Jump to content

NASA Sets Launch Coverage for Missions Studying Cosmic Origins, Sun


Recommended Posts

  • Publishers
Posted
Caption: NASA’s SPHEREx is situated on a work stand ahead of prelaunch operations at the Astrotech Processing Facility at Vandenberg Space Force Base in California. The SPHEREx space telescope will share its ride to space on a SpaceX Falcon 9 rocket with NASA’s PUNCH mission. Credit: USSF 30th Space Wing/Christopher
NASA’s SPHEREx is situated on a work stand ahead of prelaunch operations at the Astrotech Processing Facility at Vandenberg Space Force Base in California. The SPHEREx space telescope will share its ride to space on a SpaceX Falcon 9 rocket with NASA’s PUNCH mission.
Credit: USSF 30th Space Wing/Christopher

NASA will provide live coverage of prelaunch and launch activities for SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), the agency’s newest space telescope. This will lift off with another NASA mission, Polarimeter to Unify the Corona and Heliosphere, or PUNCH, which will study the Sun’s solar wind.

The launch window opens at 10:09 p.m. EST (7:09 p.m. PST) Thursday, Feb. 27, for the SpaceX Falcon 9 rocket that will lift off from Space Launch Complex 4 East at Vandenberg Space Force Base in California. Watch coverage on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.

The SPHEREx mission will improve our understanding of how the universe evolved and search for key ingredients for life in our galaxy.

The four small spacecraft that comprise PUNCH will observe the Sun’s corona as it transitions into solar wind.

The deadline for media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.

NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):

Tuesday, Feb. 25

2 p.m. – SPHEREx and PUNCH Science Overview News Conference

  • Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters
  • Joe Westlake, director, Heliophysics Division, NASA Headquarters
  • Nicholeen Viall, PUNCH Mission Scientist, NASA’s Goddard Space Flight Center
  • Rachel Akeson, SPHEREx science data center lead, Caltech/IPAC
  • Phil Korngut, SPHEREx instrument scientist, Caltech

The news conference will stream on NASA+. Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.

Wednesday, Feb. 26

3:30 p.m. – SPHEREx and PUNCH Prelaunch News Conference

  • Mark Clampin, acting deputy associate administrator, Science Mission Directorate, NASA Headquarters
  • David Cheney, PUNCH program executive, NASA Headquarters
  • James Fanson, SPHEREx project manager, NASA’s Jet Propulsion Laboratory
  • Denton Gibson, launch director, NASA’s Launch Services Program
  • Julianna Scheiman, director, NASA Science Missions, SpaceX
  • U.S. Air Force 1st Lt. Ina Park, 30th Operations Support Squadron launch weather officer

Coverage of the prelaunch news conference will stream live on NASA+.

Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.

Thursday, Feb. 27

12 p.m. – SPHEREx and PUNCH Launch Preview will stream live on NASA+.

9:15 p.m. – Launch coverage begins on NASA+.

10:09 p.m. – Launch window opens.

Audio Only Coverage

Audio only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.

NASA Website Launch Coverage

Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 9:15 p.m., Feb. 27, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.

For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the SPHEREx blog.

Attend the Launch Virtually

Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.

Watch, Engage on Social Media

You can also stay connected by following and tagging these accounts:

X: @NASA, @NASAJPL, @NASAUnivese, @NASASun, @NASAKennedy, @NASA_LSP

Facebook: NASA, NASAJPL, NASA Universe, NASASunScience, NASA’s Launch Services Program

Instagram: @NASA, @NASAKennedy, @NASAJPL, @NASAUnivese

For more information about these missions, visit:

https://science.nasa.gov/mission/spherex/

https://science.nasa.gov/mission/punch/

-end-

Alise Fisher – SPHEREx
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov

Sarah Frazier – PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov

Laura Aguiar
Kennedy Space Center, Florida
321-593-6245
laura.aquiar@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station.
      The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20.
      Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024.
      During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography.
      This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights.
      NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      International Space Station (ISS) Expedition 72 Humans in Space ISS Research View the full article
    • By NASA
      ESA/Hubble & NASA, K. Noll This newly reprocessed image released on April 18, 2025, provides a new view of an enormous, 9.5-light-year-tall pillar of cold gas and dust. Despite its size, it’s just one small piece of the greater Eagle Nebula, also called Messier 16.
      The Eagle Nebula is one of many nebulae in the Milky Way that are known for their sculpted, dusty clouds. Nebulae take on these fantastic shapes when exposed to powerful radiation and winds from infant stars. Regions with denser gas are more able to withstand the onslaught of radiation and stellar winds from young stars, and these dense areas remain as dusty sculptures like the starry pillar shown here.
      Download this image.
      Image credit: ESA/Hubble & NASA, K. Noll
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 3 Min Read Hubble Spies Cosmic Pillar in Eagle Nebula
      This NASA/ESA Hubble Space Telescope image features a small portion of the Eagle Nebula (Messier 16). Credits:
      ESA/Hubble & NASA, K. Noll As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new image series revisiting stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      New images of NGC 346 and the Sombrero Galaxy have already been published. Now, ESA/Hubble is revisiting the Eagle Nebula (originally published in 2005 as part of Hubble’s 15th anniversary celebrations) with new image processing techniques.
      Unfurling along the length of the image is a pillar of cold gas and dust that is 9.5 light-years tall. As enormous as this dusty pillar is, it’s just one small piece of the greater Eagle Nebula, also called Messier 16. The name Messier 16 comes from the French astronomer Charles Messier, a comet hunter who compiled a catalog of deep-sky objects that could be mistaken for comets.
      This NASA/ESA Hubble Space Telescope image features a towering structure of billowing gas in the Eagle Nebula (Messier 16). The pillar rises 9.5 light-years tall and is 7,000 light-years away from Earth. ESA/Hubble & NASA, K. Noll The name Eagle Nebula was inspired by the nebula’s appearance. The edge of this shining nebula is shaped by dark clouds like this one, giving it the appearance of an eagle spreading its wings.
      Not too far from the region pictured here are the famous Pillars of Creation, which Hubble photographed multiple times, with images released in 1995 and 2015.
      The heart of the nebula, which is located beyond the edge of this image, is home to a cluster of young stars. These stars have excavated an immense cavity in the center of the nebula, shaping otherworldly pillars and globules of dusty gas. This particular feature extends like a pointing finger toward the center of the nebula and the rich young star cluster embedded there.
      The Eagle Nebula is one of many nebulae in the Milky Way that are known for their sculpted, dusty clouds. Nebulae take on these fantastic shapes when exposed to powerful radiation and winds from infant stars. Regions with denser gas are more able to withstand the onslaught of radiation and stellar winds from young stars, and these dense areas remain as dusty sculptures like the starry pillar shown here.
      This towering structure of billowing gas and dark, obscuring dust might only be a small portion of the Eagle Nebula, but it is no less majestic in appearance for it. 9.5 light-years tall and 7000 light-years distant from Earth, this dusty sculpture is refreshed with the use of new processing techniques. The new Hubble image is part of ESA/Hubble’s 35th anniversary celebrations. Credit: ESA/Hubble & NASA, K. Noll, N. Bartmann (ESA/Hubble); Music: Stellardrone – Ascent The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore Hubble Eagle Nebula Images and Science
      Eagle Nebula Pillar
      Learn more about and download the image above.


      Hubble’s Messier Catalog: Messier 16 (Eagle Nebula)
      Messier 16, better known as the Eagle Nebula, has provided Hubble with some of its most iconic images.


      Embryonic Stars Emerge from Interstellar “Eggs”
      Eerie, dramatic Hubble pictures show newborn stars emerging from “eggs” – not the barnyard variety – but rather dense, compact pockets of interstellar gas called evaporating gaseous globules (EGGs). 


      The Pillars of Creation: A 3D Multiwavelength Exploration
      This scientific visualization explores the iconic Pillars of Creation in the Eagle Nebula (Messier 16 or M16) using data from NASA’s Hubble and Webb space telescopes.


      Hubble Goes High Def to Revisit the Iconic ‘Pillars of Creation’
      Explore hands-on activities, interactive, lesson plans, educator guides, and other downloadable content about this topic.


      Location of Hubble images in the Eagle Nebula
      This wide-field image of the Eagle Nebula shows the areas Hubble viewed in greater detail with Hubble’s Wide-Field Planetary Camera 2 (WFPC2) in 1995 and Advanced Camera for Surveys (ACS) in 2005.


      The Eagle Has Risen: Stellar Spire in the Eagle Nebula
      Released in 2005, this Hubble image of a stellar spire was part of Hubble’s 15th anniversary.


      Eagle Nebula (M16) Pillar Detail: Portion of Top
      Released in 2005, this Hubble image of a stellar spire was part of Hubble’s 15th anniversary.




      Share








      Details
      Last Updated Apr 18, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble
      bethany.downer@esahubble.org
      Garching, Germany
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Nebulae The Universe
      Related Links and Documents
      Hubble’s 35th Anniversary celebrations ESA/Hubble’s 35th Anniversary celebrations Release on ESA’s website

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars


      Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.


      Reshaping Our Cosmic View: Hubble Science Highlights



      Hubble’s 35th Anniversary


      View the full article
    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Origins Uncertain: ‘Skull Hill’ Rock
      Written by Margaret Deahn, Ph.D. Student at Purdue University
      Last week, NASA’s Mars 2020 rover continued its journey down lower ‘Witch Hazel Hill’ on the Jezero crater rim. The rover stopped along a boundary visible from orbit dividing light and dark rock outcrop (also known as a contact) at a site the team has called ‘Port Anson’. In addition to this contact, the rover has encountered a variety of neat rocks that may have originated from elsewhere and transported to their current location, also known as float.
      This image from NASA’s Mars Perseverance rover, taken by the Mastcam-Z instrument’s right eye, shows the ‘Skull Hill’ target, a dark-toned float rock. The rover acquired this image while driving west downslope towards lower ‘Witch Hazel Hill’. Perseverance acquired this image on April 11, 2025, or sol 1472 of the Mars 2020 mission NASA/JPL-Caltech/ASU Pictured above is an observation named ‘Skull Hill’ taken by the rover’s Mastcam-Z instrument. This float rock uniquely contrasts the surrounding light-toned outcrop with its dark tone and angular surface, and it features a few pits in the rock. If you look closely, you might even spot spherules within the surrounding regolith! See Alex Jones’ recent blog post for more information on these neat features: https://science.nasa.gov/blog/shocking-spherules/. The pits on Skull Hill may have formed via the erosion of clasts from the rock or scouring by wind. We’ve found a few of these dark-toned floats in the Port Anson region, and the team is working to better understand where these rocks came from and how they got here.
      Skull Hill’s dark color is reminiscent of meteorites found in Gale crater by the Curiosity rover: https://www.jpl.nasa.gov/news/curiosity-mars-rover-checks-odd-looking-iron-meteorite/. Chemical composition is an important factor in identifying a meteorite, and Gale’s meteorites contain significant amounts of iron and nickel. However, recent analysis of SuperCam data from nearby similar rocks suggests a composition inconsistent with a meteorite origin. 
      Alternatively, ‘Skull Hill’ could be an igneous rock eroded from a nearby outcrop or ejected from an impact crater. On Earth and Mars, iron and magnesium are some of the main contributors to igneous rocks, which form from the cooling of magma or lava. These rocks can include dark-colored minerals such as olivine, pyroxene, amphibole, and biotite. Luckily for us, the rover has instruments that can measure the chemical composition of rocks on Mars. Understanding the composition of these darker-toned floats will help the team to interpret the origin of this unique rock!
      Explore More
      2 min read Sols 4511-4512: Low energy after a big weekend?


      Article


      2 days ago
      3 min read Sols 4509-4510: A weekend of long drives


      Article


      2 days ago
      2 min read Sols 4507-4508: “Just Keep Driving”


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      Mars 2020 Perseverance Rover


      View the full article
    • By Amazing Space
      LIVE NOW: Stunning LIVE Video Of The Sun = 17th April - Backyard Astronomy
  • Check out these Videos

×
×
  • Create New...