Members Can Post Anonymously On This Site
What is an Engineer? (Grades K-4)
-
Similar Topics
-
By NASA
This article is for students grades 5-8.
Aerodynamics is the way objects move through air. The rules of aerodynamics explain how an airplane is able to fly. Anything that moves through air is affected by aerodynamics, from a rocket blasting off, to a kite flying. Since they are surrounded by air, even cars are affected by aerodynamics.
What Are the Four Forces of Flight?
The four forces of flight are lift, weight, thrust and drag. These forces make an object move up and down, and faster or slower. The amount of each force compared to its opposing force determines how an object moves through the air.
What Is Weight?
Gravity is a force that pulls everything down to Earth. Weight is the amount of gravity multiplied by the mass of an object. Weight is also the downward force that an aircraft must overcome to fly. A kite has less mass and therefore less weight to overcome than a jumbo jet, but they both need the same thing in order to fly — lift.
What Is Lift?
Lift is the push that lets something move up. It is the force that is the opposite of weight. Everything that flies must have lift. For an aircraft to move upward, it must have more lift than weight. A hot air balloon has lift because the hot air inside is lighter than the air around it. Hot air rises and carries the balloon with it. A helicopter’s lift comes from the rotor blades. Their motion through the air moves the helicopter upward. Lift for an airplane comes from its wings.
How Do an Airplane’s Wings Provide Lift?
The shape of an airplane’s wings is what makes it possible for the airplane to fly. Airplanes’ wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. As a result, less air pressure is on top of the wing. This lower pressure makes the wing, and the airplane it’s attached to, move up. Using curves to affect air pressure is a trick used on many aircraft. Helicopter rotor blades use this curved shape. Lift for kites also comes from a curved shape. Even sailboats use this curved shape. A boat’s sail is like a wing. That’s what makes the sailboat move.
What Is Drag?
Drag is a force that pulls back on something trying to move. Drag provides resistance, making it hard to move. For example, it is more difficult to walk or run through water than through air. Water causes more drag than air. The shape of an object also affects the amount of drag. Round surfaces usually have less drag than flat ones. Narrow surfaces usually have less drag than wide ones. The more air that hits a surface, the more the drag the air produces.
What Is Thrust?
Thrust is the force that is the opposite of drag. It is the push that moves something forward. For an aircraft to keep moving forward, it must have more thrust than drag. A small airplane might get its thrust from a propeller. A larger airplane might get its thrust from jet engines. A glider does not have thrust. It can only fly until the drag causes it to slow down and land.
Why Does NASA Study Aerodynamics?
Aerodynamics is an important part of NASA’s work. The first A in NASA stands for aeronautics, which is the science of flight. NASA works to make airplanes and other aircraft better. Studying aerodynamics is an important part of that work. Aerodynamics is important to other NASA missions. Probes landing on Mars have to travel through the Red Planet’s thin atmosphere. Having to travel through an atmosphere means aerodynamics is important on other planets too.
More About Aerodynamics
Dynamics of Flight
Read What Is Aerodynamics (Grades K-4)
Explore More For Students Grades 5-8 View the full article
-
By NASA
3 Min Read What Is Aerodynamics? (Grades K-4)
This article is for students grades K-4.
What Are the Four Forces of Flight?
Aerodynamics is the way air moves around things. The rules of aerodynamics explain how an airplane is able to fly. Anything that moves through air reacts to aerodynamics. A rocket blasting off the launch pad and a kite in the sky react to aerodynamics. Aerodynamics even acts on cars, since air flows around cars.
The four forces of flight are lift, weight, thrust and drag. These forces make an object move up and down, and faster or slower. How much of each force there is changes how the object moves through the air.
What Is Weight?
Everything on Earth has weight. This force comes from gravity pulling down on objects. To fly, an aircraft needs something to push it in the opposite direction from gravity. The weight of an object controls how strong the push has to be. A kite needs a lot less upward push than a jumbo jet does.
What Is Lift?
Lift is the push that lets something move up. It is the force that is the opposite of weight. Everything that flies must have lift. For an aircraft to move upward, it must have more lift than weight. A hot air balloon has lift because the hot air inside is lighter than the air around it. Hot air rises and carries the balloon with it. A helicopter’s lift comes from the rotor blades at the top of the helicopter. Their motion through the air moves the helicopter upward. Lift for an airplane comes from its wings.
How Do an Airplane’s Wings Provide Lift?
The shape of an airplane’s wings is what makes it able to fly. Airplanes’ wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. So, less air pressure is on top of the wing. This condition makes the wing, and the airplane it’s attached to, move up. Using curves to change air pressure is a trick used on many aircraft. Helicopter rotor blades use this trick. Lift for kites also comes from a curved shape. Even sailboats use this concept. A boat’s sail is like a wing. That’s what makes the sailboat move.
What Is Drag?
Drag is a force that tries to slow something down. It makes it hard for an object to move. It is harder to walk or run through water than through air. That is because water causes more drag than air. The shape of an object also changes the amount of drag. Most round surfaces have less drag than flat ones. Narrow surfaces usually have less drag than wide ones. The more air that hits a surface, the more drag it makes.
What Is Thrust?
Thrust is the force that is the opposite of drag. Thrust is the push that moves something forward. For an aircraft to keep moving forward, it must have more thrust than drag. A small airplane might get its thrust from a propeller. A larger airplane might get its thrust from jet engines. A glider does not have thrust. It can only fly until the drag causes it to slow down and land.
Read What Is Aerodynamics? (Grades 5-8)
Explore More For Students Grades K-4 View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This article is for students grades 5-8.
Alan Shepard was the first American in space. He was one of NASA’s first seven astronauts. Later, he walked on the moon during the Apollo program.
What Was Shepard’s Early Life Like?
Alan Shepard was born on Nov. 18, 1923. He was born in East Derry, N.H., and grew up there. He earned a Bachelor of Science degree from the United States Naval Academy. He served on a Navy ship in the Pacific Ocean during World War II. After the war, Shepard entered flight training and earned his pilot’s wings. He graduated from Naval Test Pilot School and Naval War College. In April 1959, NASA selected Shepard as a member of its first group of seven astronauts.
What Happened on Alan Shepard’s First Spaceflight?
On May 5, 1961, Alan Shepard became the first American in space. He flew on a one-person Mercury spacecraft that he named Freedom 7. It launched on a Redstone rocket. On this flight, Shepard did not orbit Earth. He flew 116 miles high and then returned safely. The flight lasted about 15 ½ minutes. The mission was a success.
What Happened After Shepard’s First Spaceflight?
After his first flight, Shepard developed a medical problem. An inner ear problem stopped him from flying in space. NASA named Shepard as chief of the Astronaut Office. He helped select new astronauts, plan missions and make sure astronauts were ready to fly. Later, he had surgery to fix the ear problem, and he was able to fly again. Almost 10 years passed between his first and second flights.
What Happened on Alan Shepard’s Second Spaceflight?
Shepard’s second spaceflight was on the Apollo 14 mission to the moon. He was commander of a crew that included Stuart Roosa and Edgar Mitchell. The Apollo spacecraft was launched on a Saturn V (5) rocket.
On Feb. 15, 1971, Shepard and Mitchell landed on the moon. (Roosa stayed in orbit around the moon while the other two landed.) During two moonwalks, Shepard and Mitchell collected more than 100 pounds of moon rocks. They conducted scientific experiments on the lunar surface. Shepard also became the first person to hit a golf ball on the moon, showing how far it would go in the moon’s lower gravity.
What Happened After Shepard’s Second Spaceflight?
After his second flight, Shepard returned to his job as head of the Astronaut Office. He retired from NASA in 1974. Shepard worked in private business. He also did volunteer work to support education and to help people learn about spaceflight. Shepard died of leukemia in 1998.
More About Alan Shepard
Alan Shepard: First American in Space
Alan Shepard – Ambassador of Exploration
Freedom 7
Apollo 14
What Was Project Mercury?
What Was the Apollo Program?
What Was the Saturn V?
Read Who Was Alan Shepard? (Grades K-4)
Explore More for Students Grades 5-8 View the full article
-
By NASA
3 Min Read Career Spotlight: Engineer (Ages 14-18)
What does an engineer do?
An engineer applies scientific principles to design, build, and test machines, systems, or structures to meet specific needs. They follow the steps of the engineering design process to ensure their designs work as planned while meeting a variety of requirements, including size, weight, safety, and cost.
NASA hires several types of engineers to help tackle a range of missions. Whether it’s creating quieter supersonic aircraft, building powerful space telescopes to study the cosmos, or developing spacecraft to take humanity to the Moon, Mars, and beyond, NASA pushes the boundaries of engineering, giving us greater knowledge of our universe and a better quality of life here on Earth.
What are the different types of engineering?
Aerospace engineer: Applies engineering principles to design hardware and software specific to flight systems for use in Earth’s atmosphere or in space. Chemical engineer: Uses chemistry to conduct research or develop new materials. Civil engineer: Designs human-made structures, such as launch pads, test stands, or a future lunar base. Electrical engineer: Specializes in the design and testing of electronics such as computers, motors, and navigation systems. Mechanical engineer: Designs and tests mechanical equipment and systems, such as rocket engines, aircraft frames, and astronaut tools. How can I become an engineer?
High school is the perfect time to build a solid foundation of science and math skills through challenging academic courses as well as extracurricular activities, such as science clubs, robotics teams, or STEM camps in your area. You can also start researching what type of engineering is right for you, what colleges offer those engineering programs, and what you need to do to apply to those colleges.
Engineering roles typically require at least a bachelor’s degree.
How can I start preparing today to become an engineer?
Looking for some engineering experiences you can try right away? NASA STEM offers hands-on activities for a variety of ages and skill levels. Engineering includes iteration – repeating something and making changes in an effort to learn more and improve the process or the design. When you try these activities, make a small change each time you repeat the process, and see whether your design improves.
NASA’s student challenges and competitions give teams the opportunity to gain authentic experience by taking on some of the technological challenges of spaceflight and aviation.
NASA also offers paid internships for U.S. citizens aged 16 and up. Interns work on real projects with the guidance of a NASA mentor. Internship sessions are held each year in spring, summer, and fall; visit NASA’s Internships website to learn about important deadlines and current opportunities.
Advice from NASA engineers
“A lot of people think that just because they are more artistic or more creative, that they’re not cut out for STEM fields. But in all honesty, engineers and scientists have to be creative and have to be somewhat artistic to be able to come up with new ideas and see how they can solve the problems in the world around them.” – Sam Zauber, wind tunnel test engineer
“Students today have so many opportunities in the STEM area that are available to them. See what you like. See what you're good at. See what you don't like. Learn all there is to learn, and then you can really choose your own path. As long as you have the aptitude and the willingness to learn, you're already there.”
Heather Oravec
Aerospace and Geotechnical Research Engineer
“Joining clubs and participating in activities that pique your interests is a great way to develop soft skills – like leadership, communication, and the ability to work with others – which will prepare you for future career opportunities.” – Estela Buchmann, navigation, guidance, and control systems engineer
Additional Resources
Explore NASA+ Engineering Resources Learner Opportunities – NASA Science Career Aspirations with Hubble Keep Exploring Discover More Topics From NASA
Careers in Engineering
Join Artemis
NASA App
For Students Grades 9-12
View the full article
-
By NASA
The National Society of Professional Engineers recently named Debbie Korth, Orion deputy program manager at Johnson Space Center, as NASA’s 2025 Engineer of the Year. Korth was recognized during an award ceremony at the National Press Club in Washington, D.C., on Feb. 21, alongside honorees from 17 other federal agencies. The annual awards program honors the impactful contributions of federal engineers and their commitment to public service.
Debbie Korth received the NASA 2025 Engineer of the Year Award from the National Society of Professional Engineers at the National Press Club in Washington, D.C. Image courtesy of Debbie Korth Korth said she was shocked to receive the award. “At NASA there are so many brilliant, talented engineers who I get to work with every day who are so specialized and know so much about a certain area,” she said. “It was very surprising, but very appreciated.”
Korth has dedicated more than 30 years of her career to NASA, supporting human spaceflight development, integration, and operations across the Space Shuttle, International Space Station, and Orion Programs. Her earliest roles involved extravehicular and mission operations planning, as well as managing spaceflight hardware for shuttle missions and space station crews. Working on hardware such as the Crew Health Care System in the early days of space station planning and development was a unique experience for Korth.
After spending significant time in Russia collaborating with Russian counterparts to integrate equipment such as a treadmill, cycle ergometer, and blood pressure monitor into their module, Korth recalled, “When we finally got that all delivered and integrated, it was a huge step because we had to have all of that on board before we could put crew members on the station for the first time. I remember feeling a huge sense of accomplishment and happiness that we were able to work through this international partnership and forge those relationships to get that hardware integrated.”
Korth transitioned to the Orion Program in 2008 and has since served in a variety of leadership roles. In her current role, Korth assists the program manager in the design, development, testing, verification, and certification of Orion, NASA’s next-generation, human-rated spacecraft for Artemis missions. The spacecraft’s first flight test around the Moon during the Artemis I mission was a standout experience for Korth and a major accomplishment for the Orion team.
“It was a long mission and every day we were learning more and more about the spacecraft and pushing boundaries,” she said. “We really wrung out some of the core systems – systems that were developed individually and for the first time we got to see them work together.”
Korth said that understanding how different systems interact with each other is what she loves most about engineering. “In systems engineering, you really look at how changes to and the performance of one system affects everything else,” she said. “I like looking across the entire spacecraft and saying, if I have to strengthen this structure to take some additional landing loads, that’s going to add mass to the vehicle, which means I have to look at my parachutes and the thermal protection system to make sure they can handle that increased load.”
The Orion team is working to achieve two major milestones in 2025 – delivery of the Artemis II Orion spacecraft to the Exploration Ground Systems team that will fuel and integrate Orion with its launch abort system at NASA’s Kennedy Space Center, and the spacecraft’s integration with the Space Launch System rocket, which is currently being stacked. These milestones will support the launch of the first crewed mission on NASA’s path to establishing a long-term presence at the Moon for science and exploration, with liftoff targeted no earlier than April 2026.
“It’s going to be a big year,” said Korth.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.