Members Can Post Anonymously On This Site
Comparison of a WFPC2 Thermal Vacuum Globular Cluster-Mask Image to Wfpc1
-
Similar Topics
-
By European Space Agency
The first image from a new Italian Earth observation satellite mission was published today: a high-resolution image of a strip of the Italian peninsular showing the city of Rome at a resolution of 2.66 metres. This is three times higher than the resolution currently available for systematic acquisition over Italy.
View the full article
-
By NASA
Depending on where you stand at the lunar South Pole, you may experience temperatures of 130°F (54°C) during sunlit periods, or as low as -334°F (-203°C) in a permanently shadowed region. Keeping crews comfortable and tools and vehicles operational in such extreme temperatures is a key challenge for engineers at Johnson Space Center working on elements of NASA’s Artemis campaign.
Abigail Howard is part of that innovative team. Since joining Johnson in 2019, she has conducted thermal analysis for projects including the lunar terrain vehicle (LTV), pressurized rover, VIPER (Volatiles Investigating Polar Exploration Rover), and Gateway – humanity’s first lunar space station. Her work explores how different materials and components respond to different temperatures and how to manage heat transfer in products and structures.
She currently serves as the passive thermal system manager for the Extravehicular Activity and Human Surface Mobility Program, leading a small team of thermal analysts. Together, they provide expertise on passive thermal design, hardware, modeling, and testing to vendors and international partners that are developing rovers and tools for human exploration of the lunar surface.
Abigail Howard posing in front of a mockup of VIPER (Volatiles Investigating Polar Exploration Rover), which she worked on as a thermal analyst for three years. Image courtesy of Abigail Howard Howard said her sudden shift from thermal analysis engineer to thermal system manager involved a steep learning curve. “Every day was like drinking through a firehose. I had to learn very quickly about systems engineering tasks, project phases, and leadership, while also learning about many new thermal approaches and designs so that I could provide good insight to project leadership and program vendors and partners,” she said. “Having a good group of senior engineers and friends to lean on and building up my team helped me get through it, but the single most important thing was not giving up. It gets easier and persistence pays off!”
Abigail Howard (left) and Brittany Spivey (right) after presenting their poster at the 2022 International Symposium for Materials in the Space Environment in Leiden, the Netherlands. Image courtesy of Abigail Howard Howard feels fortunate to have worked on many interesting projects at NASA and presented her work at several conferences. Top achievements include watching her first NASA project launch successfully on Artemis I and supporting the LTV Source Evaluation Board as the thermal representative. “Something I’m really proud of is obtaining funding for and managing a test that looked at thermal performance of dust mitigation for spacecraft radiators,” she added.
Abigail Howard removes lunar dust simulant from a tray holding radiator test coupons during a test to evaluate thermal performance of radiators with integrated Electrodynamic Dust Shield for dust mitigation. Image courtesy of Abigail Howard She believes interesting and challenging work is important but says the biggest determinant to professional success and satisfaction is your team and your team lead. “Having a really great team and team lead on Gateway thermal taught me the kind of leader and teammate I want to be,” she said.
Howard encourages fellow members of the Artemis Generation to not let imposter syndrome get in their way. “Focus on the evidence of your abilities and remember that no one is in this alone,” she said. “It’s okay to ask for help.”
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Lunar Planet Vac, or LPV, is one of 10 payloads set to be carried to the Moon by the Blue Ghost 1 lunar lander in 2025. LPV is designed to efficiently collect and transfer lunar soil from the surface to other science and analysis instruments on the Moon.Photo courtesy Firefly Aerospace Among all the challenges of voyaging to and successfully landing on other worlds, the effective collection and study of soil and rock samples cannot be underestimated.
To quickly and thoroughly collect and analyze samples during next-generation Artemis Moon missions and future journeys to Mars and other planetary bodies, NASA seeks a paradigm shift in techniques that will more cost-effectively obtain samples, conduct in situ testing with or without astronaut oversight, and permit real-time sample data return to researchers on Earth.
That’s the planned task of an innovative technology demonstration called Lunar PlanetVac (LPV), one of 10 NASA payloads flying aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. LPV will be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
Developed by Honeybee Robotics, a Blue Origin company of Altadena, California, LPV is a pneumatic, compressed gas-powered sample acquisition and delivery system – essentially, a vacuum cleaner that brings its own gas. It’s designed to efficiently collect and transfer lunar soil from the surface to other science instruments or sample return containers without reliance on gravity. Secured to the Blue Ghost lunar lander, LPV’s sampling head will use pressurized gas to stir up the lunar regolith, or soil, creating a small tornado. If successful, material from the dust cloud it creates then will be funneled into a transfer tube via the payload’s secondary pneumatic jets and collected in a sample container. The entire autonomous operation is expected to take just seconds and maintains planetary protection protocols. Collected regolith – including particles up to 1 cm in size, or roughly 0.4 inches – will be sieved and photographed inside the sample container with the findings transmitted back to Earth in real time.
The innovative approach to sample collection and in situ testing could prove to be a game-changer, said Dennis Harris, who manages the LPV payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
“There’s no digging, no mechanical arm to wear out requiring servicing or replacement – it functions like a vacuum cleaner,” Harris said. “The technology on this CLPS payload could benefit the search for water, helium, and other resources and provide a clearer picture of in situ materials available to NASA and its partners for fabricating lunar habitats and launch pads, expanding scientific knowledge and the practical exploration of the solar system every step of the way.”
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
Learn more about. CLPS and Artemis at:
https://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Jan 08, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
5 min read NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere
A NASA X-ray imager is heading to the Moon as part of NASA’s Artemis campaign,…
Article 5 days ago 3 min read NASA Anticipates Lunar Findings From Next-Generation Retroreflector
Article 6 days ago 3 min read NASA Science Payload to Study Sticky Lunar Dust Challenge
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:01:22 An ethereal dance of misty clouds of interstellar dust with a myriad of distant stars and galaxies speckled like paint drops over a black canvas. This is a sonification of a breathtaking image king image taken by ESA's Euclid space telescope of the young star-forming region Messier 78.
The sonification offers a different representation of the data collected by Euclid, and lets us explore the stellar nurseries in M78 through sound. Close your eyes and listen to let the cosmic image be drawn by your mind’s eye, or watch as the traceback line in this video follows the sounds to colour the image from left to right.
The twinkling sounds of various pitches and volumes represent the galaxies and stars in the frame. The pitch of the sound points towards where we see the dot of light in the image. Higher pitches tell us that a star or galaxy appears further at the top in the image along the traceback line.
The brightness of these objects in and around M78 are represented by the volume of the twinkles. Whenever we hear a particularly loud clink, the star or galaxy that Euclid observed appears particularly bright in the image.
Underlying these jingling sounds, we can hear a steady undertone, made up of two chords which represent different regions in Messier 78. This sound intensifies as the traceback line approaches first the brightest, and later the densest regions in the nebula.
The first two deeper crescendos in this undertone indicate two patches in the image where the most intense colour is blue/purple. These appear as two ‘cavities’ in M78, where newly forming stars carve out and illuminate the dust and gas in which they were born.
The chords intensify a third time at a slightly higher pitch corresponding to the red-orange colours in the image, as the sound draws over the densest star-forming region of the frame. This stellar nursery is hidden by a layer of dust and gas that is so thick that it obscures almost all the light of the young stars within it.
As the sound traces over the entire Euclid image, these different tones together form a cosmic symphony that represents the image of Messier 78, and the stars and galaxies that lie behind and within it. You can read more about this image that was first revealed to the eyes of the world earlier this year here.
Many thanks to Klaus Nielsen (DTU Space / Maple Pools) for making the sonification in this video. If you would like to hear more sonifications and music by this artist, please visit: https://linktr.ee/maplepools
View the full article
-
By NASA
On Thursday, Dec. 5, 2024, a team returns the Artemis II Orion spacecraft to the Final Assembly and Test cell from a vacuum chamber inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida where it underwent vacuum testing. NASA/Eric Hernandez NASA’s Orion spacecraft for the Artemis II test flight returned to the Final Assembly and System Testing (FAST) cell following completion of the second round of vacuum chamber testing on Dec. 5 inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.
After returning to the FAST cell, the four main batteries – which supply power to many Orion systems – were installed in the crew module. The batteries returned to NASA Kennedy from their supplier, EaglePicher Technologies, earlier this month. Solar array wings will also be installed onto the spacecraft by international partner ESA (European Space Agency) and its contractor Airbus in early 2025.
The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
Image credit: NASA/Eric Hernandez
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.