Jump to content

NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response


Recommended Posts

  • Publishers
Posted
5 Min Read

NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response

Brayden Chamberlain, UAS Pilot in Command, performs pre-flight checks on the NASA Alta X uncrewed aerial system (UAS) during NASA FireSense’s uncrewed aerial system (UAS) technology demonstration in Missoula, Montana.
Pilot in command Brayden Chamberlain performs pre-flight checks on the NASA Alta X quadcopter during the FireSense uncrewed aerial system (UAS) technology demonstration in Missoula.<p class="MsoNormal" style="margin: 0in;font-size: 12pt;font-family: Aptos, sans-serif"><span style="font-size: 10pt;font-family: Arial, sans-serif"><span class="msoIns" style="color: teal"><ins cite="mailto:Tabor,%20Abby%20(ARC-DO)" datetime="2025-02-11T16:38"></ins></span></span></p>
Credits: NASA/Milan Loiacono

In Aug. 2024, a team of NASA researchers and partners gathered in Missoula, to test new drone-based technology for localized forecasting, or micrometeorology. Researchers attached wind sensors to a drone, NASA’s Alta X quadcopter, aiming to provide precise and sustainable meteorological data to help predict fire behavior.

Wildfires are increasing in number and severity around the world, including the United States, and wind is a major factor. It leads to unexpected and unpredictable fire growth, public threats, and fire fatalities, making micrometeorology a very effective tool to combat fire.

This composite image shows the NASA Alta X quadcopter taking off during one of eight flights it performed for the 2024 FireSense uncrewed aerial system (UAS) technology demonstration in Missoula, Montana. Mounted on top of the drone is a unique infrastructure designed at NASA Langley to carry a radiosonde and an anemometer – two sensors that measure wind speed and direction – into the sky. On the ground, UAS Pilot in Command Brayden Chamberlain performs final pre-flight checks.
This composite image shows the NASA Alta X quadcopter taking off during one of eight flights it performed for the 2024 FireSense UAS technology demonstration in Missoula. Mounted on top of the drone is a unique infrastructure designed at NASA’s Langley Research Center in Hampton,Virginia, to carry sensors that measure wind speed and direction into the sky. On the ground, UAS pilot in command Brayden Chamberlain performs final pre-flight checks.
NASA/Milan Loiacono

The campaign was run by NASA’s FireSense project, focused on addressing challenges in wildland fire management by putting NASA science and technology in the hands of operational agencies.

“Ensuring that the new technology will be easily adoptable by operational agencies such as the U.S. Forest Service and the National Weather Service was another primary goal of the campaign,” said Jacqueline Shuman, FireSense project scientist at NASA’s Ames Research Center in California’s Silicon Valley.

The FireSense team chose the Alta X drone because the U.S. Forest Service already has a fleet of the quadcopters and trained drone pilots, which could make integrating the needed sensors – and the accompanying infrastructure – much easier and more cost-effective for the agency.

UAS Pilot in Command Brayden Chamberlain flashes a ‘good to go’ signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff.
The UAS pilot in command, Brayden Chamberlain, flashes a “good to go” signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff. Behind Chamberlain, the custom structure attached to the quadcopter holds a radiosonde (small white box) and an anemometer (hidden from view), which will collect data on wind speed and direction, humidity, temperature, and pressure.
NASA/Milan Loiacono

The choice of the two sensors for the drone’s payload was also driven by their adoptability.

The first, called a radiosonde, measures wind direction and speed, humidity, temperature, and pressure, and is used daily by the National Weather Service. The other sensor, an anemometer, measures wind speed and direction, and is used at weather stations and airports around the world.

Two images sit side by side. On the left, a small white box with a silver antenna coming out the top and a black antenna coming out the bottom sits in a black structure. On the right, a silver cylinder protrudes from a black base, with two silver, interlocking rings forming a sphere on top. In the back of both photos is a green field.
The two sensors mounted on the NASA Alta X quadcopter are a radiosonde (left) and an anemometer (right), which measure wind speed and direction. The FireSense teams hopes that by giving them wings, researchers can enable micrometeorology to better predict fire and smoke behavior. 
NASA/Milan Loiacono

“Anemometers are everywhere, but are usually stationary,” said Robert McSwain, the FireSense uncrewed aerial system (UAS) lead, based at NASA’s Langley Research Center in Hampton, Virginia. “We are taking a sensor type that is already used all over the world, and giving it wings.”

Anemometers are everywhere, but are usually stationary. We are taking a sensor type that is already used all over the world, and giving it wings.

Robert Mcswain

Robert Mcswain

FireSense Uncrewed Aerial System (UAS) Lead

Both sensors create datasets that are already familiar to meteorologists worldwide, which opens up the potential applications of the platform.

Current Forecasting Methods: Weather Balloons

Traditionally, global weather forecasting data is gathered by attaching a radiosonde to a weather balloon and releasing it into the air. This system works well for regional weather forecasts. But the rapidly changing environment of wildland fire requires more recurrent, pinpointed forecasts to accurately predict fire behavior. It’s the perfect niche for a drone.

Two photos sit side by side. on the left, three male college students work on a large white balloon about three feet in diameter: one is kneeling with a large metal gas canister, the middle student holds the balloon up, and the third student holds a small white instrument attached to the balloon via string. On the right, the same large white balloon drifts into the sky, which is medium blue and mottled with gray clouds.
Left: Steven Stratham (right) attaches a radiosonde to the string of a weather balloon as teammates Travis Christopher (left) and Danny Johnson (center) prepare the balloon for launch. This team of three from Salish Kootenai College is one of many college teams across the nation trained to prepare and launch weather balloons.
Right: One of these weather balloons lifts into the sky, with the radiosonde visible at the end of the string.
NASA/Milan Loiacono

“These drones are not meant to replace the weather balloons,” said Jennifer Fowler, FireSense’s project manager at Langley. “The goal is to create a drop-in solution to get more frequent, localized data for wildfires – not to replace all weather forecasting.”

The goal is to create a drop-in solution to get more frequent, localized data for wildfires – not to replace all weather forecasting.

Jennifer Fowler

Jennifer Fowler

FireSense Project Manager

Drones Provide Control, Repeat Testing, Sustainability

Drones can be piloted to keep making measurements over a precise location – an on-site forecaster could fly one every couple of hours as conditions change – and gather timely data to help determine how weather will impact the direction and speed of a fire.

Fire crews on the ground may need this information to make quick decisions about where to deploy firefighters and resources, draw fire lines, and protect nearby communities.

A reusable platform, like a drone, also reduces the financial and environmental impact of forecasting flights. 

“A weather balloon is going to be a one-off, and the attached sensor won’t be recovered,” Fowler said. “The instrumented drone, on the other hand, can be flown repeatedly.”

The NASA Alta X quadcopter sits in a field in Missoula, Montana, outfitted with a structure engineered at Langley Research Center to carry a radiosonde and an anemometer into the air. In the background, two deer make their way across the field. The drone and its payload were part of the August 2024 FireSense campaign, which looked at the applicability of using controllable, repeatable airborne measurements to more accurately predict fire and smoke behavior.
The NASA Alta X quadcopter sits in a field in Missoula, outfitted with a special structure to carry a radiosonde (sensor on the left) and an anemometer (sensor on the right) into the air. This structure was engineered at NASA’s Langley Research Center to ensure the sensors are far enough from the rotors to avoid interfering with the data collected, but without compromising the stability of the drone.
NASA/Milan Loiacono

The Missoula Campaign

Before such technology can be sent out to a fire, it needs to be tested. That’s what the FireSense team did this summer.

Smoke from the nearby Miller Peak Fire drifts by the air control tower at Missoula Montana Airport on August 29, 2024. Miller Peak was one of several fires burning in and around Missoula that month, creating a smoke-impacted environment which, combined with the mountainous terrain, makes traditional forecasting methods difficult: a problem the FireSense team is working to solve.
Smoke from the nearby Miller Peak Fire drifts by the air control tower at Missoula Airport on August 29, 2024. Miller Peak was one of several fires burning in and around Missoula that month, creating a smokey environment which, combined with the mountainous terrain, made the area an ideal location to test FireSense’s new micrometeorology technology.
NASA/Milan Loiacono

McSwain described the conditions in Missoula as an “alignment of stars” for the research: the complex mountain terrain produces erratic, historically unpredictable winds, and the sparsity of monitoring instruments on the ground makes weather forecasting very difficult. During the three-day campaign, several fires burned nearby, which allowed researchers to test how the drones performed in smokey conditions.

A drone team out of NASA Langley conducted eight data-collection flights in Missoula. Before each drone flight, student teams from the University of Idaho in Moscow, Idaho, and Salish Kootenai College in Pablo, Montana, launched a weather balloon carrying the same type of radiometer.

Two images sit side by side. On the left, a team of six college students gather around a giant white weather balloon, some standing some sitting. On the ground around them are gear like a tarp, gas lines, and multiple gas canisters. In the photo on the right, two adult men hold a large quadcopter drone sideways between them, rotors akimbo.
Left: Weather balloon teams from University of Idaho and Salish Kootenai College prepare a weather balloon for launch on the second day of the FireSense campaign in Missoula.
Right: NASA Langley drone crew members Todd Ferrante (left) and Brayden Chamberlain (right) calibrate the internal sensors of the NASA Alta X quadcopter before its first test flight on Aug. 27, 2024.

Once those data sets were created, they needed to be transformed into a usable format. Meteorologists are used to the numbers, but incident commanders on an active fire need to see the data in a form that allows them to quickly understand which conditions are changing, and how. That’s where data visualization partners come in. For the Missoula campaign, teams from MITRE, NVIDIA, and Esri joined NASA in the field.

An early data visualization from the Esri team shows the flight path of different weather balloon launches from the first day of the FireSense uncrewed aerial system (UAS) technology demonstration in Missoula, Montana. The paths are color coded by wind speed, from purple (low wind) to bright yellow (high wind).
An early data visualization from the Esri team shows the flight paths of weather balloons launched on the first day of the FireSense UAS technology demonstration in Missoula. The paths are color-coded by wind speed, from purple (low wind) to bright yellow (high wind).
NASA/Milan Loiacono

Measurements from both the balloon and the drone platforms were immediately sent to the on-site data teams. The MITRE team, together with NVIDIA, tested high-resolution artificial intelligence meteorological models, while the Esri team created comprehensive visualizations of flight paths, temperatures, and wind speed and direction. These visual representations of the data make conclusions more immediately apparent to non-meteorologists.

What’s Next?

Development of drone capabilities for fire monitoring didn’t begin in Missoula, and it won’t end there.

“This campaign leveraged almost a decade of research, development, engineering, and testing,” said McSwain. “We have built up a UAS flight capability that can now be used across NASA.”

This campaign leveraged almost a decade of research, development, engineering, and testing. We have built up a UAS flight capability that can now be used across NASA.  

Robert Mcswain

Robert Mcswain

FireSense Uncrewed Aerial System (UAS) Lead

The NASA Alta X and its sensor payload will head to Alabama and Florida in spring 2025, incorporating improvements identified in Montana. There, the team will perform another technology demonstration with wildland fire managers from a different region.

To view more photos from the FireSense campaign visit: https://nasa.gov/firesense

The FireSense project is led by NASA Headquarters in Washington and sits within the Wildland Fires program, with the project office based at NASA Ames. The goal of FireSense is to transition Earth science and technological capabilities to operational wildland fire management agencies, to address challenges in U.S. wildland fire management before, during, and after a fire. 

About the Author

Milan Loiacono

Milan Loiacono

Science Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice Read this story in English here.
      El equipo detrás del X-59 de la NASA completó en marzo otra prueba crítica en tierra, garantizando que el silencioso avión supersónico será capaz de mantener una velocidad específica durante su funcionamiento. Esta prueba, conocida como mantenimiento automático de velocidad del motor, es el más reciente marcador de progreso a medida que el X-59 se acerca a su primer vuelo este año. 
      “El mantenimiento automático de la velocidad del motor es básicamente la versión de control de crucero de la aeronave,” explicó Paul Dees, jefe adjunto de propulsión de la NASA del X-59 en el Centro de Investigación de Vuelo Armstrong de la agencia en Edwards, California. “El piloto activa el control de velocidad a su velocidad actual y luego puede aumentarla o ajustarla gradualmente según sea necesario.” 
      El equipo del X-59 ya había realizado una prueba similar en el motor, pero sólo como un sistema aislado. La prueba de marzo verificó que la retención de velocidad funciona correctamente tras su integración en la aviónica de la aeronave. 
      “Necesitábamos verificar que el mantenimiento automático de velocidad funcionara no sólo dentro del propio motor, sino como parte de todo el sistema del avión,” explicó Dees. “Esta prueba confirmó que todos los componentes – software, enlaces mecánicos y leyes de control – funcionan juntos según lo previsto.” 
      El éxito de la prueba confirmó la habilidad de la aeronave para controlar la velocidad con precisión, lo cual será muy invaluable durante el vuelo. Esta capacidad aumentará la seguridad de los pilotos, permitiéndoles enfocarse en otros aspectos críticos de la operación de vuelo. 
      “El piloto va a estar muy ocupado durante el primer vuelo, asegurándose de que la aeronave sea estable y controlable,” dijo Dees. “Al tener la función del mantenimiento automático de velocidad, de reduce parte de esa carga de trabajo, lo que hace que el primer vuelo sea mucho más seguro.” 
      Inicialmente el equipo tenía planeado comprobar el mantenimiento automático de velocidad como parte de una próxima serie de pruebas en tierra donde alimentarían la aeronave con un sólido conjunto de datos para verificar su funcionalidad tanto en condiciones normales como de fallo, conocidas como pruebas de pájaro de aluminio (una estructura que se utiliza para probar los sistemas de una aeronave en un laboratorio, simulando un vuelo real). Sin embargo, el equipo se dio cuenta que había una oportunidad de probarlo antes. 
      “Fue un objetivo de oportunidad,” dijo Dees. “Nos dimos cuenta de que estábamos listos para probar el mantenimiento automático de velocidad del motor por separado mientras otros sistemas continuaban con la finalización de su software. Si podemos aprender algo antes, siempre es mejor.” 
      Con cada prueba exitosa, el equipo integrado de la NASA y Lockheed Martin acerca el X-59 al primer vuelo, y hacer historia en la aviación a través de su tecnología supersónica silenciosa. 
      Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated Mar 31, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronáutica NASA en español Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA logo. NASA has awarded SpaceX of Starbase, Texas, a modification under the NASA Launch Services (NLS) II contract to add Starship to their existing Falcon 9 and Falcon Heavy launch service offerings.
      The NLS II contracts provide a broad range of commercial launch services for NASA’s planetary, Earth-observing, exploration, and scientific satellites. These high-priority, low and medium risk tolerant missions have full NASA technical oversight and mission assurance, resulting in the highest probability of launch success.
      The NLS II contracts are multiple award, indefinite-delivery/indefinite-quantity, with an ordering period through June 2030 and an overall period of performance through December 2032. The contracts include an on-ramp provision that provides an opportunity annually for new launch service providers to add their launch service on an NLS II contract and compete for future missions and allows existing contractors to introduce launch services not currently on their NLS II contracts.
      The contracts support the goals and objectives of the agency’s Science Mission Directorate, Space Operations Mission Directorate, Explorations Systems Development Mission Directorate, and the Space Technology Mission Directorate. Under the contracts, NASA also can provide launch services to other federal government agencies.
      NASA’s Launch Services Program Office at the agency’s Kennedy Space Center in Florida manages the NLS II contracts. For more information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle / Joshua Finch
      Headquarters, Washington
      202-358-1600 / 202-358-1100
      tiernan.doyle@.nasa.gov / joshua.a.finch@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated Mar 28, 2025 LocationNASA Headquarters Related Terms
      NASA Directorates Space Operations Mission Directorate View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Eric Garza, an engineering technician in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, cuts plywood to size for temporary floorboards for the X-66 experimental demonstrator aircraft on Aug. 26, 2024.NASA/Steve Freeman NASA designed temporary floorboards for the MD-90 aircraft to use while it is transformed into the X-66 experimental demonstrator aircraft. These floorboards will protect the original flooring and streamline the modification process.
      Supporting the agency’s Sustainable Flight Demonstrator project, a small team in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, built temporary floorboards to save the project time and resources. Repeated removal and installation of the original flooring during the modification process was time-consuming. Using temporary panels also ensures the original floorboards are protected and remain flightworthy for when modifications are complete, and the original flooring is reinstalled.
      “The task of creating the temporary floorboards for the MD-90 involves a meticulous process aimed at facilitating modifications while maintaining safety and efficiency. The need for these temporary floorboards arises from the detailed procedure required to remove and reinstall the Original Equipment Manufacturer (OEM) floorboards,” said Jason Nelson, experimental fabrication lead. He is one of two members of the fabrication team – one engineering technician and one inspector – manufacturing about 50 temporary floorboards, which range in size from 20 inches by 36 inches to 42 inches by 75 inches.
      A wood router cuts precise holes in plywood for temporary floorboards on Aug. 26, 2024, in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California. The flooring was designed for the X-66 experimental demonstrator aircraft. NASA/Steve Freeman Nelson continued, “Since these OEM boards will be removed and reinstalled multiple times to accommodate necessary modifications, the temporary floorboards will save the team valuable time and resources. They will also provide the same level of safety and strength as the OEM boards, ensuring that the process runs smoothly without compromising quality.”
      Designing and prototyping the flooring was a meticulous process, but the temporary solution plays a crucial role in optimizing time and resources as NASA works to advance safe and efficient air travel. The agency’s Sustainable Flight Demonstrator project seeks to inform the next generation of single-aisle airliners, the most common aircraft in commercial aviation fleets around the world. NASA partnered with Boeing to develop the X-66 experimental demonstrator aircraft.
      NASA Armstrong’s Experimental Fabrication Shop carries out modifications and repair work on aircraft, ranging from the creation of something as small as an aluminum bracket to modifying wing spars, fuselage ribs, control surfaces, and other tasks to support missions.
      Eric Garza, an engineering technician in the Experimental Fabrication Shop at NASA’s Armstrong Flight Research Center in Edwards, California, observes a wood router cut holes for temporary floorboards on Aug. 26, 2024. The flooring was designed for the X-66 experimental demonstrator aircraft.  NASA/Steve Freeman Share
      Details
      Last Updated Mar 28, 2025 EditorDede DiniusContactSarah Mannsarah.mann@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Green Aviation Tech Sustainable Flight Demonstrator Explore More
      2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 2 days ago 5 min read NASA Demonstrates New Wildland Fire Airspace Management System
      Article 3 days ago 3 min read New Aircraft Wing Undergoes Crucial NASA Icing Testing
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      From left to right, NASA Marshall engineers Carlos Diaz and John Luke Bili, U.S. Naval Research Laboratory mechanical engineer contractor Eloise Stump, and Marshall engineers Tomasz Liz, David Banks, and Elise Doan observe StarBurst in the cleanroom environment before it’s unboxed from its shipping container. The cleanroom environment at Marshall is designed to minimize contamination and protect the observatory’s sensitive instruments. Image Credit: NASA /Daniel Kocevski   StarBurst, a wide-field gamma ray observatory, arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4 for environmental testing and final instrument integration. The instrument is designed to detect the initial emission of short gamma-ray bursts, a key electromagnetic indicator of neutron star mergers.
      “Gamma-ray bursts are among the most powerful explosions in the universe, and they serve as cosmic beacons that help us understand extreme physics, including black hole formation and the behavior of matter under extreme conditions,” said Dr. Daniel Kocevski, principal investigator of the StarBurst mission at NASA Marshall.
      According to Kocevski, neutron star mergers are particularly exciting because they produce gamma-ray bursts and gravitational waves, meaning scientists can study these events using two different signals – light and ripples in space time.
      Starburst Principal Investigator Dr. Daniel Kocevski, left, and Integration and Test Engineer Elise Doan, right, pose with the StarBurst instrument after it was unboxed in the cleanroom environment at NASA Marshall. The Naval Research Lab transferred the instrument to NASA in early March.Image Credit: NASA/Davy Haynes The merging of neutron stars forges heavy elements such as gold and platinum, revealing the origins of some of Earth’s building blocks.
      “By studying these gamma-ray bursts and the neutron star mergers that produce them, we gain insights into fundamental physics, the origins of elements, and even the expansion of the universe,” Kocevski said. “Neutron star mergers and gamma-ray bursts are nature’s laboratories for testing our understanding of the cosmos.”
      StarBurst will undergo flight vibration and thermal vacuum testing at Marshall in the Sunspot Thermal Vacuum Testing Facility. These tests ensure it can survive the rigors of launch and harsh environment of space.
      Final instrument integration will happen in the Stray Light Facility, which is a specialized environment to help identify and reduce unwanted light in certain areas of the optical systems.
      The StarBurst Multimessenger Pioneer is a wide-field gamma-ray observatory designed to detect the initial emission of short gamma-ray bursts, important electromagnetic indicators of neutron star mergers. With an effective area over five times that of the Fermi Gamma-ray Burst Monitor and complete visibility of the unobscured sky, StarBurst will conduct sensitive observations. NASA/Daniel Kocevski StarBurst is a collaborative effort led by NASA’s Marshall Space Flight Center, with partnerships with the U.S. Naval Research Laboratory, the University of Alabama Huntsville, the Universities Space Research Association, and the UTIAS Space Flight Laboratory. StarBurst was selected for development as part of the NASA Astrophysics Pioneers program, which supports lower-cost, smaller hardware missions to conduct compelling astrophysics science.
      To learn more about StarBurst visit:
      https://science.nasa.gov/mission/starburst/
      Media Contact:
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Alabama
      256.544.0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Starling swarm’s extended mission tested advanced autonomous maneuvering capabilities.NASA/Daniel Rutter As missions to low Earth orbit become more frequent, space traffic coordination remains a key element to efficiently operating in space. Different satellite operators using autonomous systems need to operate together and manage increasing workloads. NASA’s Starling spacecraft swarm recently tested a coordination with SpaceX’s Starlink constellation, demonstrating a potential solution to enhance space traffic coordination.
      Led by the Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley, Starling originally set out to demonstrate autonomous planning and execution of orbital maneuvers with the mission’s four small spacecraft. After achieving its primary objectives, the Starling mission expanded to become Starling 1.5, an experiment to demonstrate maneuvers between the Starling swarm and SpaceX’s Starlink satellites, which also maneuver autonomously.
      Coordination in Low Earth Orbit
      Current space traffic coordination systems screen trajectories of spacecraft and objects in space and alert operators on the ground of potential conjunctions, which occur when two objects exceed an operator’s tolerance for a close approach along their orbital paths. Spacecraft operators can request notification at a range of probabilities, often anywhere from a 1 in 10,000 likelihood of a collision to 1 in 1,000,000 or lower.
      Conjunction mitigation between satellite operators requires manual coordination through calls or emails on the ground. An operator may receive a notification for a number of reasons including recently maneuvering their satellite, nearby space debris, or if another satellite adjusts its orbit.
      Once an operator is aware of a potential conjunction, they must work together with other operators to reduce the probability of a collision. This can result in time-consuming calls or emails between ground operations teams with different approaches to safe operations. It also means maneuvers may require several days to plan and implement. This timeline can be challenging for missions that require quick adjustments to capture important data.
      “Occasionally, we’ll do a maneuver that we find out wasn’t necessary if we could have waited before making a decision. Sometimes you can’t wait three days to reposition and observe. Being able to react within a few hours can make new satellite observations possible,” said Nathan Benz, project manager of Starling 1.5 at NASA Ames.
      Improving Coordination for Autonomous Maneuvering
      The first step in improving coordination was to develop a reliable way to signal maneuver responsibility between operators. “Usually, SpaceX takes the responsibility to move out of the way when another operator shares their predicted trajectory information,” said Benz.
      SpaceX and NASA collaborated to design a conjunction screening service, which SpaceX then implemented. Satellite operators can submit trajectories and receive conjunction data quickly, then accept responsibility to maneuver away from a potential conjunction.
      “For this experiment, NASA’s Starling accepted responsibility to move using the screening service, successfully tested our system’s performance, then autonomously planned and executed the maneuver for the NASA Starling satellite, resolving a close approach with a Starlink satellite,” said Benz.
      Through NASA’s Starling 1.5 experiment, the agency helped validate SpaceX’s Starlink screening service. The Office of Space Commerce within the U.S. Department of Commerce also worked with SpaceX to understand and assess the Starlink screening service.
      Quicker Response to Changes on Earth
      The time it takes to plan maneuvers in today’s orbital traffic environment limits the number of satellites a human operator can manage and their ability to collect data or serve customers.
      “A fully automated system that is flexible and adaptable between satellite constellations is ideal for an environment of multiple satellite operators, all of whom have differing criteria for mitigating collision risks,” said Lauri Newman, program officer for NASA’s Conjunction Assessment Risk Analysis program at the agency’s headquarters in Washington.
      Reducing the time necessary to plan maneuvers could open up a new class of missions, where quick responses to changes in space or on Earth’s surface are possible. Satellites capable of making quicker movements could adjust their orbital position to capture a natural disaster from above, or respond to one swarm member’s interesting observations, moving to provide a more thorough look.
      “With improved access and use of low Earth orbit and the necessity to provide a more advanced space traffic coordination system, Starling 1.5 is providing critical data.  Starling 1.5 is the result of a successful partnership between NASA, the Department of Commerce, and SpaceX, maturing technology to solve such challenges,” said Roger Hunter, program manager of the Small Spacecraft Technology program. “We look forward to the sustained impact of the Starling technologies as they continue demonstrating advancements in spacecraft coordination, cooperation, and autonomy.”    
      NASA Ames leads the Starling projects. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission. 
      Share
      Details
      Last Updated Mar 26, 2025 LocationAmes Research Center Related Terms
      Ames Research Center General Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
      2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 58 seconds ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 20 hours ago 5 min read NASA Demonstrates New Wildland Fire Airspace Management System
      Article 22 hours ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Space Technology Mission Directorate
      Conjunction Assessment (CA Home)
      Starling
      View the full article
  • Check out these Videos

×
×
  • Create New...