Members Can Post Anonymously On This Site
Solar Orbiter ready for close encounter with Venus
-
Similar Topics
-
By NASA
6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind
Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure.
NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.
Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space.
“What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado.
This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D
The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.
Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.
“This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.”
All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation.
Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.
“I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.”
When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region.
Building Off Other Missions
“The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.”
When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers).
Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.
A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025.
“The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta.
The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).
“PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.”
The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington.
By Abbey Interrante
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Header Image:
An artist’s concept showing the four PUNCH satellites orbiting Earth.
Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
Share
Details
Last Updated Feb 21, 2025 Related Terms
Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
2 min read Hubble Spies a Spiral That May Be Hiding an Imposter
Article
3 hours ago
3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
Article
3 days ago
2 min read NASA Science: Being Responsive to Executive Orders
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science
NASA’s Mars rover Curiosity acquired this image, which includes the pyramid-shaped rock at left in the photo, the science target dubbed “Pyramid Lake,” using its Left Navigation Camera. The rover acquired the image on sol 4452, or Martian day 4,452 of the Mars Science Laboratory mission, on Feb. 13, 2025, at 14:22:06 UTC. NASA/JPL-Caltech Earth planning date: Friday, Feb. 14, 2025
Curiosity is continuing to make progress along the strategic route, traversing laterally across the sulfate (salt) bearing unit toward the boxwork structures. The team celebrated the completion of another successful drive when we received the downlink this morning, and then we immediately got to work thinking about what’s next. There is a holiday in the United States on Monday, so instead of the typical three-sol weekend plan, we actually planned four sols, which will set us up to return to planning next Tuesday.
The first sol of the plan focuses on remote sensing, and we’ll be taking several small Mastcam mosaics of features around the rover. One of my favorite targets the team picked is a delightfully pointy rock visible toward the left of the Navcam image shown above. The color images we’ll take with Mastcam will give us more information about the textures of this rock and potentially provide insight into the geologic forces that transformed it into this comical shape. The team chose what I think is a very appropriate name for this Martian pyramid-shaped target — “Pyramid Lake.” The terrestrial inspiration behind this name is a human-made reservoir (lake) near Los Angeles with a big (also human-made) pyramidal hill in it.
On the second sol of the plan, we’ll use the instruments on Curiosity’s arm to collect data of rock targets at our feet, including “Strawberry Peak,” a bumpy piece of bedrock, “Lake Arrowhead,” a smooth piece of bedrock, and “Skyline Trail,” a dark float rock. ChemCam will also collect chemical data of Skyline Trail, “Big Tujunga” — which is similar to Strawberry Peak — and “Momyer.” We’ll also take the first part of a 360-degree color mosaic with Mastcam!
In the third sol of the plan, we’ll complete the 360-degree mosaic and continue driving to the southwest along our strategic route. The fourth sol is pretty quiet, with some atmospheric observations and a ChemCam AEGIS. Atmospheric observations are additionally sprinkled throughout other sols of the plan. This time of year we are particularly interested in studying the clouds above Gale crater!
I’m looking forward to the nice long weekend, and returning on Tuesday morning to see everything Curiosity accomplished.
Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
Share
Details
Last Updated Feb 17, 2025 Related Terms
Blogs Explore More
2 min read Sols 4452-4453: Keeping Warm and Keeping Busy
Article
3 days ago
2 min read Sols 4450-4451: Making the Most of a Monday
Article
5 days ago
3 min read Sols 4447–4449: Looking Back at the Marker Band Valley
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
5 min read
NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Key Points
The May 2024 solar storm created two new temporary belts of high-energy particles surrounding Earth. Such belts have been seen before, but the new ones were particularly long lasting, especially the new proton belt. The findings are particularly important for spacecraft launching into geostationary orbits, which can be damaged as they traverse the dangerous belts. The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the Sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.
With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this storm also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology.
The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like concentric rings high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight.
The May 2024 solar storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. NASA/Goddard Space Flight Center/Kristen Perrin The discovery of the new belts, made possible by NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite and published Feb. 6, 2025, in the Journal of Geophysical Research: Space Physics, is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
New Belts Amaze Scientists
Temporary belts have been detected in the aftermath of large solar storms before. But while previous belts have been composed mostly of electrons, the innermost of the two new belts also included energetic protons. This unique composition is likely due to the strength and composition of the solar storm.
“When we compared the data from before and after the storm, I said, ‘Wow, this is something really new,’” said the paper’s lead author Xinlin Li, a professor at the Laboratory for Atmospheric and Space Physics (LASP) and Department of Aerospace Engineering Sciences at the University of Colorado Boulder. “This is really stunning.”
The new belts also seem to have lasted much longer than previous belts. Whereas previous temporary belts lasted around four weeks, the new belt composed primary of electrons lasted more than three months. The other belt, that also includes protons, has lasted much longer than the electron belt because it is in a more stable region and is less prone to the physical processes that can knock the particles out of orbit. It is likely still there today.
“These are really high-energy electrons and protons that have found their way into Earth’s inner magnetic environment,” said David Sibeck, former mission scientist for NASA’s Van Allen Probes and research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved with the new study. “Some might stay in this place for a very long time.”
How long such belts stick around depends on passing solar storms. Large storms can provide the energy to knock particles in these belts out of their orbits and send them spiraling off into space or down to Earth. One such storm at the end of June significantly decreased the size of the new electron belt and another in August nearly erased the remainder of that electron belt, though a small population of high-energy electrons endured.
CubeSat Fortuitously Comes Back to Life to Make the Discovery
The new discovery was made by NASA’s CIRBE satellite, a CubeSat about the size of a shoebox that circled the planet’s magnetic poles in a low Earth orbit from April 2023 to October 2024. CIRBE housed an instrument called the Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2) — a miniaturized and upgraded version of an instrument that flew aboard NASA’s Van Allen Probes, which made the first discovery of a temporary electron belt in 2013.
The CIRBE CubeSat in the laboratory before launch. CIRBE was designed and built by LASP at the University of Colorado Boulder. Xinlin Li/LASP/CU Boulder After a year in space, the CubeSat experienced an anomaly and unexpectedly went quiet on April 15, 2024. The scientists were disappointed to miss the solar storm in May but were able to rely on other spacecraft to provide some preliminary data on the electron belt. Luckily, on June 15, the spacecraft sprang back to life and resumed taking measurements. The data provided high-resolution information that couldn’t be gleaned by any other instrument and allowed the scientists to understand the magnitude of the new belts.
“Once we resumed measurements, we were able to see the new electron belt, which wasn’t visible in the data from other spacecraft,” Li said.
Having the CubeSat in orbit to measure the effect of the solar storm has been bittersweet, Li said. While it provided the opportunity to measure the effects of such a large event, the storm also increased atmospheric drag on the CubeSat, which caused its orbit to decrease prematurely. As a result, the CubeSat deorbited in October 2024. However, the spacecraft’s data makes it all worth it.
“We are very proud that our very small CubeSat made such a discovery,” Li said.
CIRBE was designed and built by LASP at the University of Colorado Boulder and was launched through NASA’s CubeSat Launch Initiative (CSLI). The mission is sponsored by NASA’s Heliophysics Flight Opportunities for Research & Technology (H-FORT) program.
By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Feb 06, 2025 Related Terms
Heliophysics CubeSats Goddard Space Flight Center Heliophysics Division Ionosphere Space Weather The Sun Van Allen Probes Explore More
5 min read Straight Shot: Hubble Investigates Galaxy with Nine Rings
Article
2 days ago
2 min read Hubble Spots a Supernova
Article
6 days ago
2 min read Hubble Studies the Tarantula Nebula’s Outskirts
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:00:40 Back in 2023, we reported on Solar Orbiter’s discovery of tiny jets near the Sun’s south pole that could be powering the solar wind. The team behind this research has now used even more data from the European Space Agency’s prolific solar mission to confirm that these jets exist all over dark patches in the Sun’s atmosphere, and that they really are a source of not only fast but also slow solar wind.
The newfound jets can be seen in this sped-up video as hair-like wisps that flash very briefly, for example within the circled regions of the Sun's surface. In reality they last around one minute and fling out charged particles at about 100 km/s.
The surprising result is published today in Astronomy & Astrophysics, highlighting how Solar Orbiter’s unique combination of instruments can unveil the mysteries of the star at the centre of our Solar System.
The solar wind is the never-ending rain of electrically charged particles given out by the Sun. It pervades the Solar System and its effects can be felt on Earth. Yet despite decades of study, its origin remained poorly understood. Until now.
The solar wind comes in two main forms: fast and slow. We have known for decades that the fast solar wind comes from the direction of dark patches in the Sun’s atmosphere called coronal holes – regions where the Sun’s magnetic field does not turn back down into the Sun but rather stretches deep into the Solar System.
Charged particles can flow along these ‘open’ magnetic field lines, heading away from the Sun, and creating the solar wind. But a big question remained: how do these particles get launched from the Sun in the first place?
Building upon their previous discovery, the research team (led by Lakshmi Pradeep Chitta at the Max Planck Institute for Solar System Research, Germany) used Solar Orbiter’s onboard ‘cameras’ to spot more tiny jets within coronal holes close to the Sun’s equator.
By combining these high-resolution images with direct measurements of solar wind particles and the Sun’s magnetic field around Solar Orbiter, the researchers could directly connect the solar wind measured at the spacecraft back to those exact same jets.
What’s more, the team was surprised to find not just fast solar wind coming from these jets, but also slow solar wind. This is the first time that we can say for sure that at least some of the slow solar wind also comes from tiny jets in coronal holes – until now, the origin of the solar wind had been elusive.
The fact that the same underlying process drives both fast and slow solar wind comes as a surprise. The discovery is only possible thanks to Solar Orbiter’s unique combination of advanced imaging systems, as well as its instruments that can directly detect particles and magnetic fields.
The measurements were taken when Solar Orbiter made close approaches to the Sun in October 2022 and April 2023. These close approaches happen roughly twice a year; during the next ones, the researchers hope to collect more data to better understand how these tiny jets ‘launch’ the solar wind.
Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. This research used data from Solar Orbiter’s Extreme Ultraviolet Imager (EUI), Polarimetric and Helioseismic Imager (PHI), Solar Wind Plasma Analyser (SWA) and Magnetometer (MAG). Find out more about the instruments Solar Orbiter is using to reveal more about the Sun.
Read our news story from 2023 about how Solar Orbiter discovered tiny jets that could power the solar wind
Read more about how Solar Orbiter can trace the solar wind back to its source region on the Sun
View the full article
-
By NASA
Crews conduct a solar array deployment test on the spacecraft of NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located inside Vandenberg Space Force Base in California on Tuesday, Jan. 21, 2025.USSF 30th Space Wing/Antonio Ramos Technicians supporting NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission deployed and tested the spacecraft’s solar arrays at the Astrotech Space Operations processing facility at Vandenberg Space Force Base in California ahead of its launch next month.
The arrays, essential for powering instruments and systems, mark another milestone in preparing PUNCH for its mission to study the Sun’s outer atmosphere as it transitions into the solar wind. Technicians performed the tests in a specialized cleanroom environment to prevent contamination and protect the sensitive equipment.
Comprised of four suitcase-sized satellites working together as a constellation, PUNCH will capture continuous 3D images of the Sun’s corona and the solar wind’s journey into the solar system. Led by the Southwest Research Institute (SwRI) for NASA, the mission aims to deepen our understanding of the Sun and solar wind and how they affect humanity’s technology on Earth and our continued exploration of the solar system.
Successful solar array testing brings the spacecraft another step toward readiness for launch. The agency’s PUNCH mission is targeting liftoff as a rideshare with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) on a SpaceX Falcon 9 rocket from Vandenberg’s Space Launch Complex 4E no earlier than Thursday, Feb. 27.
Image credit: USSF 30th Space Wing/Antonio Ramos
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.