Jump to content

Recommended Posts

  • Publishers
Posted
eo-meeting-summary-banner.png?w=1037

35 min read

Summary of the Joint NASA LCLUC–SARI Synthesis Meeting

Introduction

The NASA Land-Cover and Land-Use Change (LCLUC) is an interdisciplinary scientific program within NASA’s Earth Science program that aims to develop the capability for periodic global inventories of land use and land cover from space. The program’s goal is to develop the mapping, monitoring and modeling capabilities necessary to simulate the processes taking place and evaluate the consequences of observed and predicted changes. The South/Southeast Asia Research Initiative (SARI) has a similar goal for South/Southeast Asia, as it seeks to develop innovative regional research, education, and capacity building programs involving state-of-the-art remote sensing, natural sciences, engineering, and social sciences to enrich land use/cover change (LUCC) science in South/Southeast Asia. Thus it makes sense for these two entities to periodically meet jointly to discuss their endeavors.

The latest of these joint meetings took place January 1–February 2, 2024, in Hanoi, Vietnam. A total of 85 participants attended the three-day, in-person meeting—see Photo.  A total of 85 participants attended the three-day, in-person meeting. The attendees represented multiple international institutions, including NASA (Headquarters and Centers), the University of Maryland, College Park (UMD), other American academic institutions, the Vietnam National Space Center (VNSC, the event host), the Vietnam National University’s University of Engineering and Technology, and Ho Chi Minh University of Technology, the Japanese National Institute of Environmental Studies (NIES), Center for Environmental Sciences, and the University of Tokyo. In addition, several international programs participated, including GEO Global Agricultural Monitoring (GEOGLAM), the System for Analysis, Research and Training (START), Global Observation of Forest and Land-use Dynamics (GOFC–GOLD), and NASA Harvest.

LCLUC photo
Photo. A group picture of the meeting participants on the first day of the 2024 LCLUC SARI meeting in Hanoi, Vietnam.
Photo credit: Hotel staff (Hanoi Club Hotel, Hanoi, Vietnam)

Meeting Overview

The purpose of the 2024 NASA LCLUC–SARI Synthesis meeting was to discuss LUCC issues – with a particular focus on their impact on Southeast Asian countries. Presenters highlighted ongoing projects aimed to advance our understanding of the spatial extent, intensity, social consequences, and impacts on the environment in South/Southeast Asian countries. While presenters reported on specific science results, they also were intentional to review and synthesize work from other related projects going on in Southeast Asia. 

Meeting Goal

The meeting’s overarching goal was to create a comprehensive and holistic understanding of various LUCC issues by examining them from multiple angles, including: collating information; employing interdisciplinary approaches; integrating research; identifying key insights; and enhancing regional collaborations. The meeting sought to bring the investigators together to bridge gaps, promote collaborations, and advance knowledge regarding LUCC issues in the region. The meeting format also provided ample time between sessions for networking to promote coordination and collaboration among scientists and teams. 

Meeting and Summary Format

The meeting consisted of seven sessions that focused on various LUCC issues. The summary report that follows is organized by day and then by session. All presentations in Session I and II are summarized (i.e., with all speakers, affiliations, and appropriate titles identified). The keynote presentation(s) from Sessions III–VI are summarized similarly. The technical presentations in each of these sessions are presented as narrative summaries. Session VII consisted of topical discussions to close out the meeting and summaries of these discussions are included herein. Sessions III–VI also included panel discussions, but to keep the article length more manageable, summaries of these discussions have been omitted. Readers interested in learning more about the panel discussions or viewing any of these presentations in full can access the information on the Joint LCLUC–SARI Synthesis meeting website.

DAY ONE

The first day of the meeting included welcoming remarks from the U.S. Ambassador to Vietnam (Session I), program executives of LCLUC and SARI,  as well as from national space agencies in South and Southeast Asia (Session II), and other LCLUC-thematic/overview presentations (Session III).

Session 1: Welcoming Remarks

Garik Gutman [NASA Headquarters—LCLUC Program Manager], Vu Tuan [VNSC’s Vietnam Academy of Science and Technology (VAST)—Vice Director General], Chris Justice [University of Maryland, College Park (UMD)—LCLUC Program Scientist], Matsunaga Tsuneo [National Institute of Environmental Studies (NIES), Japan], and Krishna Vadrevu [NASA’s Marshall Space Flight Center—SARI Lead] delivered opening remarks that highlighted collaborations across air pollution, agriculture, forestry, urban development, and other LUCC research areas. While each of the speakers covered different topics, they emphasized common themes, including advancing new science algorithms, co-developing products, and fostering applications through capacity building and training.

After the opening remarks, special guest Marc Knapper [U.S. Ambassador to Vietnam] gave a presentation in which he emphasized the value of collaborative research between U.S. and Vietnamese scientists to address environmental challenges – especially climate change and LUCC issues. He expressed appreciation to the meeting organizers for promoting these collaborations and highlighted the joint initiatives between NASA and the U.S. Agency for International Development (USAID) to monitor environmental health and climate change, develop policies to reduce emissions, and support adaptation in agriculture. The U.S.–Vietnam Comprehensive Strategic Partnership emphasizes the commitment to address climate challenges and advance bilateral research. He concluded by encouraging active participation from all attendees and stressed the need for ongoing international collaboration to develop effective LUCC policies.

Session-II: Programmatic and Space Agency Presentations

NOTE: Other than Ambassador Knapper, the presenters in Session I gave welcoming remarks and programmatic and/or space agency presentations in Session II,.

Garik Gutman began the second session by presenting an overview of the LCLUC program, which aims to enhance understanding of LUCC dynamics and environmental implications by integrating diverse data sources (i.e., satellite remote sensing) with socioeconomic and ecological datasets for a comprehensive view of land-use change drivers and consequences. Over the past 25 years, LCLUC has funded over 325 projects involving more than 800 researchers, resulting in over 1500 publications. The program’s focus balances project distribution that spans detection and monitoring, and impacts and consequences, including drivers, modeling, and synthesis. Gutman highlighted examples of population growth and urban expansion in Southeast Asia, resulting in environmental and socio-economic impacts. Urbanization accelerates deforestation, shifts farming practices to higher-value crops, and contributes to the loss of wetlands. This transformation alters the carbon cycle, degrades air quality, and increases flooding risks due to reduced rainwater absorption. Multi-source remote sensing data and social dimensions are essential in addressing LUCC issues, and the program aims to foster international collaborations and capacity building in land-change science through partnerships and training initiatives. (To learn more about the recent activities of the LCLUC Science Team, see Summary of the 2024 Land Cover Land Use Change Science Team Meeting.)

Krishna Vadrevu explained how SARI connects regional and national projects with researchers from the U.S. and local institutions to advance LUCC mapping, monitoring, and impact assessments through shared methodologies and data. The initiative has spurred extensive activities, including meetings, training sessions, publications, collaborations, and fieldwork. To date, the LCLUC program has funded 35 SARI projects and helped build collaborations with space agencies, universities, and decision-makers worldwide. SARI Principal Investigators have documented notable land-cover and land-use transformations, observing shifts in land conversion practices across Asia. For example, the transition from traditional slash-and-burn practices for subsistence agriculture to industrial oil palm and rubber plantations in Southeast Asia. Rapid urbanization has also reshaped several South and Southeast Asian regions, expanding both horizontally in rural areas and vertically in urban centers. The current SARI solicitation funds three projects across Asia, integrating the latest remote sensing data and methods to map, monitor, and assess LUCC drivers and impacts to support policy-making.

Vu Tuan provided a comprehensive overview of Vietnam’s advances in satellite technology and Earth observation capabilities, particularly through the LOTUSat-1 satellite (name derived from the “Lotus” flower), which is equipped with an advanced X-band Synthetic Aperture Radar (SAR) sensor capable of providing high-resolution imagery [ranging from 1–16 m (3–52 ft)]. This satellite is integral to Vietnam’s efforts to enhance disaster management and climate change mitigation, as well as to support a range of applications in topography, agriculture, forestry, and water management, as well as in oceanography and environmental monitoring. The VNSC’s efforts are part of a broader strategy to build national expertise and self-reliance in satellite technology, such as developing a range of small satellites (e.g., NanoDragon, PicoDragon, and MicroDragon) that progress in size and capability. Alongside satellite development, the VNSC has established key infrastructure, facilities, and capacity building in Hanoi, Nha Trang, and Ho Chi Minh City to support satellite assembly, integration, testing, and operation. Tuan showcased the application of remotely sensed LUCC data to map and monitor urban expansion in Ha Long city from 2000–2023 and the policies needed to manage these changes sustainably – see Figure 1.

LCLUC figure 1
Figure 1. Urban expansion area in Ha Long City, Vietnam from 2000–2023 from multidate Landsat satellite imagery.
Figure credit: Vu Tuan [VNSC]

Tsuneo Matsunaga provided a detailed overview of Japan’s Greenhouse Gases Observing Satellite (GOSAT) series of satellites, data from which provide valuable insights into global greenhouse gas (GHG) trends and support international climate agreements, including the Paris Agreement.

Matsunaga reviewed the first two satellites in the series: GOSAT and GOSAT-2, then previewed the next satellite in the series: GOSAT-GW, which is scheduled to launch in 2025. GOSAT-GW will fly the Total Anthropogenic and Natural Emissions Mapping Observatory–3 (TANSO-3) – an improved version of TANSO-2, which flies on GOSAT-2. TANSO-3 includes a Fourier Transform Spectrometer (FTS-3) that has improved spatial resolution [10.5 km (6.5 mi)] over TANSO-FTS-2 and precision that matches or exceeds that of its predecessor. TANSO-FTS-3 will allow estimates with precision better than 1 ppm for carbon dioxide (CO2) and 10 ppb for methane (CH4), as well as enabling nitrogen dioxide (NO2) measurements. GOSAT–GW will also fly the Advanced Microwave Scanning Radiometer (AMSR3) that will monitor water cycle components (e.g., precipitation, soil moisture) and ocean surface winds. AMSR3 builds on the heritage of three previous AMSR instruments that have flown on NASA and Japan Aerospace Exploration Agency (JAXA) missions.

Matsunaga also highlighted the importance of ground-based validation networks, such as the Total Carbon Column Observing Network, COllaborative Carbon Column Observing Network, and the Pandora Global Network, to ensure satellite data accuracy.

Son Nghiem [NASA/Jet Propulsion Laboratory (JPL)] addressed dynamic LUCC in Cambodia, Laos, Thailand, Vietnam, and Malaysia. The synthesis study examined the factors that evolve along the rural–urban continuum (RUC). Nghiem showcased this effort using Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 mission to map a typical RUC in Bac Lieu, Vietnam – see Figure 2.

LCLUC figure 2
Figure 2. Land cover map of Bae Lieu, Vietnam, and surrounding rural areas. The image shows persistent building structures (red), agricultural areas (light green), aquacultural (light blue), tree cover (dark green), and water bodies (dark blue). Land-use classes used on this map are derived from Sentinel-1 Synthetic Aperture Radar (SAR) for the rural urban continuum around Bac Lieu.
Figure credit: Son Nghiem [JPL]

Nghiem described the study, which examined the role of rapid urbanization, agricultural conversion, climate change, and environment–human feedback processes in causing non-stationary and unpredictable impacts. This work illustrates how traditional trend analysis is insufficient for future planning. The study also examined whether slower or more gradual changes could inform policy development. To test these hypotheses, his research will integrate high-resolution radar and hyperspectral data with socioeconomic analyses. The study highlights the need for policies that are flexible and responsive to the unique challenges of different areas, particularly in “hot-spot” regions experiencing rapid changes.

Peilei Fan [Tufts University] presented a study that synthesizes the complex patterns of LUCC, identifying both the spatial and temporal dynamics that characterize transitions in urban systems. The study explores key drivers, including economic development, population growth, urbanization, agricultural expansion, and policy shifts. She emphasized the importance of understanding these drivers for sustainable land management and urban planning. For example, the Yangon region of Myanmar has undergone rapid urbanization – see Figure 3. Her work reveals the need for integrated approaches that consider both urban and rural perspectives to manage land resources effectively and mitigate negative environmental and social impacts. Through a combination of case studies, statistical analysis, and policy review, Fan and her team aim to provide a nuanced understanding of the interactions between human activities and environmental changes occurring in the rapidly transforming landscapes of Southeast Asia.

LCLUC figure 3
Figure 3. Landsat data can be used to track land cover change over time. For example, Thematic Mapper data have been used to track urban expansion around Yangon, Myanmar. The data show that the built-up area expanded from 161 km2 (62 mi2) in 1990 to 739 km2 (285 mi2) in 2020.
Figure credit: Peleli Fan [Tufts University]

Session III: Land Cover/Land Use Change Studies

Tanapat Tanaratkaittikul [Geo-Informatics and Space Technology Development Agency (GISTDA), Thailand] highlighted GISTDA activities, which play a crucial role in advancing Thailand’s technological capabilities and addressing both national and global challenges, including Thailand Earth Observation System (THEOS) and its successors: THEOS-2 and THEOS-2A. THEOS-1, which launched in 2008, provides 2-m (6-ft) panchromatic and 15-m (45-ft) multispectral resolution with a 26-day revisit cycle, which can be reduced to 3 days with off-nadir pointing. Launched in 2023, THEOS-2 includes two satellites – THEOS-2A [a very high-resolution satellite with 0.5-m (1.5-ft) panchromatic and 2-m (6-ft) multispectral imagery] and THEOS-2B [a high-resolution satellite with 4-m (12-ft) multispectral resolution] – with a five-day revisit cycle. GISTDA also develops geospatial applications for drought assessment, flood prediction, and carbon credit calculations to support government decision-making and climate initiatives. GISTDA partners with international collaborators on regional projects, such as the Lancang-Mekong Cooperation Special Fund Project.

Eric Vermote [NASA’s Goddard Space Flight Center] presented a keynote that focused on atmospheric correction of land remote sensing data and related algorithm updates. He highlighted the necessity of correcting surface imaging for atmospheric effects, such as molecular scattering, aerosol scattering, and gaseous absorption, which can significantly distort the satellite spectral signals and lead to potential errors in applications, such as land cover mapping, vegetation monitoring, and climate change studies.

Vermote explained that the surface reflectance algorithm uses precise vector radiative transfer modeling to improve accuracy by incorporating atmospheric parameter inversion. It also adjusts for various atmospheric conditions and aerosol types – enhancing corrections across regions and seasons. He explained that SkyCam – a network of ground-based cameras – provides real-time assessments of cloud cover that can be used to validate cloud masks, while the Cloud and Aerosol Measurement System (CAMSIS) offers additional ground validation by measuring atmospheric conditions. He said that together, SkyCam and CAMSIS improve satellite-derived cloud masks, supporting more accurate climate models and environmental monitoring. Vermote’s work highlights the ongoing advancement of atmospheric correction methods in remote sensing.

Other presentations in this session included one in which the speaker described how Yangon, the capital city in Myanmar, is undergoing rapid urbanization and industrial growth. From 1990–2020, the urban area expanded by over 225% – largely at the expense of agricultural and green lands. Twenty-nine industrial zones cover about 10.92% of the city, which have attracted significant foreign direct investment, particularly in labor-intensive sectors. This growth has led to challenges with land confiscations, inadequate infrastructure, and environmental issues (e.g., air pollution). Additionally, rural migration for employment has resulted in informal settlements, emphasizing the need for comprehensive urban planning that balances economic development with social equity and sustainability.

Another presentation highlighted varying LUCC trends across Vietnam. In the Northern and Central Coastal Uplands, for example, swidden systems are shifting toward permanent tree crops, such as rubber and coffee. Meanwhile, the Red River Delta is seeing urban densification and consolidation of farmland – transitioning from rice to mixed farming with increased fruit and flower production. Similarly, the Central Coastal Lowlands and Southeastern regions are experiencing urban growth and a shift from coastal agriculture – in this case, to shrimp farming – leading to mangrove loss. The Central Highlands is moving from swidden to tree crops, particularly fruit trees, while the Mekong River Delta is increasing rice cropping and aquaculture. These changes contribute to urbanization, altered farming practices, and biodiversity loss. Advanced algorithms (e.g., the Time-Feature Convolutional Neural Network model) are being used to effectively map these varied LUCC changes in Vietnam.

Another presenter explained how 10-m (33-ft) resolution spatially gridded population datasets are essential to address LUCC in environmental and socio-demographic research. There was also a demonstration of PopGrid, which is a collaborative initiative that provides access to various global-gridded population databases, which are valuable for regional LUCC studies and can support informed decision-making and policy development.

DAY TWO

The second day’s presentations centered around urban LUCC (Session IV) as well as interconnections between agriculture and water resources. (Session V).

Session IV: Urban Land Cover/Land Use Change

Gay Perez [Philippines Remote Sensing Agency (PhilSA)] presented a keynote focused on PhilSA’s mission to advance Philippines as a space-capable country by developing indigenous satellite and launch technologies. He explained that PhilSA provides satellite data in various categories, including sovereign, commercial, open-access, and disaster-activated. He noted that the ground infrastructure – which includes three stations and a new facility in Quezon – supports efficient data processing. For example, Perez stated that in 2023, PhilSA produced over 10,000 maps for disaster relief, agricultural assessments, and conservation planning.

Perez reviewed PhilSA’s Diwata-2 mission, which launched in 2018 and operates in a Sun-synchronous orbit around 620 km (385 mi) above Earth. With a 10-day revisit capability, it features a high-precision telescope [4.7 m (15ft) resolution], a multispectral imager with four bands, an enhanced resolution camera, and a wide-field camera. Since launch, Diwata-2 has captured over 100,000 global images, covering 95% of the Philippines. Looking to the near future, Perez reported that PhilSA’s launch of the Multispectral Unit for Land Assessment (MULA) satellite is planned for 2025. He explained that MULA will capture images with a 5-m (~16-ft) resolution and 10–20-day revisit time, featuring 10 spectral bands for vegetation, water, and urban analysis.

Perez also described the Drought and Crop Assessment and Forecasting project, which addresses drought risks and mapping ground motion in areas, e.g., Baguio City and Pangasinan. Through partnerships in the Pan-Asia Partnership for Geospatial Air Pollution Information (PAPGAPI) and the Pandora Asia Network, PhilSA monitors air quality across key locations, tracking urban pollution and cross-border particulate transport. PhilSA continues to strengthen Southeast Asian partnerships to drive sustainable development in the region.

Jiquan Chen [Michigan State University] presented the second keynote address, which focused on the Urban Rural Continuum (URC). Chen emphasized the importance of synthesizing studies that explore factors such as population dynamics, living standards, and economic development in the URC. Key considerations include differentiating between two- and three-dimensional infrastructures and understanding constraints from historical contexts. Chen highlighted critical variables from his analysis including net primary productivity, household income, and essential infrastructure elements, such as transportation and healthcare systems. He advocated for integrated models that combine mechanistic and empirical approaches to grasp the dynamics of URC changes, stressing their implications for urban planning, environmental sustainability, and social equity. He concluded with a call for collaboration to enhance these models and tackle challenges arising from the changing urban–rural landscape.

Tep Makathy [Cambodian Institute For Urban Studies] discussed urbanization in Phnom Penh, Cambodia. He explained that significant LUCC and infrastructure developments have been fueled by direct foreign investment; however, this development has resulted in environmental degradation, urban flooding, and infrastructure strain. Tackling pollution, congestion, preservation of green spaces, and preserving the historical heritage of the city will require sustainable urban planning efforts.

Nguyen Thi Thuy Hang [Vietnam Japan University, Vietnam National University, Hanoi] explained how flooding poses a significant annual threat to infrastructure and livelihoods in Can Tho, Vietnam. Therefore, it is essential to incorporate climate change considerations into land-use planning by enhancing the accuracy of vegetation layer classifications. Doing so will improve the representation of land-cover dynamics in models that decision-makers use when planning urban development. In addition, Hang reported that a more comprehensive survey of dyke systems will improve flood protection and identify areas needing reinforcement or redesign. These studies could also explore salinity intrusion in coastal agricultural areas that could impact crop yields and endanger food security.

In this session, two presenters highlighted how SAR data, which uses high backscatter to enhance the radar signal, is being used to assist with mapping urban areas in their respective countries. The phase stability and orientation of building structures across SAR images aid in consistent monitoring and backscatter, producing distinct image textures specific to urban settings. Researchers can use this heterogeneity and texture to map urban footprints, enabling automated discrimination between urban and non-urban areas. The first presenters showed how Interferometric Synthetic Aperture Radar techniques, such as Small Baseline Subset (SBAS) and Persistent Scatterer (PS) have been highly effective for mapping and monitoring land subsidence in coastal and urban areas in Vietnam. This approach has been applied to areas along the Saigon River as well as in Ho Chi Minh, Vietnam. The second presenter described an approach (using SAR data with multitemporal coherence and the K-means classification method) that has been used effectively to study urban growth in the Denpasar Greater Area of Indonesia between 2016 and 2022. The technique identified the conversion of 4376 km2 (1690 mi2) of rural to built-up areas, averaging 72.9 hectares (0.3 mi2) per year. Urban sprawl was predominantly observed in the North Kuta District, where the shift from agricultural to built-up land use has been accompanied by severe traffic congestion and other environmental issues.

Another presenter showed how data from the QuikSCAT instrument, which flew on the Quick Scatterometer satellite, and from the Sentinel-1 C-band SAR can be combined to measure and analyze urban built-up volume, specifically focusing on the vertical growth of buildings across various cities. By integrating these datasets, researchers can assess urban expansion, monitor the development of high-rise buildings, and evaluate the impact of urbanization on infrastructure and land use. This information is essential for urban planning, helping city planners and policymakers make informed decisions to accommodate growing populations and enhance sustainable urban development.

Session V – LUCC, Agriculture, and Water Resources

Chris Justice presented the keynote for this session, in which he addressed the GEOGLAM initiative and the NASA Harvest program. GEOGLAM, initiated by the G20 Agriculture Ministers in 2011, focuses on agriculture and food security to increase market transparency and improve food security. These efforts leverage satellite-based Earth observations to produce and disseminate timely, relevant, and actionable information about agricultural conditions at national, regional, and global scales to support agricultural markets and provide early warnings for proactive responses to emerging food emergencies. NASA Harvest uses satellite Earth observations to benefit global food security, sustainability, and agriculture for disaster response, climate risk assessments, and policy support. Justice also emphasized the use of open science and open data principles, promoting the integration of Earth observation data into national and international agricultural monitoring systems. He also discussed the development and application of essential agricultural variables, in situ data requirements, and the need for comprehensive and accurate satellite data products.

During this session, another presentation focused on how VNSC is engaged in several agricultural projects, including mapping rice crops, estimating yields, and assessing environmental impacts. VNSC has created high-accuracy rice maps for different seasons that the Vietnamese government uses to monitor and manage agricultural production. Current initiatives involve using satellite data to estimate CH4 emissions from rice paddies, biomass mapping, and monitoring rice straw burning. For example, in the Mekong Delta, numerous environmental factors, including climate change-induced stress (e.g., sea-level rise), flooding, drought, land subsidence, and saltwater intrusion, along with human activities like dam construction, sand mining, and groundwater extraction, threaten the sustainability of rice farming and farmer livelihoods. To address these challenges, sustainable agricultural practices are essential to improving rice quality, diversify farming systems, adopt low-carbon techniques, and enhance water management.

Presentations highlighted the importance of both optical and SAR data for LUCC studies, particularly in mapping agricultural areas. A study using Landsat time-series data demonstrated its value in monitoring agricultural LUCC in Houa Phan Province, Laos, and Son La Province, Vietnam. Land cover types were classified through spectral pattern analysis, identifying distinct classes based on Landsat reflectance values. The findings revealed significant natural forest loss alongside increases in cropland and forest plantations due to agricultural expansion. High-resolution imagery validated these results, indicating the scalability of this approach for broader regional and global land-cover monitoring. Another study showcased the effectiveness of SAR data from the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on the Japanese Advanced Land Observing Satellite-2 (ALOS-2) for mapping and monitoring agricultural land use in Suphanburi, Thailand. This data proved particularly useful for capturing seasonal variations and diverse agricultural practices. Supervised machine learning methods, such as Random Forest classifiers, combined with innovative spatial averaging techniques, achieved high accuracy in distinguishing various agricultural conditions.

In the session, presenters also discussed the use of Sentinel-1 SAR data for mapping submerged and non-submerged paddy soils was highlighted, demonstrating its effectiveness in understanding water management issues see – Figure 4. Additionally, large-scale remote sensing data and cloud computing were shown to provide unprecedented opportunities for tracking agricultural land-use changes in greater detail. Case studies from India and China illustrated key challenges, such as groundwater depletion in irrigated agriculture across the Indo-Ganges region and the impacts on food, water, and air quality in both countries.

LCLUC figure 4
Figure 4. Series of Sentinel-1 radar data images showing submerged paddy soil (blue) and non-submerged paddy soil (red) in the Mekong Delta, Vietnam.
Figure credit: Hiranori Arai [International Rice Research Institute]

The session also focused on Water–Energy–Food (WEF) issues related to the Mekong River Basin’s extensive network of hydroelectric dams, which present both benefits and challenges. While these dams support sectors such as irrigated agriculture and hydropower, they also disrupt vital ecosystem services, including fish habitats and biodiversity. Collaborative studies integrating satellite and ground data, hydrological models, and socio-economic frameworks highlight the need to balance these benefits with ecological and social costs. Achieving sustainable management requires cross-sectoral and cross-border cooperation, as well as the incorporation of traditional knowledge to address WEF trade-offs and governance challenges in the region.

DAY THREE

The third day included a session that explored the impacts of fire, GHG emissions, and pollution (Session VI) as well as a summary discussion on synthesis (Session VII).

Session VI: Fires, Greenhouse Gas Emissions, and Pollution

Chris Elvidge [Colorado School of Mines] presented a keynote on the capabilities and applications of the Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire [VNF] system, an advanced satellite-based tool developed by the Earth Observation Group. VIIRS Nightfire uses four near- and short-wave infrared channels, initially designed for daytime imaging, to detect and monitor infrared emissions at night. The system identifies various combustion sources, including both flaming and non-flaming activities (e.g., biomass burning, gas flaring, and industrial processes). It calculates the temperature, source area, and radiant heat of detected infrared emitters using physical laws to enable precise monitoring of combustion events and provide insight into exothermic and endothermic processes.

Elvidge explained that VNF has been vital for near-real-time data in Southeast Asia. The system has been used to issue daily alerts for Vietnam, Thailand, and Indonesia. Recent updates in Version 4 (V4) include atmospheric corrections and testing for secondary emitters with algorithmic improvements – with a 50% success rate in identifying additional heat sources. The Earth Observation Group maintains a multiyear catalog of over 20,000 industrial infrared emitters available through the Global Infrared Emitter Explorer (GIREE) web-map service. With VIIRS sensors expected to operate until about 2040 on the Joint Polar Satellite System (JPSS) platforms, this system ensures long-term, robust monitoring and analysis of global combustion events, proving essential for tracking the environmental impacts of industrial activities and natural combustion processes on the atmosphere and ecosystems.

Toshimasa Ohara [Center for Environmental Science, Japan—Research Director] continued with the second keynote and provided an in-depth analysis of long-term trends in anthropogenic emissions across Asia. The regional mission inventory in Asia encompasses a range of pollutants and offers detailed emissions data from 1950–2020 at high spatial and temporal resolutions. The study employs both bottom-up and top-down approaches for estimating emissions, integrating satellite observations to validate data and address uncertainties. Notably, emissions from China, India, and Japan have shown signs of stabilization or reduction, attributed to stricter emission control policies and technological advancements. Ohara also highlighted Japan’s effective air pollution measures and the importance of extensive observational data in corroborating emission trends. His presentation emphasized the need for improved methodologies in emission inventory development and validation across Asia, aiming to enhance policymaking and environmental management in rapidly industrializing regions.

Several presenters during this session focused on innovative approaches to understand and mitigate GHG emissions and air pollution. One presenter showed how NO2 data from the TROPOspheric Monitoring Instrument (TROPOMI) on the European Sentinel-5 Precursor have been validated against ground-based observations from Pandora stations in Japan, highlighting the influence of atmospheric conditions on measurement accuracy. Another presenter described an innovative system that GISTDA used to combine satellite remote sensing data with Artificial Intelligence (AI). This system was used to monitor and analyze the concentration of fine particulate matter (PM) in the atmosphere in Thailand. (In this context fine is defined as particles with diameters ≤ 2.5 µm, or PM2.5.) These applications, which are accessible through online, cloud-based platforms and mobile applications for iOS and Android devices, allow users, including citizens, government officers, and policymakers, to access PM2.5 data in real-time through web and mobile interfaces.

A project under the United Nations Economic and Social Commission for Asia and the Pacific in Thailand is focused on improving air quality monitoring across the Asia–Pacific region by integrating satellite and ground-based data. At the core of this effort, the Pandora Asia Network, which includes 30 ground-based instruments measuring pollutants such as NO₂ and sulfur dioxide (SO₂), is complemented by high-resolution observations from the Geostationary Environment Monitoring Spectrometer (GEMS) aboard South Korea’s GEO-KOMPSAT-2B (GK-2B) satellite. The initiative also provides training sessions to strengthen regional expertise in remote sensing technologies for air quality management and develops decision support systems for evidence-based policymaking, particularly for monitoring pollution sources and transboundary effects like volcanic eruptions. Future plans include expanding the Pandora network and enhancing data integration to support local environmental management practices.

PM2.5 levels in Vietnam are influenced by both local emissions and long-range pollutant transport, particularly in urban areas.The Vietnam University of Engineering and Technology, in conjunction with VNSC, continues to map and monitor PM2.5 using satellites and machine learning while addressing data quality issues that stem from missing satellite data and limited ground monitoring stations – see Figure 5.

In addition to mapping and monitoring pollutants, another presentater explained that significant research is underway to address their health impacts. In Hanoi, exposure to pollutants ( e.g., PM2.5, PM10, and NO2) has led to increased rates of respiratory diseases (e.g., pneumonia, bronchitis, and asthma) among children,  as well as elevated instances of cardiovascular diseases among adults. A substantial mortality burden is attributable to fine particulate matter – particularly in densely populated areas like Hanoi. Compliance with stricter air quality guidelines could potentially prevent thousands of premature deaths. For example, preventive measures enacted during the COVID-19 pandemic resulted in reduced pollution levels that were associated with a decrease in avoidable mortality rates. In response to these challenges, Vietnam has implemented air quality management policies, including national technical regulations and action plans aimed at controlling emissions and enhancing monitoring; however, current national standards still fall short of the more stringent guidelines recommended by the World Health Organization. Improved air quality standards and effective policy interventions are needed to mitigate the health risks associated with air pollution in Vietnam.

LCLUC figure 5
Figure 5. Map of particulate matter (PM 2.5) variations observed across Vietnam, using multisatellite aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectrogradiometer (MODIS) on NASA’s Aqua and Terra platforms, and from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA–NOAA Suomi NPP platform, combined with ground-based AOD and meteorological data.
Figure credit: Thanh Nguyen [Vietnam National University of Engineering and Technology, Vietnam]

Another presenter explained how food production in Southeast Asia contributes about 40% of the region’s total GHG emissions – with rice and beef production identified as the largest contributors for plant-based and animal-based emissions, respectively. Another presentation focused on a study that examined GHG emissions from agricultural activities, which suggests that animal-based food production – particularly beef – generates substantially higher GHG emissions per kg of food produced compared to plant-based foods, such as wheat and rice. Beef has an emission intensity of about 69 kg of CO2 equivalent-per-kg, compared to 2 to 3 kg of CO2 equivalent-per-kg for plant-based foods. The study points to mitigation strategies (e.g., changing dietary patterns, improving agricultural practices) and adopting sustainable land management. Participants agreed that a comprehensive policy framework is needed to address the environmental impacts of food production and reduce GHG emissions in the agricultural sector.

In another presentation, the speaker highlighted the fact that Southeast Asian countries need an advanced monitoring, reporting, and verification system to track GHG emissions – particularly within high-carbon reservoirs like rice paddies. To achieve this, cutting-edge technologies (e.g., satellite remote sensing, low-cost unmanned aerial vehicles, and Internet of Things devices) can be beneficial in creating sophisticated digital twin technology for sustainable rice production and GHG mitigation.

Another presentation featured a discussion about pollution resulting from forest and peatland fires in Indonesia, which is significantly impacting air quality. Indonesia’s tropical peatlands – among the world’s largest and most diverse – face significant threats from frequent fires. Repeated burning has transformed forests into shrubs and secondary vegetation regions, with fires particularly affecting forest edges and contributing to a further retreat of intact forest areas. High-resolution data is essential to map and monitor changes in forest cover, including pollution impacts.

Another speaker described a web-based Geographic Information Systems (GIS) application that has been developed to support carbon offsetting efforts in Laos – to address significant environmental challenges, e.g., deforestation and climate change. Advanced technologies (e.g., remote sensing, GIS, and Global Navigation Satellite Systems) are used to monitor land-use changes, carbon sequestration, and ecosystem health. By integrating various spatial datasets, the web GIS app enhances data collection precision, streamlines monitoring processes, and provides real-time information to stakeholders for informed decision-making. This initiative fosters collaboration among local communities, government agencies, and international partners, while emphasizing the importance of government support and international partnerships. Ultimately, the web GIS application represents a significant advancement in Laos’s commitment to environmental sustainability, economic growth, and the creation of a greener future.

Session VII. Discussion Session on Synthesis

The meeting concluded with a comprehensive discussion on synthesizing themes related to LUCC. The session focused on three themes: LUCC, agriculture, and air pollution. The session focused on trends and projections as well as the resulting impacts in the coming years. It also highlighted research related to these topics to inform more sustainable land use policies. A panel of experts from different Southeast Asian countries addressed these topics. A summary of the key points shared by the panelists for each theme during the discussion is provided below.

LUCC Discussions

This discussion focused on the challenges of balancing economic development with environmental sustainability in Southeast Asian countries, e.g., mining in Myanmar, agriculture in Vietnam, and rising land prices in Thailand. More LUCC research is needed to inform decision-making and improve land-use planning during transitions from agriculture to industrialization while ensuring food security. The panelists also discussed urban sprawl and infrastructure development along main roads in several Southeast Asian countries, highlighting the social and environmental challenges arising from uncoordinated growth. It was noted that urban infrastructure lags behind population increases, resulting in traffic congestion, pollution, and social inequality. Cambodia, for example, has increased foreign investments, which presents similar dilemmas of economic growth accompanied by significant environmental degradation. Indonesia is another example of a Southeast Asian nation facing rapid urbanization and inadequate spatial planning, leading to flooding, groundwater depletion, and pollution. These issues further highlight the need for integrated satellite monitoring to inform land-use policies. Finally, recognizing the importance of public infrastructure in growth management, it was reported that the Thai government is already using technology to manage urban development alongside green spaces.

Panelists agreed that LUCC research is critical for guiding policymakers toward sustainable land-use practices – emphasizing the necessity for improved communication between researchers and policymakers. While the integration of technologies (e.g., GIS and remote sensing) is beginning to influence policy decisions, room for improvement remains. In summary, the discussions stressed the importance of better planning, technology integration, and policy-informed research to reconcile economic growth with sustainability. Participants also highlighted the need to engage policymakers, non-government organizations, and the private sector in using scientific evidence for sustainable development. Capacity building in Laos, Cambodia, and Myanmar, where GIS and remote sensing technologies are still developing, is crucial. Community involvement is essential for translating research findings into actionable policies to address real-world challenges and social equity.

Agriculture Discussions

These discussions explored the intricate relationships between agricultural practices, economic growth, and environmental sustainability in Southeast Asia. As an example, despite national policies to manage the land transition in Vietnam, rapid conversions from forest to agricultural land and further to residential and industrial continue. While it is recognized that strict land management plans may hinder future adaptability, further regulation is needed. These rapid shifts in land use have increased land for economic development – especially in industrial and residential sectors – and contribute to environmental degradation, e.g., pollution and soil erosion. In Thailand, land is distributed among agriculture (50%), forest (30%), and urban (20%) areas. Despite a long history of agricultural practices, Vietnam faces new challenges from climate change and extreme weather.

Thailand, meanwhile, is exploring carbon credits to incentivize sustainable farming practices – although this requires significant investment and time. The nation is well-equipped with a robust water supply system, and ongoing efforts to enhance crop yields on Vietnam’s Mekong Delta, salinity levels, and flooding intensity have increased as a result of the rise in incidents of extreme weather, prompting advancements in rice farming mechanization to be implemented that are modeled after practices that have been successfully used in the Philippines.

Despite these advances, issues (e.g., over-application of rice seeds) remain. The dominant land cover type in Malaysia is tropical rainforest, although agriculture – particularly oil palm plantations – also plays a significant role in land use. While stable, it shares environmental concerns with Indonesia. The country is integrating solar energy initiatives, placing solar panels on former agricultural lands and recreational areas, which raises coastal environmental concerns. In Taiwan, substantial land use changes have stemmed from solar panel installations to support green energy goals but have led to increased temperatures and altered wind patterns.

All panelists agreed that remote sensing technologies are vital to inform agricultural policy across the region. They emphasized the need to transition from academic research to actionable insights that directly inform policy. Panelists also discussed the challenge of securing funding for actionable research – underlining the importance of recognizing the transition required for research to inform operational use. Some countries (e.g., Thailand) have established operational crop monitoring systems, while others (e.g., Vietnam) primarily depend on research projects. Despite progress in Malaysia’s monitoring of oil palm plantations, a comprehensive operational monitoring system is still lacking in many areas. The participants concluded that increased efforts are needed to promote the wider adoption of remote sensing technologies for agricultural and environmental monitoring, with emphasis on developing operational systems that can be integrated into policy and decision-making processes.

Air Pollution Discussions

The discussion on air pollution focused on various sources in Southeast Asia, which included both local and transboundary factors. Panelists highlighted that motor vehicles, industrial activities, and power plants are major contributors to pollutants, such as PM2.5, NO2, ozone (O3), and carbon monoxide (CO). Forest fires in Indonesia – particularly from South Sumatra and Riau provinces – are significantly impacting neighboring countries, e.g., Malaysia. A study found that most PM2.5 pollution in Kuala Lumpur originates from Indonesia. During the COVID-19 pandemic, pollution levels dropped sharply due to reduced economic activity; however, data from 2018–2023 shows that PM2.5 levels have returned to pre-pandemic conditions.

The Indonesian government is actively working to reduce deforestation and emissions, aiming for a 29% reduction by 2030. Indonesia is also participating in carbon markets and receiving international payments for emission reductions. Indonesia’s emissions also stem from energy production, industrial activities, and land-use changes, including peat fires. The Indonesian government reports anthropogenic sources – particularly from the energy sector and industrial activities, forest and peat fires, waste, and agriculture – continue to escalate. While Indonesia is addressing these issues, growing population and energy demands continue to drive pollution levels higher.

Vietnam and Laos are facing similar challenges related to air pollution – particularly from agricultural residue burning. Both governments are working on expanding air quality monitoring, regulating waste burning, and developing policies to mitigate pollution. Vietnam has been developing provincial air quality management plans and expanding its monitoring network. Laos has seen increased awareness of pollution, accompanied by government measures aimed at restricting burning and improving waste management practices.

The panelists agreed that collaborative efforts for regional cooperation are essential to address air pollution. This will require collaboration in research and data sharing to inform policy decisions. There is a growing interest in leveraging satellite technology and modeling approaches to enhance air quality forecasting and management. To ensure that research translates into effective policy, communication of scientific findings to policymakers is essential – particularly by clearly communicating complex research concepts in accessible formats. All panelists agreed on the importance of improving governance, transparency, and scientific communication to better translate research into policy actions, highlighting collaborations with international organizations – including NASA – to address air quality issues. While significant challenges related to air pollution persist in Southeast Asia, noteworthy efforts are underway to improve awareness, research, and collaborative governance aimed at enhancing air quality and reducing emissions.

Conclusion

The LCLUC–SARI Synthesis meeting fostered collaboration among researchers and provided valuable updates on recent developments in LUCC research, exchange of ideas, integration of new data products, and discussions on emerging science directions. This structured dialogue (particularly the discussions in each session) helped the attendees identify priorities and needs within the LUCC community. All panelists and meeting participants commended the SARI leadership for their proactive role in facilitating collaborations and discussions that promote capacity-building activities across the region. SARI activities have significantly contributed to enhancing the collective ability of countries in South and Southeast Asia to address pressing environmental challenges. The meeting participants emphasized the importance of maintaining and expanding these collaborative efforts, which are crucial for fostering partnerships among governments, research institutions, and local communities. They urged SARI to continue organizing workshops, training sessions, and knowledge-sharing platforms that can equip stakeholders with the necessary skills and resources to tackle environmental issues such as air pollution, deforestation, climate change, and sustainable land management.

Krishna Vadrevu
NASA’s Marshall Space Flight Center
krishna.p.vadrevu@nasa.gov

Vu Tuan
Vietnam National Science Center, Vietnam
vatuan@vnsc.org.vn

Than Nguyen
Vietnam National University Engineering and Technology, Vietnam
thanhntn@vnu.edu.vn

Son Nghiem
Jet Propulsion Laboratory
son.v.nghiem@jpl.nasa.gov

Tsuneo Matsunaga
National Institute of Environmental Studies, Japan
matsunag@nies.go.jp

Garik Gutman
NASA Headquarters
ggutman@nasa.gov

Christopher Justice
University of Maryland College Park
cjustice@umd.edu

Share

Details

Last Updated
Feb 20, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gateway’s HALO module at Northrop Grumman’s facility in Gilbert, Arizona, on April 4, 2025, shortly after its arrival from Thales Alenia Space in Turin, Italy. NASA/Josh Valcarcel NASA continues to mark progress on plans to work with commercial and international partners as part of the Gateway program. The primary structure of HALO (Habitation and Logistics Outpost) arrived at Northrop Grumman’s facility in Gilbert, Arizona, where it will undergo final outfitting and verification testing.
      HALO will provide Artemis astronauts with space to live, work, and conduct scientific research. The habitation module will be equipped with essential systems including command and control, data handling, energy storage, power distribution, and thermal regulation.
      Following HALO’s arrival on April 1 from Thales Alenia Space in Turin, Italy, where it was assembled, NASA and Northrop Grumman hosted an April 24 event to acknowledge the milestone, and the module’s significance to lunar exploration. The event opened with remarks by representatives from Northrop Grumman and NASA, including NASA’s Acting Associate Administrator for Exploration Systems Development Lori Glaze, Gateway Program Manager Jon Olansen, and NASA astronaut Randy Bresnik. Event attendees, including Senior Advisor to the NASA Administrator Todd Ericson, elected officials, and local industry and academic leaders, viewed HALO and virtual reality demonstrations during a tour of the facilities.
      Dr. Lori Glaze, acting associate administrator for NASA’s Exploration Systems Development Mission Directorate, and Dr. Jon B. Olansen, Gateway Program manager, on stage during an April 24, 2025, event at Northrop Grumman’s facility in Gilbert, Arizona, commemorating HALO’s arrival in the United States. Northrop Grumman While the module is in Arizona, HALO engineers and technicians will install propellant lines for fluid transfer and electrical lines for power and data transfer. Radiators will be attached for the thermal control system, as well as racks to house life support hardware, power equipment, flight computers, and avionics systems. Several mechanisms will be mounted to enable docking of the Orion spacecraft, lunar landers, and visiting spacecraft.
      Launching on top of HALO is the ESA (European Space Agency)-provided Lunar Link system which will enable communication between crewed and robotic systems on the Moon and to mission control on Earth. Once these systems are installed, the components will be tested as an integrated spacecraft and subjected to thermal vacuum, acoustics, vibration, and shock testing to ensure the spacecraft is ready to perform in the harsh conditions of deep space.
      In tandem with HALO’s outfitting at Northrop Grumman, the Power and Propulsion Element – a powerful solar electric propulsion system – is being assembled at Maxar Space Systems in Palo Alto, California. Solar electric propulsion uses energy collected from solar panels converted to electricity to create xenon ions, then accelerates them to more than 50,000 miles per hour to create thrust that propels the spacecraft.
      The element’s central cylinder, which resembles a large barrel, is being attached to the propulsion tanks, and avionics shelves are being installed. The first of three 12-kilowatt thrusters has been delivered to NASA’s Glenn Research Center in Cleveland for acceptance testing before delivery to Maxar and integration with the Power and Propulsion Element later this year.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Linkedin logo @NASA Share
      Details
      Last Updated Apr 25, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station General Humans in Space Explore More
      2 min read NASA Welcomes Gateway Lunar Space Station’s HALO Module to US
      From Italy to Arizona: Gateway’s first habitation module takes a major step on its path…
      Article 3 weeks ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 2 months ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 3 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Students take a tour of the Glenn International Space Station Payload Operations Center at NASA’s Glenn Research Center in Cleveland, where researchers operate International Space Station experiments, during 4-H Day on June 14, 2024.Credit: NASA/Jef Janis Ohio middle school students will step into the shoes of real-world NASA professionals for a day of career exploration and hands-on activities at NASA’s Glenn Research Center in Cleveland. Nearly 200 students are slated to participate in TECH Day at NASA Glenn on May 1, from 10 a.m. to 1 p.m. Media are invited to attend.
      TECH Day is designed to inspire and inform the next generation of innovators by introducing them to clear and attainable career pathways into the aerospace industry. Students will tour NASA Glenn facilities, participate in an interactive engineering challenge, and engage with professionals to learn about the wide range of careers in STEM fields.
      Student tours will include the following Glenn facilities:
      Graphics and Visualization Lab, where researchers create engaging projects using virtual and augmented reality Glenn International Space Station Payload Operations Center, where researchers remotely operate experiments aboard the International Space Station Simulated Lunar Operations Laboratory, a unique indoor space designed to mimic the surface of the Moon and Mars 10×10 Supersonic Wind Tunnel, NASA Glenn’s largest and fastest wind tunnel facility Creating Clear Pathways
      Developing early and accessible entry points into STEM careers is essential to meeting the growing demand for a skilled technical workforce. NASA STEM engagement events help students visualize their future and better understand the technical experience needed for a career in the aerospace sector. Opportunities like this equip students with the skills to further technological advancement and become the STEM professionals of tomorrow.
      Media interested in attending should contact Jacqueline Minerd at jacqueline.minerd@nasa.gov no later than 5 p.m. Wednesday, April 30. Interviews with experts will take place from 9 to 10 a.m.
      For more information on NASA Glenn, visit: 
      https://www.nasa.gov/glenn
      -end- 
      Jacqueline Minerd
      Glenn Research Center, Cleveland 
      216-433- 6036  
      jacqueline.minerd@nasa.gov

      View the full article
    • By NASA
      Jeremy Johnson, a research pilot and aviation safety officer, poses in front of a PC-12 aircraft inside the hangar at NASA’s Glenn Research Center in Cleveland on Thursday, April 17, 2025. Johnson flies NASA planes to support important scientific research and testing.Credit: NASA/Sara Lowthian-Hanna Jeremy Johnson laces his black, steel-toed boots and zips up his dark blue flight suit. Having just finished a pre-flight mission briefing with his team, the only thing on his mind is heading to the aircraft hangar and getting a plane in the air.
      As he eases a small white-and-blue propeller aircraft down the hangar’s ramp and onto the runway, he hears five essential words crackle through his headset: “NASA 606, cleared for takeoff.”
      This is a typical morning for Johnson, a research pilot and aviation safety officer at NASA’s Glenn Research Center in Cleveland. Johnson flies NASA planes to support important scientific research and testing, working with researchers to plan and carry out flights that will get them the data they need while ensuring safety.
      Johnson hasn’t always flown in NASA planes. He comes to the agency from the U.S. Air Force, where he flew missions all over the world in C-17 cargo aircraft, piloted unmanned reconnaissance operations out of California, and trained young aviators in Oklahoma on the fundamentals of flying combat missions.

      Jeremy Johnson stands beside a C-17 aircraft before a night training flight in Altus, Oklahoma, in 2020. Before supporting vital flight research at NASA through a SkillBridge fellowship, which gives transitioning service members the opportunity to gain civilian work experience, Johnson served in the U.S. Air Force and flew C-17 airlift missions all over the world.Credit: Courtesy of Jeremy Johnson He’s at Glenn for a four-month Department of Defense SkillBridge fellowship. The program gives transitioning service members an opportunity to gain civilian work experience through training, apprenticeships, or internships during their last 180 days of service before separating from the military.
      “I think SkillBridge has been an amazing tool to help me transition into what it’s like working somewhere that isn’t the military,” Johnson said. “In the Air Force, flying the mission was the mission. At NASA Glenn, the science—the research—is the mission.”
      By flying aircraft outfitted with research hardware or carrying test equipment, Johnson has contributed to two vital projects at NASA so far. One is focused on testing how well laser systems can transmit signals for communication and navigation. The other, part of NASA’s research under Air Mobility Pathfinders, explores how 5G telecommunications infrastructure can help electric air taxis of the future be safely incorporated into the national airspace. This work, and the data that scientists can collect through flights, supports NASA’s research to advance technology and innovate for the benefit of all.
      Jeremy Johnson pilots NASA Glenn Research Center’s PC-12 aircraft during a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna “It’s really exciting to see research hardware come fresh from the lab, and then be strapped onto an aircraft and taken into flight to see if it actually performs in a relevant environment,” Johnson said. “Every flight you do is more than just that flight—it’s one little part of a much bigger, much more ambitious project that’s going on. You remember, this is a small little piece of something that is maybe going to change the frontier of science, the frontier of discovery.”
      Johnson has always had a passion for aviation. In college, he worked as a valet to pay for flying lessons. To hone his skills before Air Force training, one summer he flew across the country in a Cessna with his aunt, a commercial pilot. They flew down the Hudson River as they watched the skyscrapers of New York City whizz by and later to Kitty Hawk, North Carolina, where the Wright brothers made their historic first flight. Johnson even flew skydivers part-time while he was stationed in California.
      Jeremy Johnson in the cockpit of a PC-12 aircraft as it exits the hangar at NASA’s Glenn Research Center in Cleveland before a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna Although he’s spent countless hours flying, he still takes the window seat on commercial flights whenever he can so he can look out the window and marvel at the world below.
      Despite his successes, Johnson’s journey to becoming a pilot wasn’t always smooth. He recalls that as he was about to land after his first solo flight, violent crosswinds blew his plane off the runway and sent him bouncing into the grass. Though he eventually got back behind the stick for another flight, he said that in that moment he wondered whether he had the strength and skills to overcome his self-doubt.
      “I don’t know anyone who flies for a living that had a completely easy path into it,” Johnson said. “To people who are thinking about getting into flying, just forge forward with it. Make people close doors on you, don’t close them on yourself, when it comes to flying or whatever you see yourself doing in the future. I just kept knocking on the door until there was a crack in it.”
      Explore More
      2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
      Article 19 hours ago 3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
      NASA has named nine finalists out of the 45 semifinalist student essays in the Power…
      Article 2 days ago 4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
      Article 3 days ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The C-20A aircraft, based at NASA’s Armstrong Flight Research Center in Edwards, California, flies over the Sierra Nevada Mountains in California for the Dense UAVSAR Snow Time (DUST) mission on Feb. 28, 2025. The DUST mission collected airborne data about snow water to help improve water management and reservoir systems on the ground.NASA/Starr Ginn As part of a science mission tracking one of Earth’s most precious resources – water – NASA’s C-20A aircraft conducted a series of seven research flights in March that can help researchers track the process and timeline as snow melts and transforms into a freshwater resource. The agency’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) installed on the aircraft collected measurements of seasonal snow cover and estimate the freshwater contained in it.
      “Seasonal snow is a critical resource for drinking water, power generation, supporting multi-billion dollar agricultural and recreation industries,” said Starr Ginn, C-20A project manager at NASA’s Armstrong Flight Research Center in Edwards, California.  “Consequently, understanding the distribution of seasonal snow storage and subsequent runoff is essential.”
      The Dense UAVSAR Snow Time (DUST) mission mapped snow accumulation over the Sierra Nevada mountains in California and the Rocky Mountains in Idaho. Mission scientists can use these observations to estimate the amount of water stored in that snow.
      Peter Wu, radar operator from NASA’s Jet Propulsion Laboratory in Southern California, observes data collected during the Dense UAVSAR Snow Time (DUST) mission onboard NASA’s C-20A aircraft on Feb. 28, 2025. The C-20A flew from NASA’s Armstrong Flight Research Center in Edwards, California, over the Sierra Nevada Mountains to collect data about snow water.NASA/Starr Ginn “Until recently, defining the best method for accurately measuring snow water equivalent (SWE) – or how much and when fresh water is converted from snow – has been a challenge,” said Shadi Oveisgharan, principal investigator of DUST and scientist at NASA’s Jet Propulsion Laboratory in Southern California. “The UAVSAR has been shown to be a good instrument to retrieve SWE data.”
      Recent research has shown that snow properties, weather patterns, and seasonal conditions in the American West have been shifting in recent decades. These changes have fundamentally altered previous expectations about snowpack monitoring and forecasts of snow runoff. The DUST mission aims to better track and understand those changes to develop more accurate estimates of snow-to-water conversions and their timelines.
      “We are trying to find the optimum window during which to retrieve snow data,” Oveisgharan said. “This estimation will help us better estimate available fresh snow and manage our reservoirs better.”
      The Dense UAVSAR Snow Time (DUST) mission team assembles next to the C-20A aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 28, 2025. From left, radar operator Adam Vaccaro, avionics lead Kelly Jellison, C-20A project manager Starr Ginn, pilot Carrie Worth, pilot Troy Asher, aircraft mechanic Eric Apikian, and operations engineer Ian Elkin.NASA/Starr Ginn The DUST mission achieved a new level of snow data accuracy, which is partly due to the specialized flight paths flown by the C-20A. The aircraft’s Platform Precision Autopilot (PPA) enables the team to fly very specific routes at exact altitudes, speeds, and angles so the UAVSAR can more precisely measure terrain changes.
      “Imagine the rows made on grass by a lawn mower,” said Joe Piotrowski Jr., operations engineer for NASA Armstrong’s airborne science program. “The PPA system enables the C-20A to make those paths while measuring terrain changes down to the diameter of a centimeter.”
      Share
      Details
      Last Updated Apr 24, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science C-20A Earth Science Earth's Atmosphere Jet Propulsion Laboratory Science Mission Directorate Explore More
      6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber
      Article 5 hours ago 2 min read 2025 EGU Hyperwall Schedule
      EGU General Assembly, April 27 – May 2, 2025 Join NASA in the Exhibit Hall…
      Article 7 hours ago 5 min read NASA Airborne Sensor’s Wildfire Data Helps Firefighters Take Action
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      NASA’s Artemis campaign will use human landing systems, provided by SpaceX and Blue Origin, to safely transport crew to and from the surface of the Moon, in preparation for future crewed missions to Mars. As the landers touch down and lift off from the Moon, rocket exhaust plumes will affect the top layer of lunar “soil,” called regolith, on the Moon. When the lander’s engines ignite to decelerate prior to touchdown, they could create craters and instability in the area under the lander and send regolith particles flying at high speeds in various directions.
      To better understand the physics behind the interaction of exhaust from the commercial human landing systems and the Moon’s surface, engineers and scientists at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently test-fired a 14-inch hybrid rocket motor more than 30 times. The 3D-printed hybrid rocket motor, developed at Utah State University in Logan, Utah, ignites both solid fuel and a stream of gaseous oxygen to create a powerful stream of rocket exhaust.
      “Artemis builds on what we learned from the Apollo missions to the Moon. NASA still has more to learn more about how the regolith and surface will be affected when a spacecraft much larger than the Apollo lunar excursion module lands, whether it’s on the Moon for Artemis or Mars for future missions,” said Manish Mehta, Human Landing System Plume & Aero Environments discipline lead engineer. “Firing a hybrid rocket motor into a simulated lunar regolith field in a vacuum chamber hasn’t been achieved in decades. NASA will be able to take the data from the test and scale it up to correspond to flight conditions to help us better understand the physics, and anchor our data models, and ultimately make landing on the Moon safer for Artemis astronauts.”
      Fast Facts
      Over billions of years, asteroid and micrometeoroid impacts have ground up the surface of the Moon into fragments ranging from huge boulders to powder, called regolith. Regolith can be made of different minerals based on its location on the Moon. The varying mineral compositions mean regolith in certain locations could be denser and better able to support structures like landers. Of the 30 test fires performed in NASA Marshall’s Component Development Area, 28 were conducted under vacuum conditions and two were conducted under ambient pressure. The testing at Marshall ensures the motor will reliably ignite during plume-surface interaction testing in the 60-ft. vacuum sphere at NASA’s Langley Research Center in Hampton, Virginia, later this year.
      Once the testing at NASA Marshall is complete, the motor will be shipped to NASA Langley. Test teams at NASA Langley will fire the hybrid motor again but this time into simulated lunar regolith, called Black Point-1, in the 60-foot vacuum sphere. Firing the motor from various heights, engineers will measure the size and shape of craters the rocket exhaust creates as well as the speed and direction the simulated lunar regolith particles travel when the rocket motor exhaust hits them.
      “We’re bringing back the capability to characterize the effects of rocket engines interacting with the lunar surface through ground testing in a large vacuum chamber — last done in this facility for the Apollo and Viking programs. The landers going to the Moon through Artemis are much larger and more powerful, so we need new data to understand the complex physics of landing and ascent,” said Ashley Korzun, principal investigator for the plume-surface interaction tests at NASA Langley. “We’ll use the hybrid motor in the second phase of testing to capture data with conditions closely simulating those from a real rocket engine. Our research will reduce risk to the crew, lander, payloads, and surface assets.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Credit: NASA Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...