-making and improve land-use planning during transitions from agriculture to industrialization while ensuring food security. The panelists also discussed urban sprawl and infrastructure development along main roads in several Southeast Asian countries, highlighting the social and environmental challenges arising from uncoordinated growth. It was noted that urban infrastructure lags behind population increases, resulting in traffic congestion, pollution, and social inequality. Cambodia, for example, has increased foreign investments, which presents similar dilemmas of economic growth accompanied by significant environmental degradation. Indonesia is another example of a Southeast Asian nation facing rapid urbanization and inadequate spatial planning, leading to flooding, groundwater depletion, and pollution. These issues further highlight the need for integrated satellite monitoring to inform land-use policies. Finally, recognizing the importance of public infrastructure in growth management, it was reported that the Thai government is already using technology to manage urban development alongside green spaces.

Panelists agreed that LUCC research is critical for guiding policymakers toward sustainable land-use practices – emphasizing the necessity for improved communication between researchers and policymakers. While the integration of technologies (e.g., GIS and remote sensing) is beginning to influence policy decisions, room for improvement remains. In summary, the discussions stressed the importance of better planning, technology integration, and policy-informed research to reconcile economic growth with sustainability. Participants also highlighted the need to engage policymakers, non-government organizations, and the private sector in using scientific evidence for sustainable development. Capacity building in Laos, Cambodia, and Myanmar, where GIS and remote sensing technologies are still developing, is crucial. Community involvement is essential for translating research findings into actionable policies to address real-world challenges and social equity.

Agriculture Discussions

These discussions explored the intricate relationships between agricultural practices, economic growth, and environmental sustainability in Southeast Asia. As an example, despite national policies to manage the land transition in Vietnam, rapid conversions from forest to agricultural land and further to residential and industrial continue. While it is recognized that strict land management plans may hinder future adaptability, further regulation is needed. These rapid shifts in land use have increased land for economic development – especially in industrial and residential sectors – and contribute to environmental degradation, e.g., pollution and soil erosion. In Thailand, land is distributed among agriculture (50%), forest (30%), and urban (20%) areas. Despite a long history of agricultural practices, Vietnam faces new challenges from climate change and extreme weather.

Thailand, meanwhile, is exploring carbon credits to incentivize sustainable farming practices – although this requires significant investment and time. The nation is well-equipped with a robust water supply system, and ongoing efforts to enhance crop yields on Vietnam’s Mekong Delta, salinity levels, and flooding intensity have increased as a result of the rise in incidents of extreme weather, prompting advancements in rice farming mechanization to be implemented that are modeled after practices that have been successfully used in the Philippines.

Despite these advances, issues (e.g., over-application of rice seeds) remain. The dominant land cover type in Malaysia is tropical rainforest, although agriculture – particularly oil palm plantations – also plays a significant role in land use. While stable, it shares environmental concerns with Indonesia. The country is integrating solar energy initiatives, placing solar panels on former agricultural lands and recreational areas, which raises coastal environmental concerns. In Taiwan, substantial land use changes have stemmed from solar panel installations to support green energy goals but have led to increased temperatures and altered wind patterns.

All panelists agreed that remote sensing technologies are vital to inform agricultural policy across the region. They emphasized the need to transition from academic research to actionable insights that directly inform policy. Panelists also discussed the challenge of securing funding for actionable research – underlining the importance of recognizing the transition required for research to inform operational use. Some countries (e.g., Thailand) have established operational crop monitoring systems, while others (e.g., Vietnam) primarily depend on research projects. Despite progress in Malaysia’s monitoring of oil palm plantations, a comprehensive operational monitoring system is still lacking in many areas. The participants concluded that increased efforts are needed to promote the wider adoption of remote sensing technologies for agricultural and environmental monitoring, with emphasis on developing operational systems that can be integrated into policy and decision-making processes.

Air Pollution Discussions

The discussion on air pollution focused on various sources in Southeast Asia, which included both local and transboundary factors. Panelists highlighted that motor vehicles, industrial activities, and power plants are major contributors to pollutants, such as PM2.5, NO2, ozone (O3), and carbon monoxide (CO). Forest fires in Indonesia – particularly from South Sumatra and Riau provinces – are significantly impacting neighboring countries, e.g., Malaysia. A study found that most PM2.5 pollution in Kuala Lumpur originates from Indonesia. During the COVID-19 pandemic, pollution levels dropped sharply due to reduced economic activity; however, data from 2018–2023 shows that PM2.5 levels have returned to pre-pandemic conditions.

The Indonesian government is actively working to reduce deforestation and emissions, aiming for a 29% reduction by 2030. Indonesia is also participating in carbon markets and receiving international payments for emission reductions. Indonesia’s emissions also stem from energy production, industrial activities, and land-use changes, including peat fires. The Indonesian government reports anthropogenic sources – particularly from the energy sector and industrial activities, forest and peat fires, waste, and agriculture – continue to escalate. While Indonesia is addressing these issues, growing population and energy demands continue to drive pollution levels higher.

Vietnam and Laos are facing similar challenges related to air pollution – particularly from agricultural residue burning. Both governments are working on expanding air quality monitoring, regulating waste burning, and developing policies to mitigate pollution. Vietnam has been developing provincial air quality management plans and expanding its monitoring network. Laos has seen increased awareness of pollution, accompanied by government measures aimed at restricting burning and improving waste management practices.

The panelists agreed that collaborative efforts for regional cooperation are essential to address air pollution. This will require collaboration in research and data sharing to inform policy decisions. There is a growing interest in leveraging satellite technology and modeling approaches to enhance air quality forecasting and management. To ensure that research translates into effective policy, communication of scientific findings to policymakers is essential – particularly by clearly communicating complex research concepts in accessible formats. All panelists agreed on the importance of improving governance, transparency, and scientific communication to better translate research into policy actions, highlighting collaborations with international organizations – including NASA – to address air quality issues. While significant challenges related to air pollution persist in Southeast Asia, noteworthy efforts are underway to improve awareness, research, and collaborative governance aimed at enhancing air quality and reducing emissions.

Conclusion

The LCLUC–SARI Synthesis meeting fostered collaboration among researchers and provided valuable updates on recent developments in LUCC research, exchange of ideas, integration of new data products, and discussions on emerging science directions. This structured dialogue (particularly the discussions in each session) helped the attendees identify priorities and needs within the LUCC community. All panelists and meeting participants commended the SARI leadership for their proactive role in facilitating collaborations and discussions that promote capacity-building activities across the region. SARI activities have significantly contributed to enhancing the collective ability of countries in South and Southeast Asia to address pressing environmental challenges. The meeting participants emphasized the importance of maintaining and expanding these collaborative efforts, which are crucial for fostering partnerships among governments, research institutions, and local communities. They urged SARI to continue organizing workshops, training sessions, and knowledge-sharing platforms that can equip stakeholders with the necessary skills and resources to tackle environmental issues such as air pollution, deforestation, climate change, and sustainable land management.

Krishna Vadrevu
NASA’s Marshall Space Flight Center
krishna.p.vadrevu@nasa.gov

Vu Tuan
Vietnam National Science Center, Vietnam
vatuan@vnsc.org.vn

Than Nguyen
Vietnam National University Engineering and Technology, Vietnam
thanhntn@vnu.edu.vn

Son Nghiem
Jet Propulsion Laboratory
son.v.nghiem@jpl.nasa.gov

Tsuneo Matsunaga
National Institute of Environmental Studies, Japan
matsunag@nies.go.jp

Garik Gutman
NASA Headquarters
ggutman@nasa.gov

Christopher Justice
University of Maryland College Park
cjustice@umd.edu

Share

Details

Last Updated
Feb 20, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A host of scientific investigations await the crew of NASA’s SpaceX Crew-11 mission during their long-duration expedition aboard the International Space Station. NASA astronauts Zena Cardman and Mike Fincke, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, are set to study plant cell division and microgravity’s effects on bacteria-killing viruses, as well as perform experiments to produce a higher volume of human stem cells and generate on-demand nutrients.
      Here are details on some of the research scheduled during the Crew-11 mission:
      Making more stem cells
      Cultures of stem cells grown in 2D on Earth, left, and as 3D spheres in simulated microgravity on Earth.BioServe A stem cell investigation called StemCellEx-IP1 evaluates using microgravity to produce large numbers of induced pluripotent stem cells. Made by reprogramming skin or blood cells, these stem cells can transform into any type of cell in the body and are used in regenerative medicine therapies for many diseases. However, producing enough cells on the ground is a challenge.
      Researchers plan to use the microgravity environment aboard the space station to demonstrate whether generating 1,000 times more cells is possible and whether these cells are of higher quality and better for clinical use than those made on Earth. If proven, this could significantly improve future patient outcomes.
      “This type of stem cell research is a chance to find treatments and maybe even cures for diseases that currently have none,” said Tobias Niederwieser of BioServe Space Technologies, which developed the investigation. “This represents an incredible potential to make life here on Earth better for all of us. We can take skin or blood cells from a patient, convert them into stem cells, and produce custom cell-therapy with little risk for rejection, as they are the person’s own cells.”
      Alternative to antibiotics
      Genes in Space-12 student investigators Isabella Chuang, left, and Julia Gross, middle, with mentor Kayleigh Ingersoll Omdahl.Genes in Space Genes in Space is a series of competitions in which students in grades 7 through 12 design DNA experiments that are flown to the space station. Genes in Space-12 examines the effects of microgravity on interactions between certain bacteria and bacteriophages, which are viruses that infect and kill bacteria. Bacteriophages already are used to treat bacterial infections on Earth.
      “Boeing and miniPCR bio co-founded this competition to bring real-world scientific experiences to the classroom and promote molecular biology investigations on the space station,” said Scott Copeland of Boeing, and co-founder of Genes in Space. “This
      investigation could establish a foundation for using these viruses to treat bacterial infections in space, potentially decreasing the dependence on antibiotics.”
      “Previous studies indicate that bacteria may display increased growth rates and virulence in space, while the antibiotics used to combat them may be less effective,” said Dr. Ally Huang, staff scientist at miniPCR bio. “Phages produced in space could have profound implications for human health, microbial control, and the sustainability of long-duration remote missions. Phage therapy tools also could revolutionize how we manage bacterial infections and microbial ecosystems on Earth.”
      Edible organisms
      A purple, pre-incubation BioNutrients-3 bag, left, and a pink bag, right, which has completed incubation, on a purple and pink board used for comparison.NASA Some vitamins and nutrients in foods and supplements lose their potency during prolonged storage, and insufficient intake of even a single nutrient can lead to serious diseases, such as a vitamin C deficiency, causing scurvy. The BioNutrients-3 experiment builds on previous investigations looking at ways to produce on-demand nutrients in space using genetically engineered organisms that remain viable for years. These include yogurt and a yeast-based beverage made from yeast strains previously tested aboard station, as well as a new, engineered co-culture that produces multiple nutrients in one sample bag.
      “BioNutrients-3 includes multiple food safety features, including pasteurization to kill microorganisms in the sample and a demonstration of the feasibility of using a sensor called E-Nose that simulates an ultra-sensitive nose to detect pathogens,” said Kevin Sims, project manager at NASA’s Ames Research Center in California’s Silicon Valley.
      Another food safety feature is a food-grade pH indicator to track bacterial growth.
      “These pH indicators help the crew visualize the progress of the yogurt and kefir samples,” Sims said. “As the organisms grow, they generate lactic acid, which lowers the pH and turns the indicator pink.”
      The research also features an investigation of yogurt passage, which seeds new cultures using a bit of yogurt from a finished bag, much like maintaining a sourdough bread starter. This method could sustain a culture over multiple generations, eliminating concerns about yogurt’s shelf life during a mission to the Moon or Mars while reducing launch mass.
      Understanding cell division
      Cells of green algae dividing.University of Toyama The JAXA Plant Cell Division investigation examines how microgravity affects cell division in green algae and a strain of cultured tobacco cells. Cell division is a fundamental element of plant growth, but few studies have examined it in microgravity.
      “The tobacco cells divide frequently, making the process easy to observe,” said Junya Kirima of JAXA. “We are excited to reveal the effects of the space environment on plant cell division and look forward to performing time-lapse live imaging of it aboard the space station.”
      Understanding this process could support the development of better methods for growing plants for food in space, including on the Moon and Mars. This investigation also could provide insight to help make plant production systems on Earth more efficient.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond.
      Learn more about the International Space Station at:
      https://www.nasa.gov/station
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Research and Technology
      Humans In Space
      Station Benefits for Humanity
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An international team of astronomers has uncovered new evidence to explain how pulsing remnants of exploded stars interact with surrounding matter deep in the cosmos, using observations from NASA’s IXPE (Imaging X-ray Polarimetry Explorer) and other telescopes. 
      Scientists based in the U.S., Italy, and Spain, set their sights on a mysterious cosmic duo called PSR J1023+0038, or J1023 for short. The J1023 system is comprised of a rapidly rotating neutron star feeding off of its low-mass companion star, which has created an accretion disk around the neutron star. This neutron star is also a pulsar, emitting powerful twin beams of light from its opposing magnetic poles as it rotates, spinning like a lighthouse beacon.
      The J1023 system is rare and valuable to study because the pulsar transitions clearly between its active state, in which it feeds off its companion star, and a more dormant state, when it emits detectable pulsations as radio waves. This makes it a “transitional millisecond pulsar.” 
      An artist’s illustration depicting the central regions of the binary system PSR J1023+0038, including the pulsar, the inner accretion disc and the pulsar wind. Credit: Marco Maria Messa, University of Milan/INAF-OAB; Maria Cristina Baglio, INAF-OAB “Transitional millisecond pulsars are cosmic laboratories, helping us understand how neutron stars evolve in binary systems,” said researcher Maria Cristina Baglio of the Italian National Institute of Astrophysics (INAF) Brera Observatory in Merate, Italy, and lead author of a paper in The Astrophysical Journal Letters illustrating the new findings. 
      The big question for scientists about this pulsar system was: Where do the X-rays originate? The answer would inform broader theories about particle acceleration, accretion physics, and the environments surrounding neutron stars across the universe.
      The source surprised them: The X-rays came from the pulsar wind, a chaotic stew of gases, shock waves, magnetic fields, and particles accelerated near the speed of light, that hits the accretion disk.  
      To determine this, astronomers needed to measure the angle of polarization in both X-ray and optical light. Polarization is a measure of how organized light waves are. They looked at X-ray polarization with IXPE, the only telescope capable of making this measurement in space, and comparing it with optical polarization from the European Southern Observatory’s Very Large Telescope in Chile. IXPE launched in Dec. 2021 and has made many observations of pulsars, but J1023 was the first system of its kind that it explored. 
      NASA’s NICER (Neutron star Interior Composition Explorer) and Neil Gehrels Swift Observatory provided valuable observations of the system in high-energy light. Other telescopes contributing data included the Karl G. Jansky Very Large Array in Magdalena, New Mexico. 
      The result: scientists found the same angle of polarization across the different wavelengths.
      “That finding is compelling evidence that a single, coherent physical mechanism underpins the light we observe,” said Francesco Coti Zelati of the Institute of Space Sciences in Barcelona, Spain, co-lead author of the findings. 
      This interpretation challenges the conventional wisdom about neutron star emissions of radiation in binary systems, the researchers said. Previous models had indicated that the X-rays come from the accretion disk, but this new study shows they originate with the pulsar wind. 
      “IXPE has observed many isolated pulsars and found that the pulsar wind powers the X-rays,” said NASA Marshall astrophysicist Philip Kaaret, principal investigator for IXPE at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These new observations show that the pulsar wind powers most of the energy output of the system.”
      Astronomers continue to study transitional millisecond pulsars, assessing how observed physical mechanisms compare with those of other pulsars and pulsar wind nebulae. Insights from these observations could help refine theoretical models describing how pulsar winds generate radiation – and bring researchers one step closer, Baglio and Coti Zelati agreed, to fully understanding the physical mechanisms at work in these extraordinary cosmic systems.
      More about IXPE
      IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. Learn more about IXPE’s ongoing mission here:
      https://www.nasa.gov/ixpe
      Share
      Details
      Last Updated Jul 15, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
      6 min read Smarter Searching: NASA AI Makes Science Data Easier to Find
      Imagine shopping for a new pair of running shoes online. If each seller described them…
      Article 6 days ago 2 min read NASA Announces Winners of 2025 Human Lander Challenge
      Article 3 weeks ago 4 min read I Am Artemis: Patrick Junen
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Scientists predict one of the major surveys by NASA’s upcoming Nancy Grace Roman Space Telescope may reveal around 100,000 celestial blasts, ranging from exploding stars to feeding black holes. Roman may even find evidence of some of the universe’s first stars, which are thought to completely self-destruct without leaving any remnant behind.
      This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.Credit: NASA’s Goddard Space Flight Center and M. Troxel Cosmic explosions offer clues to some of the biggest mysteries of the universe. One is the nature of dark energy, the mysterious pressure thought to be accelerating the universe’s expansion.
      “Whether you want to explore dark energy, dying stars, galactic powerhouses, or probably even entirely new things we’ve never seen before, this survey will be a gold mine,” said Benjamin Rose, an assistant professor at Baylor University in Waco, Texas, who led a study about the results. The paper is published in The Astrophysical Journal.
      Called the High-Latitude Time-Domain Survey, this observation program will scan the same large region of the cosmos every five days for two years. Scientists will stitch these observations together to create movies that uncover all sorts of cosmic fireworks.
      Chief among them are exploding stars. The survey is largely geared toward finding a special class of supernova called type Ia. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion because they peak at about the same intrinsic brightness. Figuring out how fast the universe has ballooned during different cosmic epochs offers clues to dark energy.
      This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.Credit: NASA, ESA, CSA, and STScI In the new study, scientists simulated Roman’s entire High-Latitude Time-Domain Survey. The results suggest Roman could see around 27,000 type Ia supernovae—about 10 times more than all previous surveys combined.
      Beyond dramatically increasing our total sample of these supernovae, Roman will push the boundaries of how far back in time we can see them. While most of those detected so far occurred within approximately the last 8 billion years, Roman is expected to see vast numbers of them earlier in the universe’s history, including more than a thousand that exploded more than 10 billion years ago and potentially dozens from as far back as 11.5 billion years. That means Roman will almost certainly set a new record for the farthest type Ia supernova while profoundly expanding our view of the early universe and filling in a critical gap in our understanding of how the cosmos has evolved over time.
      “Filling these data gaps could also fill in gaps in our understanding of dark energy,” Rose said. “Evidence is mounting that dark energy has changed over time, and Roman will help us understand that change by exploring cosmic history in ways other telescopes can’t.”
      But type Ia supernovae will be hidden among a much bigger sample of exploding stars Roman will see once it begins science operations in 2027. The team estimates Roman will also spot about 60,000 core-collapse supernovae, which occur when a massive star runs out of fuel and collapses under its own weight.
      That’s different from type Ia supernovae, which originate from binary star systems that contain at least one white dwarf — the small, hot core remnant of a Sun-like star — siphoning material from a companion star. Core-collapse supernovae aren’t as useful for dark energy studies as type Ias are, but their signals look similar from halfway across the cosmos.
      “By seeing the way an object’s light changes over time and splitting it into spectra — individual colors with patterns that reveal information about the object that emitted the light—we can distinguish between all the different types of flashes Roman will see,” said Rebekah Hounsell, an assistant research scientist at the University of Maryland-Baltimore County working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and a co-author of the study.
      “With the dataset we’ve created, scientists can train machine-learning algorithms to distinguish between different types of objects and sift through Roman’s downpour of data to find them,” Hounsell added. “While searching for type Ia supernovae, Roman is going to collect a lot of cosmic ‘bycatch’—other phenomena that aren’t useful to some scientists, but will be invaluable to others.”
      Hidden Gems
      Thanks to Roman’s large, deep view of space, scientists say the survey should also unearth extremely rare and elusive phenomena, including even scarcer stellar explosions and disintegrating stars.
      Upon close approach to a black hole, intense gravity can shred a star in a so-called tidal disruption event. The stellar crumbs heat up as they swirl around the black hole, creating a glow astronomers can see from across vast stretches of space-time. Scientists think Roman’s survey will unveil 40 tidal disruption events, offering a chance to learn more about black hole physics.
      The team also estimates Roman will find about 90 superluminous supernovae, which can be 100 times brighter than a typical supernova. They pack a punch, but scientists aren’t completely sure why. Finding more of them will help astronomers weigh different theories.
      Even rarer and more powerful, Roman could also detect several kilonovae. These blasts occur when two neutron stars — extremely dense cores leftover from stars that exploded as supernovae — collide. To date, there has been only one definitive kilonova detection. The team estimates Roman could spot five more.
      NASA’s Roman Space Telescope will survey the same areas of the sky every few days following its launch in May 2027. Researchers will mine these data to identify kilonovae – explosions that happen when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are.Credit: NASA, ESA, J. Olmsted (STScI) That would help astronomers learn much more about these mysterious events, potentially including their fate. As of now, scientists are unsure whether kilonovae result in a single neutron star, a black hole, or something else entirely.
      Roman may even spot the detonations of some of the first stars that formed in the universe. These nuclear furnaces were giants, up to hundreds of times more massive than our Sun, and unsullied by heavy elements that hadn’t yet formed.
      They were so massive that scientists think they exploded differently than modern massive stars do. Instead of reaching the point where a heavy star today would collapse, intense gamma rays inside the first stars may have turned into matter-antimatter pairs (electrons and positrons). That would drain the pressure holding the stars up until they collapsed, self-destructing in explosions so powerful they’re thought to leave nothing behind.
      So far, astronomers have found about half a dozen candidates of these “pair-instability” supernovae, but none have been confirmed.
      “I think Roman will make the first confirmed detection of a pair-instability supernova,” Rose said — in fact the study suggests Roman will find more than 10. “They’re incredibly far away and very rare, so you need a telescope that can survey a lot of the sky at a deep exposure level in near-infrared light, and that’s Roman.”
      A future rendition of the simulation could include even more types of cosmic flashes, such as variable stars and active galaxies. Other telescopes may follow up on the rare phenomena and objects Roman discovers to view them in different wavelengths of light to study them in more detail.
      “Roman’s going to find a whole bunch of weird and wonderful things out in space, including some we haven’t even thought of yet,” Hounsell said. “We’re definitely expecting the unexpected.”
      For more information about the Roman Space Telescope visit www.nasa.gov/roman.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 15, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.gov Related Terms
      Nancy Grace Roman Space Telescope Astrophysics Black Holes Dark Energy Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Science & Research Stars Supernovae The Universe Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 3 months ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
      Article 6 months ago 3 min read NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels
      Article 5 days ago View the full article
    • By NASA
      The Axiom Mission 4 crew launched on June 25, 2025, aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: Tibor Kapu of Hungary, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, former NASA astronaut Peggy Whitson, and ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland (Credit: Axiom Space). The NASA-supported fourth private astronaut mission to the International Space Station, Axiom Mission 4, completed its flight as part of the agency’s efforts to demonstrate demand and build operational knowledge for future commercial space stations.
      The four-person crew safely returned to Earth, splashing down off the coast of California at 5:31 a.m. EDT on Tuesday, aboard a SpaceX Dragon spacecraft. Teams aboard SpaceX recovery vessels retrieved the spacecraft and astronauts. 
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu of Hungary, completed about two and a half weeks in space.
      The Axiom Mission 4 crew launched at 2:31 a.m. on June 25, on a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. Approximately 28 hours later, Dragon docked to the space-facing port of the space station’s Harmony module. The astronauts undocked at 7:15 a.m. on July 14, to begin the trip home.
      The crew conducted microgravity research, educational outreach, and commercial activities. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facilities. Throughout their mission, the astronauts conducted about 60 science experiments, and returned science, including NASA cargo, back to Earth.
      A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.
      The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space

      News Media Contacts:
      Claire O’Shea 
      Headquarters, Washington 
      202-358-1100 
      claire.a.o’shea@nasa.gov

      Anna Schneider 
      Johnson Space Center, Houston 
      281-483-5111 
      anna.c.schneider@nasa.gov
      Facebook logo @NASA @NASA Instagram logo @NASA Linkedin logo @NASA View the full article
    • By NASA
      Melissa Harris’ official NASA portrait. NASA/Robert Markowitz With over 25 years of experience in human spaceflight programs, Melissa Harris has contributed to numerous programs and projects during key moments in NASA’s history. As the life cycle lead and Independent Review Team review manager for the Commercial Low Earth Orbit Development Program, she guides the agency through development initiatives leading to a new era of space exploration.  

      Harris grew up near NASA’s Johnson Space Center in Houston and spent time exploring the center and trying on astronaut helmets. She later earned her bachelor’s degree in legal studies from the University of Houston, master and subject matter expert certifications in configuration management, and ISO 9001 Lead Auditors Certification. When the opportunity arose, she jumped at the chance to join the International Space Station Program. 

      Harris (right) and her twin sister, Yvonne (left), at the Artemis I launch. Image courtesy of Melissa Harris Starting as a board specialist, Harris spent eight years supporting the space station program boards, panels, and flight reviews. Other areas of support included the International Space Station Mission Evaluation Room and the EVA Crew Systems and Robotics Division managing changes for the acquisition and building of mockups in the Neutral Buoyancy Laboratory and Space Vehicle Mockup Facility in Houston. She then took a leap to join the Constellation Program, developing and overseeing program and project office processes and procedures. Harris then transitioned to the Extravehicular Activity (EVA) Project Office where she was a member of the EVA 23 quality audit team tasked with reviewing data to determine the cause of an in-orbit failure. She also contributed to the Orion Program and Artemis campaign. After spending two years at Axiom Space, Harris returned to NASA and joined the commercial low Earth orbit team. 

      Harris said the biggest lesson she has learned during her career is that “there are always ups and downs and not everything works out, but if you just keep going and at the end of the day see that the hard work and dedication has paid off, it is always the proudest moment.”  

      Her dedication led to a nomination for the Stellar Award by the Rotary National Award for Space Achievement Foundation.

      Harris and her son, Tyler, at the Rotary National Award Banquet in 2024.Image courtesy of Melissa Harris Harris’ favorite part of her role at NASA is working “closely with brilliant minds” and being part of a dedicated and hard-working team that contributes to current space programs while also planning for future programs. Looking forward, she anticipates witnessing the vision and execution of a self-sustaining commercial market in low Earth orbit come to fruition. 

      Outside of work, Harris enjoys being with family, whether cooking on the back porch, over a campfire, or traveling both in and out of the country. She has been married for 26 years to her high school sweetheart, Steve, and has one son, Tyler. Her identical twin sister, Yvonne, also works at Johnson. 

      Harris and her twin sister Yvonne dressed as Mark and Scott Kelly for Halloween in 2024.Image courtesy of Melissa Harris Learn more about NASA’s Commercial Low Earth Orbit Development Program at: 
      www.nasa.gov/commercialspacestations
      View the full article
  • Check out these Videos

×
×
  • Create New...