Jump to content

Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science


Recommended Posts

  • Publishers
Posted

2 min read

Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science

A grayscale photograph from the Martian surface shows extremely rough terrain covered in sharp rocks of many shapes and sizes protruding from the ground. The soil is mostly medium gray, while the rocks are lighter, including a bright, nearly white, tall pyramid-shaped rock at left in the image. A portion of the rover is also visible at the bottom left corner of the frame.
NASA’s Mars rover Curiosity acquired this image, which includes the pyramid-shaped rock at left in the photo, the science target dubbed “Pyramid Lake,” using its Left Navigation Camera. The rover acquired the image on sol 4452, or Martian day 4,452 of the Mars Science Laboratory mission, on Feb. 13, 2025, at 14:22:06 UTC.
NASA/JPL-Caltech

Earth planning date: Friday, Feb. 14, 2025

Curiosity is continuing to make progress along the strategic route, traversing laterally across the sulfate (salt) bearing unit toward the boxwork structures. The team celebrated the completion of another successful drive when we received the downlink this morning, and then we immediately got to work thinking about what’s next. There is a holiday in the United States on Monday, so instead of the typical three-sol weekend plan, we actually planned four sols, which will set us up to return to planning next Tuesday.

The first sol of the plan focuses on remote sensing, and we’ll be taking several small Mastcam mosaics of features around the rover. One of my favorite targets the team picked is a delightfully pointy rock visible toward the left of the Navcam image shown above. The color images we’ll take with Mastcam will give us more information about the textures of this rock and potentially provide insight into the geologic forces that transformed it into this comical shape. The team chose what I think is a very appropriate name for this Martian pyramid-shaped target — “Pyramid Lake.” The terrestrial inspiration behind this name is a human-made reservoir (lake) near Los Angeles with a big (also human-made) pyramidal hill in it.

On the second sol of the plan, we’ll use the instruments on Curiosity’s arm to collect data of rock targets at our feet, including “Strawberry Peak,” a bumpy piece of bedrock, “Lake Arrowhead,” a smooth piece of bedrock, and “Skyline Trail,” a dark float rock. ChemCam will also collect chemical data of Skyline Trail, “Big Tujunga” — which is similar to Strawberry Peak — and “Momyer.” We’ll also take the first part of a 360-degree color mosaic with Mastcam!

In the third sol of the plan, we’ll complete the 360-degree mosaic and continue driving to the southwest along our strategic route. The fourth sol is pretty quiet, with some atmospheric observations and a ChemCam AEGIS. Atmospheric observations are additionally sprinkled throughout other sols of the plan. This time of year we are particularly interested in studying the clouds above Gale crater!

I’m looking forward to the nice long weekend, and returning on Tuesday morning to see everything Curiosity accomplished.

Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory

Share

Details

Last Updated
Feb 17, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
      Sols 4458-4460: Winter Schminter
      NASA’s Mars rover Curiosity captured this image of the Texoli butte, a Martian landmark about 525 feet (160 meters) tall, with many layers that scientists are studying to learn more about the formation of this region of the Red Planet. The butte is on the 3-mile-high Mount Sharp, inside Gale Crater, where Curiosity landed and has been exploring since 2012. The rover acquired this image using its Left Navigation Camera on sol 4456, or Martian day 4,456 of the Mars Science Laboratory mission, on Feb. 17, 2025, at 17:51:56 UTC. NASA/JPL-Caltech Earth planning date: Tuesday, Feb. 18, 2025
      During today’s unusual-for-MSL Tuesday planning day (because of the U.S. holiday on Monday), we planned activities under new winter heating constraints. Operating Curiosity on Mars requires attention to a number of factors — power, data volume, terrain roughness, temperature — that affect rover operability and safety. Winter means more heating to warm up the gears and mechanisms within the rover and the instruments, but energy that goes to heating means less energy for science observations. Nevertheless, we (and Curiosity) were up to the task of balancing heating and science, and planned enough observations to warm the science team’s hearts. 
      We fit in DRT, APXS, and MAHLI on two different bedrock targets, “Chumash Trail” and “Wheeler Gorge,” which have different fracturing and layering features. In the workspace, ChemCam targeted a clean vertical exposure of layered bedrock at “Sierra Madre” and a lumpy-looking patch of resistant nodules at “Chiquito Basin.” 
      The topography of the local terrain and our end-of-drive position after the weekend fortuitously lined up to give us a view of an exposure of the Marker Band, which we first explored on the other side of Gediz Vallis Ridge. Having a view of another exposure of this distinctive horizon helps give us further insight into its origin, so we included both RMI and Mastcam mosaics of the exposure. 
      Documenting a feature that, unlike the Marker Band, has been and will be in our sights for a long time — “Texoli” butte (pictured above) — was the goal of additional Mastcam and ChemCam imaging. Observations of potential sedimentary structures on the flank of Texoli motivated acquisition of an RMI mosaic, and a chance to capture structures along its southeast face inspired a Mastcam mosaic. Good exposures of additional nearby bedrock structures at “Mount Lukens” and “Chantry Flat” drew the eye of Mastcam, while another small mosaic focused on the kind of linear troughs in the sand we often see bordering bedrock slabs. Environmental observations included Navcam cloud and dust-devil movies, Mastcam observations of dust in the atmosphere, and REMS and RAD measurements spread across the three sols of the plan.
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Feb 20, 2025 Related Terms
      Blogs Explore More
      3 min read Cookies, Cream, and Crumbling Cores


      Article


      3 days ago
      2 min read Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science


      Article


      4 days ago
      2 min read Sols 4452-4453: Keeping Warm and Keeping Busy


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      How Long Does it Take to Get to the Moon... Mars... Jupiter? We Asked a NASA Expert
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      During the Apollo program, when NASA sent humans to the Moon, those missions took several days to reach the Moon. The fastest of these was Apollo 8, which took just under three days to go from Earth orbit to orbit around the Moon.

      Now it’s possible to save some fuel by flying different kinds of trajectories to the Moon that are shaped in such a way to save fuel. And those trajectories can take more time, potentially weeks or months, to reach the Moon, depending on how you do it.

      Mars is further away, about 50 percent further away from the Sun than Earth is. And reaching Mars generally takes somewhere between seven to ten months, flying a relatively direct route.

      NASA’s Mars Reconnaissance Orbiter mission took about seven and a half months to reach Mars. And NASA’s MAVEN mission took about ten months to reach Mars.

      Jupiter is about five times further away from the Sun than the Earth is. And so in order to make those missions practical, we have to find ways to reduce the fuel requirements. And the way we do that is by having the spacecraft do some flybys of Earth and or Venus to help shape the spacecraft’s trajectory and change the spacecraft’s speed without using fuel. And using that sort of approach, it takes between about five to six years to reach Jupiter.

      So NASA’s Galileo mission, the first mission to Jupiter, took just a little over six years. And then NASA’s second mission to Jupiter, which was called Juno, took just under five years.

      So to get to the Moon takes several days. To get to Mars takes seven to ten months. And getting to Jupiter takes between five and six years.

      [END VIDEO TRANSCRIPT]

      Full Episode List
      Full YouTube Playlist
      Share
      Details
      Last Updated Feb 19, 2025 Related Terms
      Science Mission Directorate Planetary Science Planetary Science Division The Solar System Explore More
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
      In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation…
      Article 18 hours ago 2 min read NASA Science: Being Responsive to Executive Orders
      February 18, 2025 To the NASA Science Community –  As the nation’s leader in Earth…
      Article 19 hours ago 5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
      One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are…
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      NASA Science: Being Responsive to Executive Orders
      February 18, 2025
      To the NASA Science Community – 
      As the nation’s leader in Earth and space science, NASA Science operates within the broader context of the federal government and its priorities. As part of the Executive Branch, we are always responsive to the direction set by the Administration, including executive orders and policy guidance that relate to our programs and activities. 
      We are working as quickly as possible to implement these Executive Orders and related policies. We understand that these priorities can have tangible effects on our community, from potential changes in solicitations and mission planning to impacts on grants and research programs. We recognize that uncertainty can be challenging but we are committed to keeping you as informed as possible as we comply with these changes.  
      Our goal remains steadfast: to support groundbreaking science that advances knowledge and benefits society. As we work through these transitions, we are engaging with stakeholders, assessing implications, and ensuring that we continue to deliver on NASA’s science mission.  
      We appreciate your patience and dedication, and we will share more details as they become available. Thank you for your continued partnership in advancing NASA Science for the benefit of the nation. 
      -Nicky Fox
      Associate Administrator, NASA Science Mission Directorate 
      Share








      Details
      Last Updated Feb 18, 2025 Related Terms
      Science Mission Directorate Explore More
      5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging


      Article


      4 hours ago
      2 min read Hubble Captures a Cosmic Cloudscape


      Article


      4 days ago
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm


      Article


      2 weeks ago
      View the full article
    • By NASA
      The 2024 Annual Highlights of Results from the International Space Station is now available. This new edition contains updated bibliometric analyses, a list of all the publications documented in fiscal year 2024, and synopses of the most recent and recognized scientific findings from investigations conducted on the space station. These investigations are sponsored by NASA and all international partners – CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), and the State Space Corporation Roscosmos (Roscosmos) – for the advancement of science, technology, and education.
      Dr. Dmitry Oleynikov remotely operates a surgical robot aboard the Space Station using controls at the Virtual Incision offices in Lincoln, Nebraska. Robotic Surgery Tech Demo tests techniques for performing a simulated surgical procedure in microgravity using a miniature surgical robot that can be remotely controlled from Earth. Credits: University of Nebraska-Lincoln Between Oct. 1, 2023, and Sept. 30, 2024, more than 350 publications were reported. With approximately 40% of the research produced in collaboration between more than two countries and almost 80% of the high-impact studies published in the past seven years, station has continued to generate compelling and influential science above national and global standards since 2010.
      The results achieved from station research provide insights that advance the commercialization of space and benefit humankind.
      Some of the findings presented in this edition include:
      Improved machine learning algorithms to detect space debris (Italian Space Agency, Roscosmos, ESA) Visuospatial processing before and after spaceflight (CSA) Metabolic changes during fasting intervals in astronauts (ESA) Vapor bubble production for the improvement of thermal systems (NASA) Immobilization of particles for the development of optical materials (JAXA) Maintained function of cardiac 3D stem cells after weeks of exposure to space (NASA) The content in the Annual Highlights of Results from the International Space Station has been reviewed and approved by the International Space Station Program Science Forum, a team of scientists and administrators representing NASA and international partners that are dedicated to planning, improving, and communicating the research operated on the space station.
      [See the list of Station Research Results publications here and find the current edition of the Annual Highlights of Results here.]  
      Keep Exploring Discover More Topics
      Space Station Research Results
      Space Station Research and Technology
      ISS National Laboratory
      Opportunities and Information for Researchers
      View the full article
  • Check out these Videos

×
×
  • Create New...